
1. Introduction
There are certain difficulties in conducting precise numerical simulation of physical phenomena at coastal estuar-
ies. Data assimilation methods can improve the reproduction accuracy and advance our understanding of physical 
processes. However, applying data assimilation to coastal numerical simulations is still challenging because of 
the complexity of the physical process (Stanev et al., 2016). One of the most important conditions of data assim-
ilation is the background error covariance (forecast error covariance; Edwards et al., 2015; Hoteit et al., 2018; 
Moore et al., 2011; Sakov et al., 2012). Although there are several methods for calculating the background error 
covariance (Fisher & Courtier,  1995; Fu et  al.,  1993; Weaver & Courtier,  2001), an appropriate method for 
regional data assimilation in coastal estuaries has not yet been determined. From this viewpoint, the ensemble 
Kalman filter (EnKF), which can express and update the background error covariance using ensemble members 
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that indicate the system error, that is, the numerical simulation error (Evensen, 1994), is a potential procedure for 
coastal calculation. Compared to the ocean, coastal estuaries have a complex flow field with a short timescale 
that includes density-driven currents, tidal currents, wind-induced currents, and ocean currents; thus, EnKF is a 
suitable method for analyzing the physical processes of coastal estuaries.

Ensemble members are created by perturbing the error factors of numerical simulations to represent the ensem-
ble spread or variability. There are approximately three types of error factors that contribute to the error of a 
numerical simulation: (a) initial conditions, (b) forcing data, and (c) model equations and parameters (Turner 
et al., 2008). For numerical models of open oceans, which are relatively advanced in data assimilation, several 
studies have suggested calculating ensembles to represent the initial conditions (Sakov et al., 2012), the atmos-
pheric forcing errors (Lima et al., 2019; Mirouze & Storto, 2019; Penny et al., 2015; Sakov et al., 2012), param-
eter errors (Brankart et  al.,  2015), and combinations of the atmospheric forcing errors and parameter errors 
(Baduru et al., 2019; Kwon et al., 2016; Sanikommu et al., 2020; Vandenbulcke & Barth, 2015). This reflects the 
assumption that initial conditions, models, and atmospheric boundary conditions are important for the precise 
simulation of physical processes in the open ocean, which has a relatively large calculation area and long-term 
fluctuations.

However, the successful perturbation of error factors to generate ensembles has not yet been achieved for regional 
data assimilation in coastal estuaries. We suggest that perturbation of three boundary conditions is required to 
generate ensembles for regional data assimilation of a coastal estuary specifically, atmospheric forcing, lateral 
boundary conditions, and river discharge forcing. This is because coastal areas are more affected by boundary 
conditions because of the small calculation area. Moreover, it is very difficult to set accurate boundary condi-
tions because of limitations of available data set, despite their substantial influence on the results of regional 
coastal numerical simulations. Previous studies have reported that error variability caused by the initial condi-
tions decreases with time in coastal numerical models (Turner et al., 2008) because such models are dominated 
by relatively short-term fluctuations. Moreover, the error caused by the initial conditions can be maintained by 
multiplicative inflation (Anderson & Anderson, 1999; Whitaker & Hamill, 2012); however, this technique does 
not generate a consistent physical model (Sanikommu et al., 2020).

Some previous studies have conducted regional data assimilation for coastal estuaries using EnKF. For example, 
Turner et al. (2008) generated ensemble members for EnKF by perturbing atmospheric forcing, lateral boundary 
conditions, and river discharge forcing. They also proposed adding random noise with a normal distribution to 
the boundary conditions of the ensemble members as a method of perturbation. They applied this method to 
observing system simulation experiments (OSSEs) in Port Phillip Bay, Australia, using synthetic sea surface 
temperature (SST) data, and reported good prediction capability. Hoffman et al. (2012) also conducted OSSEs in 
Chesapeake Bay, USA. The assimilated synthetic data included fixed point water temperature, salinity, and SST 
data. They created ensembles by perturbing the initial conditions and wind via atmospheric forcing. Although 
they did not add perturbations to lateral boundary conditions and river discharge forcing, they noted it may be 
necessary to add perturbations to lateral boundary conditions and river discharge forcing for generating ensem-
bles when data assimilation is conducted using real observation data. Furthermore, Khanarmuei et al.  (2021) 
conducted twin experiments for the shallow estuary of Currimundi Lake, Australia. They perturbed the lateral 
boundary condition of water level and river discharge, and the synthetic observed values of water level and 
current velocity were assimilated. They revealed the importance of perturbing the lateral boundary condition of 
the water level when assimilating the observed water level value and that of perturbing river discharge forcing 
when assimilating the observed current velocity value. However, real observation data were not included in their 
previous experiments and synthetic observation data were simulated numerically. In addition, the error factors 
were already known because the experiments were virtual.

Thus, we conducted the EnKF in the Ise Bay, Japan using actual observed data (Matsuzaki & Inoue, 2020). 
Ise Bay is a coastal area with an estuary. Ensembles were made to perturb lateral boundary condition of water 
temperature and river water temperature. The assimilation results were compared with the observed values, and it 
was confirmed that the water temperature improved. However, Matsuzaki and Inoue (2020) was conducted only 
in the summer, and the data assimilation performance and the robustness of the data assimilation method through-
out the year have not been evaluated. Therefore, it is imperative to conduct assessment throughout the year to 
respond to seasonal fluctuations and confirm applicability and robustness of the methods (Turner et al., 2008).
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In this study, we conducted EnKF in the Ise Bay, Japan, and evaluate the 
applicability of the data assimilation method. Specifically, we analyze the 
optimal method for adding perturbations to create ensemble members for 
regional data assimilation of a coastal estuary. This study also analyzes the 
relationship between the boundary conditions, which add perturbations and 
the assimilated water temperature and salinity data results as well as their 
ensemble spread. To the best of our knowledge, this is the first study to 
employ EnKF with actual water temperature and salinity data for a coastal 
estuary over 1 year. Additionally, no previous studies have generated ensem-
bles by perturbing lateral boundary conditions and river discharge forcing 
under practical conditions; thus, this study reveals the effect of perturbing 
boundary conditions. In addition, we confirm the robustness of the regional 
coastal data assimilation method by performing long-term integral data 
assimilation and quantitative evaluation using the data assimilation results. 
The proposed data assimilation method is characterized by high applicability 
to coastal estuaries and responds to both short-term and long-term fluctua-
tions, including seasonal changes.

2. Materials and Methods
2.1. Simulation Model and Setup

Simulations were conducted using the Ise Bay Simulator (Tanaka & 
Suzuki, 2010), which is a nonhydrostatic numerical simulation model. The 
model was configured to cover the entire area of Ise Bay (Figure 1; surface 
area: 2,342 km 2, volume: 3.94 × 10 10 m 3, mean depth: 17 m), which is located 
in the south-central part of Honshu Island, Japan. The bay is approximately 
70  km long in both longitudinal and latitudinal directions and is divided 
into two. The western side has a surface area of 1,738  km 2, a volume of 
3.39 × 10 10 m 3, and a mean depth of 20 m (Figure 2). The water depth was 
about 35 m in the center of the bay, and the maximum water depth is 100 m at 
the bay's mouth. The eastern side is called Mikawa Bay, which has a surface 
area, volume, and mean depth of 604 km 2, 5.5 × 10 9 m 3, and 9 m, respec-
tively. The maximum water depth was about 35 m, but most water was under 
20 m deep (Figure 2). The lateral boundary borders the Pacific Ocean. The 
annual river discharge (about 2.0 × 10 10 m 3) is about half of the volume of 
Ise Bay. Ten class A rivers, which are defined as nationally controlled rivers 
that are generally large in scale, and 91 medium and small-sized rivers flow 
into Ise Bay. The Kiso, Nagara, and Ibi rivers have the highest discharges, 
and these three rivers flow in from the back of the bay (Figure  2). Eight 
class A rivers flow into the west side of Ise Bay and two into Mikawa Bay. 
Thus, freshwater inflow is biased to the west side of Ise Bay. There are two 
types of characteristic wind patterns in Ise Bay; from fall to spring, seasonal 
wind flow from the northwest, and in the summer, land and sea breeze flow 
from the southeast during the day and from the northwest at night (Sekine 
et al., 2002). Since the water is relatively shallow, seawater exchange occurs 
due to the influence of wind.

The Ise Bay model uses the Cartesian coordinate system, which simulates 
the water current structure of coastal estuaries with horizontal resolution of 
800 m for both x and y-direction (Figure 2). The coordinate system is set by 
rotating it clockwise by 45°. The number of vertical layers is 32, with 0.5-m 
spacing near the water surface and 30-m spacing near the seabed. Input water 
depth data were created by reading the water depth from a chart made by 
the Japan Coast Guard. A subgrid-scale model was used for the horizontal 

Figure 1. Location of Ise Bay, Japan. Dashed line indicates the experimental 
area for data assimilation. Circles and triangles represent observation stations 
used for data assimilation and accuracy validation, respectively. A1 to A5 
circles represent the back of Ise Bay, the center of Ise Bay, the mouth of Ise 
Bay, No. 1 buoy, and No. 2 buoy, respectively. C1 and C2 triangles indicate 
the Nakayama Channel and No. 3 buoy, respectively. Asterisks represent 
the observation stations used to generate atmospheric forcing data. Cross 
represents the observation point used to generate the lateral boundary 
conditions.

Figure 2. Calculation grid and its water depth. Arrows indicate the inflow 
position and directions of 10 class A rivers. The horizontal and vertical axes 
indicate a calculation grid of x and y-direction and the grid number is 85 × 85. 
In this study, the entire sea area is defined as Ise Bay, the eastern side is 
defined as Mikawa Bay, and the Ise Bay excluding Mikawa Bay is defined as 
the western side of Ise Bay.
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turbulence model; the model of Nakamura and Hayakawa (1991), which has been modified from the model of 
Henderson-Sellers (1985), was used for the vertical turbulence model. The Sommerfeld radiation condition was 
applied for the transmission condition of the lateral boundary (Orlanski, 1976).

2.2. Boundary Condition Settings

Three boundary conditions were set: atmospheric forcing, lateral boundary conditions, and river discharge forc-
ings. This simulation system, which includes data assimilation, is designed from the perspective of short-term 
forecasts. Therefore, the data used for the three boundary conditions were created using only data available in 
real time. Thus, more accurate data were not used for boundary conditions unless they could be obtained in real 
time. Thus, although a system that uses the output of an atmospheric simulation model as a boundary condition 
has since been developed for this numerical simulation model (Hafeez et al., 2021; Matsuzaki et al., 2021), this 
study adopted a system that creates boundary conditions based on observed values. Atmospheric forcings were 
created through spatial interpolation from data obtained from 12 observation stations on the land surrounding Ise 
Bay. The lateral boundary conditions were based on the average values from 10 years of monthly data. Owing to 
the use of climate values rather than real-time data, the water temperature and salinity values are considered to 
be significantly erroneous. The river discharge was calculated using a storage function method from precipitation 
in the basin. The precipitation was created using observation data. River water temperature was estimated from 
the air temperature near the mouth of the river using a regression line. Details of boundary condition settings are 
shown in the Appendix A.

2.3. Assimilation Model

The EnKF model for the Ise Bay Simulator was coded (Matsuzaki & Inoue, 2020) based on the work of Even-
sen  (2003). The basic analysis steps of Kalman filter and EnKF are as follows. The analysis value, x a (data 
assimilation results), at a certain time, t, is obtained by the optimal weighted average of the background value x f 
(forecast/simulation results) and the observed value, y, as shown by Equation 1.

𝒙𝒙𝑎𝑎
𝑡𝑡 = 𝒙𝒙

𝑓𝑓

𝑡𝑡
+𝑲𝑲 𝑡𝑡

(

𝒚𝒚𝑡𝑡 −𝑯𝑯 𝑡𝑡𝒙𝒙
𝑓𝑓

𝑡𝑡

)

 (1)

where x represents a state vector whose elements are physical quantities such as water temperature, salinity, and 
current velocity in each mesh of the numerical model. y is an observation vector with observed values such as 
water temperature, salinity, and current velocity as elements. H is an observation matrix and an operator that 
extracts the physical quantity of the mesh corresponding to the observation point from the result (state vector) of 
the numerical model. K is a weight matrix (Kalman gain) that determines the extent that the observed values are 
assimilated and is calculated as follows.

𝑲𝑲 𝑡𝑡 = 𝑷𝑷
𝑓𝑓

𝑡𝑡
𝑯𝑯𝑇𝑇

𝑡𝑡

(

𝑹𝑹𝑡𝑡 +𝑯𝑯 𝑡𝑡𝑷𝑷
𝑓𝑓

𝑡𝑡
𝑯𝑯𝑇𝑇

𝑡𝑡

)−1 (2)

where P is the background error covariance matrix, and R is the observation error covariance matrix. Superscript 
T means transpose. Equation 2 shows that the assimilation rate of the observed values is determined by the rela-
tionship between P and R and the spatial correction by the observed values is determined by P. As mentioned 
in the introduction, the main purpose of this study is to calculate the appropriate ensembles for regional coastal 
estuary modeling, and this is dependent on the background error covariance matrix P. The data assimilation flow 
in the EnKF is as follows:

1.  Ensemble members are calculated using a numerical model; the Ise Bay Simulator. In this study, ensemble 
members are calculated under different boundary conditions, as explained in Section 2.4. The number of 
ensembles is expressed as L.

2.  The background error covariance matrix is estimated from ensembles.

�̄�𝑷
𝑓𝑓

𝑡𝑡 =
1

𝐿𝐿 − 1

𝐿𝐿
∑

𝑙𝑙=1

(

𝒙𝒙
𝑓𝑓 (𝑙𝑙)

𝑡𝑡
− �̄�𝒙

𝑓𝑓

𝑡𝑡

) (

𝒙𝒙
𝑓𝑓 (𝑙𝑙)

𝑡𝑡
− �̄�𝒙

𝑓𝑓

𝑡𝑡

)𝑇𝑇

 (3)
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�̄�𝒙
𝑓𝑓

𝑡𝑡
=

1

𝐿𝐿

𝐿𝐿
∑

𝑙𝑙=1

𝒙𝒙
𝑓𝑓 (𝑙𝑙)

𝑡𝑡 (4)

 Here, the mean value of the ensemble and the covariance matrix are represented by an overbar.
3.  The observation error covariance matrix is estimated from ensembles.

�̄�𝑹𝑡𝑡 =
1

𝐿𝐿 − 1

𝐿𝐿
∑

𝑙𝑙=1

(

𝒓𝒓
(𝑙𝑙)

𝑡𝑡
− �̄�𝒓𝑡𝑡

) (

𝒓𝒓
(𝑙𝑙)

𝑡𝑡
− �̄�𝒓𝑡𝑡
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 (5)

�̄�𝒓𝑡𝑡 =
1

𝐿𝐿

𝐿𝐿
∑

𝑙𝑙=1

𝒓𝒓
(𝑙𝑙)

𝑡𝑡 (6)

 where r is the observation error, which is the value of the measurement error that occurs depending on the 
characteristics of the observation equipment and the measurement environment, and the expression error that 
is caused by the phenomenon that the numerical model cannot express.

4.  The Kalman gain is estimated as follows

� � = �
�
� ��

�

(

�� +� ��
�
� ��

�

)−1
 (7)

5.  The analysis values of ensemble members are calculated as follows.

��(�)
� = �� (�)

� +� �
(

�� + �(�)� −� ��� (�)
�

)

(� = 1,…, �) (8)

The averaged value, 𝐴𝐴 �̄�𝒙𝑎𝑎
𝑡𝑡 , of the analysis values of each ensemble member is the data assimilation result.

�̄�𝒙𝑎𝑎
𝑡𝑡 =

1

𝐿𝐿

𝐿𝐿
∑

𝑙𝑙=1

𝒙𝒙
𝑎𝑎(𝑙𝑙)

𝑡𝑡 (9)

The settings for the ensemble simulation were the same as those described in Section 2.1, and a novel data assimi-
lation method with a high-resolution horizontal grid size (800 m) was employed. EnKF was implemented with 32 
members (L = 32). The ensemble number was selected as shown in a previous study (Matsuzaki & Inoue, 2020). 
The observation data described below were assimilated once per day at 00:00, and localization technique (Even-
sen, 2009; Gaspari & Cohn, 1999; Hamill et al., 2001) was not applied; thus, it was possible to correct the entire 
Ise Bay based on the background error covariance using a physical model, instead of nonphysical techniques such 
as the distance function. The multiplicative inflation technique was not applied because multiplicative inflation 
generates nonphysical and spurious error covariance (Sanikommu et  al.,  2020). Moreover, correlation of the 
observation error was ignored, that is, the observation error covariance matrix was set to diagonal. As explained 
in Section 2.4, perturbations were added to the boundary conditions to represent the system error. When assim-
ilation was performed near the lateral boundary, the assimilation system became unstable. To stabilize the data 
assimilation, the variables at two meshes adjacent to the lateral boundary were excluded from the Kalman gain 
calculation and assimilation, which ensured stable data assimilation performance.

2.4. Method of Adding Perturbations to Boundary Conditions

Generating a perturbation and determining its magnitude is a challenging task. Previous research has employed 
various methods to determine the boundary conditions for expressing an ensemble containing system noise, for 
example: (a) a method of adding noise according to a normal distribution (Turner et al., 2008), (b) a method 
of adding red noise (Evensen,  2003; Sakov et  al.,  2012), (c) a method of using ensemble simulation results 
(Bougeault et al., 2010) as the boundary condition (Sanikommu et al., 2020), and (d) a method that considers the 
difference in state quantities at different times as a perturbation (Kunii & Miyoshi, 2012). This study employed 
method (a), as shown in Equation 10, because it was previously used to conduct successful data assimilation for a 
coastal estuary; however, the study of Turner et al. (2008) employed OSSE instead of real data.

𝑭𝑭 mem = 𝑭𝑭 base + 𝒗𝒗 (10)
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Here, Fmem indicates the boundary conditions for data assimilation with perturbation, Fbase indicates the bound-
ary conditions for numerical simulation, and v indicates the perturbations that have a normal distribution with a 
mean of zero and variance of ξ 2. For some boundary conditions, such as that shown in Equation 10, the additive 
method is not valid. For example, the boundary condition of river discharge may have a negative value when the 
river discharge is close to zero and noise with a normal distribution is added. In addition, when river discharge 
is larger, the error of river discharge forcing appears to decrease relatively. Thus, the following multiplication 
method was introduced:

𝑭𝑭 mem = (1 + 𝒗𝒗)𝑭𝑭 base (11)

The model outputs evaluated in this study, which are explained in Section 2.7, are water temperature and salinity. 
The boundary conditions considered having a large effect on the simulation error of water temperature and salin-
ity were selected as follows. For the numerical simulation model, the atmospheric forcing includes air temper-
ature, shortwave radiation, longwave radiation, atmospheric pressure, wind direction, wind speed, water vapor 
pressure, and precipitation. The lateral boundary conditions include water temperature, salinity, and water level. 
The river discharge forcing boundary conditions include river discharge and river water temperature. Of these, the 
errors in the boundary conditions of air temperature, shortwave radiation, longwave radiation, lateral boundary 
water temperature, and river water temperature were considered directly linked to the numerical simulation error 
of water temperature. Similarly, the errors in the boundary conditions of precipitation, lateral boundary salinity, 
and river discharge were considered directly linked to the numerical simulation error of salinity. In addition, as 
water temperature and salinity are advected and diffused by the flow of water mass, the errors in the boundary 
conditions of wind speed, atmospheric pressure, and tide level of the lateral boundary were also considered 
having an effect. For these boundary conditions, these three assumptions were set. First, the shortwave radiation 
and longwave radiation errors were included in the air temperature error. Second, the precipitation error was 
included in the river discharge error. Third, the influence of the error between the atmospheric pressure and the 
tide level of the lateral boundary was relatively small, so it was ignored. Therefore, the perturbations for atmos-
pheric forcing were air temperature and wind speed (wind direction was not altered), the perturbations for lateral 
boundary conditions were water temperature and salinity, and the perturbations for river discharge forcing were 
river discharge and river water temperature.

As the magnitude of the error is considered to correlate with the accuracy of the boundary conditions, the magni-
tude of the perturbation, ξ, for creating the ensemble must be determined by the same method used to generate 
the boundary conditions. In this study, ξ values were estimated according to the assumption that all calculated 
error distributions follow a normal distribution; ξ values calculated on a trial basis are shown in Appendix B 
and summarized in Table  1. When the normal distribution is expressed by a normal random number with a 
few members, there is the potential for a large deviation from the normal distribution due to sampling error. In 
this study, we did not use normal random numbers, but set the value of each member to match the cumulative 
value of the normal distribution so the normal distribution can be expressed even with a few members. To avoid 
unintended correlation of each boundary condition, the Fisher-Yates shuffle (Fisher & Yates, 1948) was used to 
perform 10,000 replacement attempts, and the boundary conditions were set for each ensemble member using the 
combination with the lowest correlation.

Boundary condition Method ξ

Atmospheric forcing Air temperature Equation 10 3.04°C

Wind speed Equation 10 3.45 m s −1

Lateral boundary conditions Water temperature Equation 10 0.73°C

Salinity Equation 10 0.20

River discharge forcing River discharge Equation 11 0.35

River water temperature Equation 10 1.21°C

Note. Calculation of ξ values is shown in Appendix B.

Table 1 
Magnitude of Perturbations to Boundary Conditions
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2.5. Assimilated Observations

In situ water temperature and salinity profiles observed at fixed points were used for the data assimilation. Seven 
in situ observation stations are in operation in Ise Bay. Data from the five observation stations in Table 2 were 
assimilated. The observation time of the assimilated value is 00:00, and is not the 24-hr average. Observation 
error variance values were set to (1.0°C) 2 for water temperature and (1.0) 2 for salinity. These values were set 
referring to a previous study (Matsuzaki & Inoue, 2020). Gross error check was performed as background quality 
control. The difference between the observed value and the first guess value was calculated, and if the difference 
was over 3°C for water temperature, and 6 for salinity; the observed value was rejected.

2.6. Experimental Setup

Experiments were conducted for six cases (Table 3). In the standard experiment (control run [CR]), data assim-
ilation was not applied, that is, CR was a normal numerical simulation. DAAll included the optimal settings 
determined before the experiment. Perturbations were applied to three boundary conditions: atmospheric forcing, 
lateral boundary conditions, and river discharge forcing. The other four experiments included the assimilation 
results but used different methods of generating the ensembles. These experiments were conducted to confirm 
the effect of adding perturbations to the boundary conditions by comparing the results with those of DAAll. 
DAwoAtm had the same conditions as DAAll but did not perturb the atmospheric forcing of air temperature and 
wind speed, it analyzed the effect of considering the uncertainty of atmospheric forcing on the data assimilation 
results. As DAwoWind applied perturbations to air temperature but not to wind speed, it isolated the effects of 
air temperature and wind speed among the atmospheric forcing boundary conditions. Finally, as DAwoLBC and 
DAwoRiv had the same conditions as DAAll but did not perturb the lateral boundary conditions or river discharge 
forcing, these experiments examined the effect of considering the uncertainty of lateral boundary conditions 
and river discharge forcing on the data assimilation results. The assimilation experiments were conducted for 
1  year from 1 January 2016, to evaluate the applicability of the proposed method to long-term fluctuations, 
including seasonal changes, and to verify the robustness of the data assimilation method. Initial ensembles for 
the assimilation experiments on 1 January 2016 were generated using an 8-month spin-up period from 1 April 
2015. In the spin-up period, the ensemble members were calculated under the boundary conditions including the 

No. Station name Latitude (ºN) Longitude (ºE) Observation type Observation depth [m]

A1 Back of Ise Bay 34.926 136.741 Automatic elevating Every 1.0 m

A2 Center of Ise Bay 34.669 136.841 Automatic elevating Every 1.0 m

A3 Mouth of Ise Bay 34.509 137.018 Fixed 1.0 m, 11.8 m, and 23.2 m from low water level

A4 No. 1 buoy 34.743 137.220 Automatic elevating Every 1.0 m

A5 No. 2 buoy 34.745 137.072 Automatic elevating Every 1.0 m

Table 2 
Assimilated Observation Data

Experiment Assimilation

Atmospheric forcing
Lateral boundary 

condition
River discharge 

forcingAir temperature Wind speed

CR Control run without DA NA NA NA NA

DAAll Assimilated Perturbed Perturbed Perturbed Perturbed

DAwoAtm Assimilated Not perturbed Not perturbed Perturbed Perturbed

DAwoWind Assimilated Perturbed Not perturbed Perturbed Perturbed

DAwoLBC Assimilated Perturbed Perturbed Not perturbed Perturbed

DAwoRiv Assimilated Perturbed Perturbed Perturbed Not perturbed

Table 3 
Experimental Conditions
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perturbations, and exhibited an ensemble spread according to the position and magnitude of the perturbation of 
the initial conditions.

2.7. Accuracy Validation

Water temperature and salinity data of the model output were compared with the in situ observation data of water 
temperature and salinity profiles observed at fixed points (Table 4). Unfortunately, a suitable map data set for 
salinity similar to SST does not exist, making the comparison more difficult. As the next best measure, the model 
outputs and data used for the assimilation (Table 2) were compared to evaluate and discuss the effects of perturb-
ing boundary conditions to generate ensembles. Observation data were collected every hour, but the assimilations 
were conducted every day; thus, comparisons were conducted every day. The in situ observation time of the value 
was 00:00, and it is not the 24-hr average. Water temperature data of the model output were also compared with 
the SST data observed by Terra and Aqua (Moderate Resolution Imaging Spectroradiometer: MODIS) to evaluate 
the correction of water temperature in the spatial direction. The MODIS SST data were obtained by assuming 
that all data observed between 22:00 and 02:00 were observed at midnight; the SST data were then compared 
with model output data for assimilation. The reproducibility of the planar distribution of water temperature was 
then discussed.

The accuracy of the model output was evaluated using the following skills: the bias (Equation 12) and the root-
mean-square error (RMSE, Equation 13):

bias =
1

𝑁𝑁

𝑁𝑁
∑

𝑖𝑖=1

(𝑚𝑚𝑖𝑖 − 𝑜𝑜𝑖𝑖) (12)

RMSE =

√

√

√

√
1

𝑁𝑁

𝑁𝑁
∑

𝑖𝑖=1

(𝑚𝑚𝑖𝑖 − 𝑜𝑜𝑖𝑖)
2 (13)

where mi and oi are model output and observation, respectively, and N is the number of model outputs and obser-
vations. SST was also evaluated using centered (bias removed) RMSE (CRMSE, Equation 14) and correlation 
coefficient (CC, Equation 15):

CRMSE =

√

√

√

√
1
�

�
∑

�=1

[(

�� − �
)

−
(

�� − �
)]2 (14)

CC =
1
�
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�=1

(

�� − �
) (

�� − �
)

√

1
�

∑�
�=1

(

�� − �
)2
√

1
�

∑�
�=1

(

�� − �
)2 (15)

where 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 𝐴𝐴𝐴 are the average value of the model output and observation, respectively.

The assimilation result of EnKF was obtained by the weighted average of the background value and the observed 
value. The weighted average was determined by the ensemble spread, which was the amount of error in the back-
ground value. Therefore, degeneration of the ensemble spread becomes a problem when executing EnKF (termed 
as filter divergence). Then, the magnitude of the ensemble spread was evaluated (Equation 16):

No. Station name Latitude (ºN) Longitude (ºE) Observation type Observation depth

C1 Nakayama Channel 34.623 136.982 Fixed 1.4 m, 8.2 m, 12.4 m from low water level

C2 No. 3 buoy 34.675 137.097 Automatic elevating Every 1.0 m

Table 4 
Comparison Observation Data Not Assimilated
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Ensemble spread =

√

√

√

√
1

� − 1

�
∑

�=1

(

�� − ��
)2 (16)

where 𝐴𝐴 𝐴𝐴𝐴𝐿𝐿 is the ensemble average value of mi.

3. Results
3.1. Performance and Robustness of Data Assimilation

In this section, the results of the CR and data assimilation (DAAll) are 
compared to show the validity and effectiveness of the data assimilation 
method. Figures 3 and 4 compare the time series of observed water temper-
ature data in C1 and C2 (Table 4) and the model output of CR and DAAll. 
CR exhibits the same water temperature fluctuation trend as the observed 
values; however, the water temperature is higher than the observed values. 
This difference is particularly large in the lower layer. DAAll shows the water 
temperature corrected to match the observations. Moreover, DAAll was able 
to perform the data assimilation for 1 year without the divergence of numer-
ical operation. Figures  5 and  6 show the biases and RMSEs between the 
observed and simulated water temperatures for C1 and C2. Bias and RMSE 
values are lower for DAAll than CR at all depths. The bias improvement is 
approximately the same near the water surface and near the bottom, with an 
average difference between CR and DAAll of 0.78°C for C1 and 1.09°C for 
C2. Conversely, the RMSE improvement is greater near the bottom than near 
the sea surface. The average difference between CR and DAAll is 0.57°C for 
C1 and 0.86°C for C2. These results indicate that the proposed regional data 
assimilation method for a coastal estuary is effective for correcting water 
temperature and highly robust, that is, it can be applied throughout the year 
and reflects seasonal variations.

Figures  7–10 show the spatial distributions of bias, RMSE, CRMSE, and 
CC values between SST data observed by MODIS and the model outputs, 
respectively. The bias, RMSE, and CRMSE scores of DAAll are better than 

those of CR throughout Ise Bay, particularly at the west side of the bay, although the observed values used for 
data assimilation extend from the center of the bay to the east side, and there are no observation points on the 
west side. Data assimilation corrects the water temperature for the entire bay, despite sparse observations in the 
horizontal direction, because the error covariance is properly expressed by the proposed perturbation. The CC 
values of DAAll have almost the same distribution as that of CR. The bias, RMSE, and CRMSE values of SST 
were 0.67°C, 0.54°C, and 0.34°C lower, respectively, in DAAll (Figure 11). Nevertheless, the bias, RMSE, and 
CRMSE values do not exhibit substantial improvement on the east side of the bay mouth and in parts of the river 
mouth. Thus, there is still room for further improvement. The RMSE and CRMSE of the simulation and data 
assimilation results were high in the river mouth where the three largest class A rivers flow (around 55 mesh in 
the x-direction and 75 mesh in the y-direction). One reason may be that in the case of the simulation, the bias 
of the river water temperature in the boundary conditions was small, but the variation against actual river water 
temperature was large; hence, the RMSE and CRMSE were high. In the case of data assimilation, the observation 
station was not near the river mouth and the correlation between the observation station and the river mouth was 
low; therefore, it was probable that the correction was not made.

Figures 12 and 13 show time series of the observed salinity in C1 and C2 and the model outputs of CR and 
DAAll. Although the effect of assimilation on salinity is not as clear as that for water temperature, the assimi-
lation performance is stable throughout the year. Figures 14 and 15 show the bias and RMSE values of salinity 
in C1 and C2. Bias and RMSE values decrease from CR to DAAll at all depths in C1. The average difference in 
bias and RMSE values between the two experiments are 0.17 and 0.06, respectively. At C2, the bias values are 
lower at all depths in DAAll; however, the RMSE values do not show this trend; the average difference in bias and 

Figure 3. Time series of water temperature data at C1 for observations, CR, 
and DAAll. (a) Water depth of 1.0 m; (b) water depth of 12.0 m.
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RMSE values between the two experiments are 0.07 and −0.09, respectively. 
One reason for this finding could be that the magnitude of perturbations (ξ) 
for assimilation of salinity data was not appropriate in the boundary condi-
tions. When data assimilation is performed by only changing the magnitude 
of the perturbation of the boundary conditions from DAAll (the results of the 
sensitivity experiments are not shown, but ξ was set to 1.00°C for air temper-
ature, 2.00 m s −1 for wind speed, 0.50°C and 0.25 for water temperature and 
salinity of the lateral boundary, 0.36 for river discharge, and 0.50°C for river 
water temperature), the average RMSE of salinity at C2 is 0.01 smaller for 
DAAll than CR. Therefore, the optimal magnitude of perturbation should 
be carefully considered. Nevertheless, the results indicate that the proposed 
regional data assimilation method for coastal estuaries is an effective and 
robust method for both water temperature and salinity data.

3.2. Effect of Perturbations on Boundary Conditions

3.2.1. Atmospheric Forcing

This subsection examines the effect of perturbation on atmospheric forcing 
on the data assimilation results. Compared to DAAll, DAwoAtm, which does 
not perturb the air temperature and wind speed, does not improve the bias and 
RMSE values of water temperature in C1 and C2 (Figures 5 and 6). This find-
ing is particularly noticeable at C2. DAwoAtm was the least improved among 
the data assimilation results for the bias and RMSE scores of water temper-
ature (Figures  5 and  6). Additionally, DAwoAtm was the least improved 
among the data assimilation results for the bias, RMSE, and CRMSE scores 
of SST (Figure 11). However, DAwoWind, which perturbs the atmospheric 
forcing condition of air temperature, improves the water temperature from 
that of DAwoAtm (Figures  5,  6, and  11). DAwoWind also exhibits better 
bias and RMSE scores than DAAll at a depth of −4 m or more at C2, and 
better bias scores at a depth of −10 m or more in C1. On the other hand, 
DAwoWind does not exhibit improvements from DAAll at the other depths, 

in the SST in Mikawa Bay on the east side of Ise Bay (Figures 7 and 8), or in the SST bias and RMSE scores 
(Figure 11). Moreover, DAwoWind has a small improvement from CR in the SST CRMSE. Also, DAwoWind 
was worse than CR in SST CC. Therefore, the scores of DAAll are generally better than those of DAwoWind. The 
ensemble spread of water temperature in the C1 (Figure 16) is smaller in DAwoAtm than in DAAll, especially in 
the surface layer. Moreover, the ensemble spread of DAwoWind is larger than of DAwoAtm, but smaller than of 
DAAll. At C2 (Figure 17), the ensemble spread of DAwoAtm is even smaller than in C1; thus, it is considered 
that the boundary conditions of air temperature and wind speed is a large error factor. Thus, perturbation of the 
atmospheric boundary conditions increases the ensemble spread of water temperature, especially near the surface 
layer, enabling effective assimilation of observed water temperature values.

Figure 4. Time series of water temperature data at C2 for observations, CR, 
and DAAll. (a) Water depth of 1.0 m; (b) water depth of 12.0 m.

Figure 5. Bias between observed and modeled water temperature for all experiments. (a) C1; (b) C2.
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For salinity (Figures 14 and 15), DAwoAtm and DAwoWind exhibit similar bias and RMSE scores to DAAll. 
However, at C2 (at a water depth of −4 m or more in Figure 14) and in the center of the bay (at a water depth of 
−10 m or less in Figure 18), the bias score is significantly worse. Therefore, it is considered preferable to perturb 
atmospheric forcing to avoid local salinity errors in the data assimilation. The difference in the ensemble spread 
of salinity is small between DAwoAtm and DAwoWind (Figures 20 and 21). In addition, the ensemble spread of 
DAwoAtm and DAwoWind is smaller than of DAwoLBC and DAwoRiv (Figures 20 and 21), particularly at C2. 
These results indicate that, among the boundary conditions, wind speed has the greatest influence on the magni-
tude of the salinity ensemble spread and can be dominant depending on the location.

Figure 6. RMSE between observed and modeled water temperature for all experiments. (a) C1; (b) C2.

Figure 7. Planar images of the sea surface temperature bias for (a) CR, (b) DAAll, (c) DAwoAtm, (d) DAwoWind, (e) 
DAwoLBC, and (f) DAwoRiv. The horizontal and vertical axes indicate a calculation grid of x and y-direction and the grid 
number is 85 × 85.
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3.2.2. Lateral Boundary Conditions

This subsection examines the effect of perturbation to the lateral boundary conditions on the data assimilation 
results. In DAwoLBC, which does not perturb the lateral boundary conditions, the bias and RMSE scores of water 
temperature in C1 and at C2 are not improved by data assimilation compared to those of DAAll (Figures 5 and 6). 
This finding is particularly noticeable in the C1. DAwoLBC also shows that the bottom water temperature errors 
increase whereas surface water temperatures improve. This improvement is due to perturbations of atmospheric 
forcing (Figure 16). DAwoLBC exhibits the least improvement in bias and RMSE scores among all data assimila-
tion results in C1 and a slight improvement in SST scores around the bay mouth (Figures 7 and 8). However, when 
looking at the entire Ise bay, the effect of perturbing the lateral boundary conditions was small for the magnitude 
of the SST error (CRMSE: Figure 9) and variation pattern (CC: Figure 10). The ensemble spread of water temper-
ature was smaller for DAwoLBC than for DAAll for all water depths in C1 (Figure 16). The large ensemble spread 
for DAwoLBC from January to March and in December is thought to be because of perturbing the atmospheric 
boundary conditions because the ensemble spread for DAwoAtm during the same period is small. However, at 
C2, there is minimal difference in the ensemble spread between DAAll and DAwoLBC (Figure 17). Therefore, 
perturbation of the lateral boundary conditions increases the ensemble spread of water temperature at all water 
depths, especially near the bay mouth, and enables the effective assimilation of observed values.

DAwoLBC exhibits lower bias and RMSE scores for salinity than DAAll in C1 (Figures 14 and 15) and at the 
mouth of the bay (Figures 18 and 19). The ensemble spread of salinity is smaller at C1 (Figure 20), which is simi-
lar to the results of water temperature. Again, there is almost no difference in the ensemble spread between DAAll 
and DAwoLBC at C2 (Figure 21). Therefore, as with water temperature, perturbation of the lateral boundary 

Figure 8. Planar images of the RMSE values of sea surface temperature for (a) CR, (b) DAAll, (c) DAwoAtm, (d) 
DAwoWind, (e) DAwoLBC, and (f) DAwoRiv. The horizontal and vertical axes indicate a calculation grid of x and 
y-direction and the grid number is 85 × 85.

 21699291, 2022, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021JC

017911 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [06/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Oceans

MATSUZAKI AND INOUE

10.1029/2021JC017911

13 of 26

conditions increases the ensemble spread at all water depths, especially near the bay mouth, and enables the 
effective assimilation of observed values.

3.2.3. River Discharge Forcing

DAwoRiv, which does not perturb the river discharge forcing, shows a similar improvement in the bias and RMSE 
scores of water temperature from those of DAAll in C1 and at C2 (Figures 5 and 6). However, the bias, RMSE, 
CRMSE, and CC scores of SST are worse than those of DAAll in the inner part (near river mouth: Figure 2) of 
the bay (Figures 7–10). The ensemble spread of water temperature for DAwoRiv and DAAll show similar trends 
in C1 and at C2 (Figures 16 and 17). This result indicates that the effect of perturbing river discharge forcing is 
particularly large near the river mouth and decreases with distance from the river mouth. Therefore, perturbation 
of river discharge forcing ensures appropriate assimilation of water temperature data in the coastal estuary.

For salinity, the RMSE score of DAwoRiv is worse than DAAll at the back of bay (Figure 19). Like water temper-
ature, the error of the river boundary conditions has an increasing influence on salinity with proximity to the 
river mouth. Moreover, it is necessary to perturb river discharge forcing to improve the data assimilation results, 
especially near the river mouth.

4. Discussion
4.1. Performance and Robustness of Data Assimilation

Previous studies have not examined the long-term applicability of regional data assimilation methods for coastal 
estuaries, nor their ability to reflect seasonal fluctuations. Moreover, although EnKF has been applied to OSSEs, 
before this study, it had not been applied to actual observation data from coastal areas. In this study, the proposed 

Figure 9. Planar images of the CRMSE values of sea surface temperature for (a) CR, (b) DAAll, (c) DAwoAtm, (d) 
DAwoWind, (e) DAwoLBC, and (f) DAwoRiv. The horizontal and vertical axes indicate a calculation grid of x and 
y-direction and the grid number is 85 × 85.
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EnKF method achieved stable assimilation results for both water temperature (Figures  3 and  4) and salinity 
(Figures 12 and 13) throughout the year, and reflected seasonal fluctuations. Thus, the proposed regional data 
assimilation method for coastal estuaries exhibits good applicability and robustness. The assimilation of water 
temperature (Figures 5 and 6) and salinity (Figures 14 and 15) data contributed to error correction in the vertical 
direction (i.e., with water depth). Water temperature was also corrected in the horizontal direction (Figures 7 
and  8). This is because the error covariance was appropriately expressed by generating ensembles using the 
proposed method of perturbing boundary conditions.

4.2. Effect of Perturbations to Boundary Conditions

In comparison to the open ocean, accuracy of lateral boundary conditions and river discharge forcing are rela-
tively more important in a coastal estuary. However, due to inadequate observation data, it is difficult to provide 
accurate boundary conditions, causing substantial errors in coastal numerical simulations. Therefore, in this 
study, a perturbation was applied to the three boundary conditions. Although the ensemble spread generally 
tends to degenerate in coastal estuary modeling, this was avoided by applying perturbations to lateral boundary 
conditions and river discharge forcing (Figures 16, 17, 20, and 21). Although perturbations are often applied 
to atmospheric forcing in ocean data assimilation methods, this is the first study to indicate the importance of 
applying perturbations to lateral boundary conditions and river discharge forcing in regional data assimilation 
for a coastal estuary. The SST bias and RMSE scores of DAwoAtm, DAwoWind, DAwoLBC, and DAwoRiv 
were better than CR (Figures 7 and 8). However, SST CRMSE score of DAwoAtm, DAwoWind, DAwoLBC, and 
DAwoRiv has only a small improvement. Furthermore, the CC score of all data assimilation results excluding 
DAAll was worse than CR. These results show that data assimilation without the appropriate perturbations does 
not contribute to the improvement of error without bias (CRMSE: Figure 9), but rather worsens the pattern of 

Figure 10. Planar images of the CC values of sea surface temperature for (a) CR, (b) DAAll, (c) DAwoAtm, (d) DAwoWind, 
(e) DAwoLBC, and (f) DAwoRiv. The horizontal and vertical axes indicate a calculation grid of x and y-direction and the grid 
number is 85 × 85.
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variation (CC: Figure 10). Thus, these results suggest that it is necessary to create a background error covariance 
matrix that recognizes the main error factors of numerical simulations when performing regional data assimila-
tion in a coastal estuary.

Water temperature reproducibility improved when both air temperature and wind speed were perturbated. In 
other words, perturbing only one of them does not improve the water temperature. This could be because the air 
temperature affects the heating/cooling of the water temperature directly under the calculation grid, which inputs 
as atmospheric forcing. Considering only the temperature error, the water mass whose water temperature has 
been corrected does not advect and diffuse accurately; hence, a sufficient assimilation effect cannot be obtained. 
Wind also affects the advection and diffusion of water masses. Advection/diffusion of water mass is corrected 
by considering mainly the wind speed error. However, a good assimilation effect cannot be obtained because 
heating/cooling from the atmosphere is not calculated accurately. This is supported by the fact that salinity data 
assimilation is greatly affected by wind speed perturbations and not by temperature perturbations.

Within the possible magnitude of error to boundary conditions (Appendix B), wind speed and air temperature 
were shown to be important for water temperature and salinity correction. That is, the error of the boundary 
condition between wind speed and temperature is more sensitive to simulation accuracy than other boundary 
conditions. Therefore, it can be said that it is necessary to carefully set the boundary conditions of wind speed 
and temperature to accurately simulate the entire Ise Bay. Mikawa Bay is shallower than the west side of Ise Bay 
(Figure 2); relatively shallow water is considered to be more susceptible to wind accuracy, and results show that 
this is partly attributed to wind effect.

Vervatis et  al.  (2021) noted that in the open ocean, perturbing the wind speed had the greatest effect on the 
ensemble spread of water temperature during data assimilation by EnKF, and that perturbation of other atmos-
pheric forcing conditions (air temperature and sea level pressure) was less dominant. They also reported that wind 
uncertainty had a significant impact on upper ocean uncertainty for both the geostrophic and Ekman components 
defined by Sverdrup dynamics. In contrast, in our regional data assimilation for coastal estuaries, perturbation of 
both the wind speed and air temperature was important for the ensemble spread of water temperature (Figures 16 
and 17). These results show the difference between open ocean and coastal modeling. Figure 4 (b) in Vervatis 

Figure 11. (a) Bias, (b) RMSE, (c) CRMSE, and (d) CC values of sea surface temperature for all experiments.
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et al. (2021) shows that the ensemble spread caused by perturbation of the air 
temperature was large near the coastline (coastal area). A possible reason is 
that the perturbation of air temperature becomes relatively significant in the 
shallow sea area because the amount of water mass in the shallow sea area 
with respect to the heat flux of the atmosphere and seawater is smaller than 
that in the deep sea area. Therefore, the effect of air temperature perturba-
tions cannot be neglected during data assimilation in coastal areas.

In this study, we selected six boundary conditions (air temperature, wind 
speed, water temperature, salinity of the lateral boundary, river discharge, 
and river water temperature), which are considered the main error factors, 
instead of all the boundary conditions as variables that cause perturbations. 
As a result, data assimilation was carried out stably and effectively. This indi-
cates the importance of adding perturbations to these six conditions. More-
over, it is necessary to examine the boundary conditions to which perturba-
tions should be added to further improve the assimilation results.

In this study, the location where the perturbation was applied was examined, 
and the magnitude was obtained by error analyses through comparisons with 
observation data. According to the data assimilation results, the magnitude of 
perturbation was qualitatively appropriate. Therefore, the method of estimat-
ing the magnitude of the perturbation (Appendix B) is considered appropri-
ate, and the error estimation method implemented in this study can be used 
for general purposes. However, this study did not evaluate the optimal magni-
tude of the perturbation; therefore, this should be considered in future work.

4.3. Future Work

The results here are a crucial first step in regional coastal data assimilation; 
however, many issues remain unresolved. Specifically, the correlation of 
different boundary conditions was set to be small to avoid unintended acci-
dental correlations. However, we could not confirm that there were no prob-

lems with this setting. For example, the lateral boundary conditions of water temperature and salinity exhibit a 
certain correlation. Thus, it is necessary to verify the assimilation when the perturbation is applied according to 
the correlation obtained from observed values. Furthermore, the correlation coefficient between the discharge 
forcing of each river was set to 1, which is not the true value. Although the correlation for rivers with short 
distances between them is close to 1, rivers with long distances between them may require comparison of the 
observed river discharge and water temperatures to estimate the correlation coefficient.

Abundant observation data are obtained from satellite and in situ observations in coastal areas. However, the data 
assimilation method used in this study cannot simultaneously assimilate more observation data than ensemble 
members. Therefore, experiments with a greater amount of ensemble members are required to assimilate large 
amounts of observational data. Moreover, system error in this study was assumed to be constant, regardless of the 
time or season, and the perturbations (standard deviation ξ) of boundary conditions were set to constant values. 
Therefore, future research should examine whether the proposed data assimilation method is suitable for detailed 
event analysis (e.g., strong winds, large-scale floods, and water mass intrusion from the open ocean to the inner 
bay) where the model error, not the boundary conditions, has a significant effect.

Furthermore, confirmation of the reproducibility of salinity data was limited to a comparison of bias and RMSE 
scores using in situ observations, and the reproducibility of salinity distributions was not discussed. However, 
a method for calculating the highly accurate planar distribution of coastal areas using satellite observations has 
recently been developed (Nakada et al., 2018), which will be used to conduct salinity reproducibility analyses in 
future works.

Finally, instead of relying on data assimilation, it is necessary to improve the accuracy of boundary conditions. 
As described in Section 2.2, the accuracy of the boundary conditions is low because only real-time data were 
used for the three boundary conditions. The reason underlying the bias of the water temperature in the CR may 

Figure 12. Time series of salinity at C1 for observations, CR, and DAAll. (a) 
Water depth at 1.0 m; (b) water depth at 12.0 m.
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be due to the low accuracy of the boundary conditions, especially the bias 
of two boundary conditions: wind velocity of atmospheric forcing and water 
temperature of lateral boundary condition. The wind velocity of atmospheric 
forcing is set from observation data from the observation stations on land. 
Wind speed is corrected to fit on the water surface while considering the 
roughness of land/sea surface using the method reported by Kuwagata and 
Kondo (1990) (see Appendix A for details). However, the annual difference 
(bias) between the wind speed for the boundary condition and observed data 
at sea surface was −1.55 m/s on average. Therefore, it is highly possible that 
the wind speed of atmospheric forcing was set lower in CR than it actually 
was. A test simulation was carried out under the same conditions as those of 
CR, but only the wind velocity of the atmospheric forcing was replaced with 
the results of the mesoscale meteorological simulation by the Japan Meteor-
ological Agency. As a result, from October to March, the bias of the water 
temperature of the bottom layer was improved. The bias of water temperature 
was presumed to be improved by changing the wind velocity of atmospheric 
forcing due to the vertical mixing of the cooling seawater near the water 
surface. However, the bias of water temperature from April to September 
was not improved by changes in atmospheric forcing. This bias from April to 
September could have presumably be caused by the water temperature under 
the lateral boundary condition. The observed average value for 10 years is 
input for the water temperature of the lateral boundary condition. The error 
of the water temperature of the lateral boundary condition is considered to 
be large. In fact, the observed water temperature in 2016, which is the calcu-
lation period, is lower than the water temperature under the lateral boundary 
condition. The results have not been organized because the test simulation 
with changing water temperature of the lateral boundary condition has not 
been performed. Therefore, we intend to study the importance of boundary 
conditions in future research.

And also, it is necessary to improve the simulation model. For example, the 
salinity bias is reversed between the surface and bottom layers in this study, 

which may be because the salinity of the model output is less diffused in the vertical direction than in reality. As 
the positive and negative biases are the same in the data assimilation results (Figures 14 and 18), it is necessary 
to modify the simulation model to consider diffusion in the vertical direction.

Figure 13. Time series of salinity at C2 for observations, CR, and DAAll. (a) 
Water depth at 1.0 m; (b) water depth at 12.0 m.

Figure 14. Bias between observed and modeled salinity for all experiments. (a) C1; (b) C2.
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5. Conclusions
There have been previous reported numerical experiments on data assimilation (OSSEs); however, this is the first 
study to apply the EnKF to regional data assimilation of coastal estuaries using actual long-term observation data. 
Specifically, data assimilation was performed for water temperature and salinity. According to comparisons with 
observation data not used in the assimilation, the simulated water temperature and salinity data were corrected 
in the horizontal and vertical directions (i.e., with water depth). In addition, the proposed method achieved 
stable long-term data assimilation over 1 year and responded to seasonal fluctuations. Besides perturbations to 
atmospheric forcing adopted in previous open ocean data assimilation, model accuracy scores, and the ensemble 
spread of water temperature and salinity revealed that perturbations of the lateral boundary conditions and river 
discharge forcing are important for regional data assimilation in coastal estuaries. To correct the entire Ise Bay, 

Figure 15. RMSE between observed and modeled salinity for all experiments. (a) C1; (b) C2.

Figure 16. Temporal evolution of the ensemble spread of water temperature at C1 with water depth. (a) DAAll, (b) 
DAwoAtm, (c) DAwoWind, (d) DAwoLBC, and (e) DAwoRiv.
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the influence of perturbation of atmospheric forcing should be greater than that of lateral boundary conditions 
and river discharge forcings within the possible magnitude of error of boundary conditions. It is important to add 
perturbations to both wind speed and air temperature to correct the water temperature.

Appendix A: Details of Boundary Condition Settings
A1. Atmospheric Forcing

Atmospheric forcing data were generated from observation data from 12 terrestrial observation stations of the 
Automated Meteorological Data Acquisition System (AMeDAS) near Ise Bay (Nagoya, Centrair, Gamagori, 
Minamichita, Toyohashi, Irago, Kuwana, Yokkaichi, Kameyama, Tsu, Omata, and Toba). All atmospheric forc-
ing data at each calculation grid were interpolated using weighting interpolation with a normal distribution 
(the variance was 100 km 2) according to the distance from the observation stations. Shortwave radiation was 
calculated from daylight hours following the method of Nimiya et al. (1997). Longwave radiation was calculated 
according to the method of Nimiya et al. (1996). Wind velocity was set as follows. The observed wind speed was 
converted to wind speed at an altitude of 100 m using the logarithmic law in Equations A1 and A2:

𝑊𝑊 =
𝑈𝑈 ∗

𝜅𝜅
ln

𝑍𝑍

𝑍𝑍0

 (A1)

𝑈𝑈 ∗
=

𝑊𝑊0 ⋅ 𝜅𝜅

ln
ℎ𝑚𝑚

𝑍𝑍0

 (A2)

where W is the converted wind speed, U* is the friction speed, κ is the Kalman constant (κ = 0.4), Z is the height 
from the bottom, Z0 is the roughness length, W0 is the wind speed at the observation station, and hm is the altitude 
of the wind anemometer. The roughness length at the sea surface was set to 0.001 m, and the roughness length 

Figure 17. Temporal evolution of the ensemble spread of water temperature at C2 with water depth. (a) DAAll, (b) 
DAwoAtm, (c) DAwoWind, (d) DAwoLBC, and (e) DAwoRiv.
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at each observation station was set according to the work of Kuwagata and Kondo (1990). Wind velocity at each 
calculation grid was interpolated using the same method as that for other weather data. Then, the wind speed at an 
altitude of 10 m was obtained by Equation A1. Vapor pressure e [hPa] was calculated using Equations A3 and A4:

𝑒𝑒 = 𝑒𝑒𝑒𝑒 ×𝑅𝑅𝑅𝑅∕100 (A3)

𝑒𝑒𝑒𝑒 = 6.112 × 𝑒𝑒𝑒𝑒𝑒𝑒

(

17.62𝑇𝑇𝑎𝑎

243.12 + 𝑇𝑇𝑎𝑎

)

 (A4)

Figure 18. Bias of salinity between observations and model output using assimilated data from Table 2. (a) Back of bay, (b) 
center of bay, (c) mouth of bay, (d) No. 1 buoy, and (e) No. 2 buoy.
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where es is the saturation vapor pressure [hPa], RH is the relative humidity [%], and Ta [°C] is the air temperature. 
The parameter es was calculated using the method of the World Meteorological Organization (2008).

A2. Lateral Boundary Condition

The average water temperature and salinity each day of the year are calculated from monthly observation data 
(observation point number A10; latitude, 34.373; longitude, 137.216; measurement depth: 0, 10, 20, 30, 50, 75, 
100, and 150 m below sea level) for 10 years (2004–2013) obtained by the Aichi Fisheries Research Institute. 
Their data were used to generate the lateral boundary conditions of water temperature and salinity. The obser-
vation data were uniformly interpolated in the horizontal direction since only one point was observed in the 
horizontal direction, linearly interpolated in the vertical direction, and linearly interpolated in the time direction. 
The tide level for the lateral boundary conditions was estimated using the amplitude and phase of 14 major tide 
components (Sa, Ssa, Mm, MSf, Mf, Q1, O1, P1, S1, K1, N2, M2, S2, K2) obtained from observation data of the 

Figure 19. RMSE of salinity between observations and model output using assimilated data from Table 2. (a) Back of bay, 
(b) center of bay, (c) mouth of bay, (d) No. 1 buoy, and (e) No. 2 buoy.
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Akabane tide station (latitude 34.6, longitude 137.18333) located near the lateral boundary. The estimated tide 
level was corrected using the atmospheric pressure.

A3. River Discharge Forcing

The river discharge was calculated by a storage function method, as follows.

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑞𝑞up(𝑑𝑑) + 𝑟𝑟(𝑑𝑑) − 𝑞𝑞(𝑑𝑑) − 𝑞𝑞base (A5)

𝑠𝑠 = 𝑘𝑘1𝑞𝑞
𝑝𝑝 + 𝑘𝑘2

𝑑𝑑𝑞𝑞

𝑑𝑑𝑑𝑑
 (A6)

𝑄𝑄(𝑡𝑡) =
𝑞𝑞(𝑡𝑡)

3.6
𝐴𝐴 (A7)

where s is the apparent storage height of the basin [mm], t is time [h], r is the average precipitation in the basin 
[mm h −1], q is the runoff over time t [mm h −1], qup is the runoff from the upper area [mm h −1], qbase is the base 
runoff [mm h −1], k1, k2, and p are constant values, Q is the river discharge [m 3 s −1], and A is the basin area [km 2]. 
Equation A6 is based on Prasad (1967). For the class A river in the basin, k1, k2, and p were obtained to compare 
the observed river discharge values. For other smaller rivers, few river discharge observations are made during 
precipitation events; therefore, the parameters were estimated using the average precipitation value in the basin 
multiplied by the basin area to obtain the river discharge. The average precipitation (r) in each basin was calcu-
lated as follows. Each river basin was divided into a grid. The distance between each grid point and the AMeDAS 
observation point was calculated, and any AMeDAS data point less than 30 km from a grid point was extracted. 
Here, the maximum number of AMeDAS observation points used at each grid point was 10. Precipitation at each 

Figure 20. Temporal evolution of the ensemble spread of salinity at C1 with water depth. (a) DAAll, (b) DAwoAtm, (c) 
DAwoWind, (d) DAwoLBC, and (e) DAwoRiv.
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grid was calculated by weighting according to the same method used for other weather data. The sum of precipi-
tation for each grid was taken as the average precipitation of the basin.

River water temperature was calculated from the air temperature near the mouth of the river using Equation A8:

𝑇𝑇𝑤𝑤 = 𝑎𝑎𝑇𝑇𝑎𝑎 + 𝑏𝑏 (A8)

where Tw [°C] is the river water temperature, and a and b are parameters calculated from the relationship between 
the observed air temperature near the river mouth and the observed river water temperature. The parameters a 
and b are calculated in each river.

Appendix B: Estimation of the Magnitude of Perturbation to Boundary Conditions
B1. Air Temperature

The dominant error factors of the atmospheric forcing condition of air temperature were the differences between 
observation points (sea and ground) and the influence of spatial interpolation. Therefore, it is assumed that the air 
temperatures are accurate at five locations in Ise Bay (center of the bay, mouth of the bay, and buoys 1–3), where 
the observed air temperature is shown in Tables 2 and 4, and from April 2015 to December 2019. The boundary 
condition between the air temperature observed at the monitoring locations in Ise Bay and the air temperature 
calculated at the same position was extracted every hour. The cumulative frequency distribution of the absolute 
difference between the observed value and the calculated value was obtained after subtracting the average error, 
and the temperature at which the cumulative frequency was 68.2% was calculated as 3.05°C. Therefore, we added 
system noise with a normal distribution and a standard deviation of the ξ value of 3.05°C to the boundary condi-
tions of air temperature for each ensemble member.

Figure 21. Temporal evolution of the ensemble spread of salinity at C2 with water depth. (a) DAAll, (b) DAwoAtm, (c) 
DAwoWind, (d) DAwoLBC, and (e) DAwoRiv.
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B2. Wind Speed

The error factor and ξ of the atmospheric forcing condition of wind speed was estimated using the same method 
as that for air temperature. The cumulative frequency distribution of the absolute difference between the observed 
value and the boundary condition was obtained, and the value at which the cumulative frequency was 68.2% was 
calculated as 3.45 m s −1. Therefore, we added system noise with a normal distribution and a standard deviation of 
the ξ value of 3.45 m s −1 to the boundary conditions of wind speed for each ensemble member.

B3. Water Temperature of the Lateral Boundary

The error factor of the lateral boundary condition of water temperature was mainly caused because the original 
data used to create the boundary conditions was not observed during the simulation period, but was the average 
value over 10 years, as explained in Section 2.2. Then, ξ was estimated as follows. First, it was assumed that 
the observed water temperature is accurate. Second, the error was estimated by comparing the observed values 
with the open boundary conditions. The comparison period was for 1 year (2015). The cumulative frequency 
distribution of the absolute difference between the observed value and the boundary condition was calculated 
after subtracting the average error, and the value at which the cumulative frequency was 68.2% was calculated as 
0.73°C. Therefore, we added system noise with a normal distribution and a standard deviation of the ξ value of 
0.73°C to the open boundary condition of water temperature for each ensemble member.

B4. Salinity of the Lateral Boundary

The error factor and ξ of the lateral boundary condition of salinity was estimated using the same method as that 
for water temperature. The cumulative frequency distribution of the absolute difference between the observed 
value and the boundary condition was obtained, and the value at which the cumulative frequency was 68.2% was 
calculated as 0.20. Therefore, we added system noise with a normal distribution and a standard deviation of the ξ 
value of 0.20 to the boundary conditions of salinity for each ensemble member.

B5. River Discharge

The error factors of river discharge were predominantly the estimation error of the storage function method and 
the spatiotemporal error of input precipitation. Thus, the ξ value of river discharge was estimated as follows. It 
was assumed that the rate of fluctuation inherent in river discharge is the same for each river simultaneously. 
When the rate of discharge fluctuation varies for each river, the variation is regarded as the error of the river 
discharge. The analysis period was set from April 2015 to December 2019, and the average discharge was calcu-
lated for the 10 major rivers flowing into Ise Bay. The river discharge change rate was calculated by dividing the 
discharge of each river at each time by the average discharge for each river, and the standard deviation for each 
time was obtained. When the cumulative frequency of the standard deviation was 68.2%, the value was calculated 
as 0.35. Therefore, the boundary condition was multiplied by the system noise with a normal distribution and a 
standard deviation of 0.35.

B6. River Water Temperature

The spatial correlation error and estimation error were considered the dominant error factors of river water 
temperature. Therefore, when there was a difference in water temperature between rivers, system noise was added 
by assuming that it was an error. The standard deviation regarding the variation in water temperature at each time 
for each river was calculated for the 10 major rivers that flow into Ise Bay. The analysis period was from April 
2015 to December 2019. Then, if the distribution of the magnitude of the error for the entire period follows a 
normal distribution, the cumulative frequency distribution was created, and the value at which the cumulative 
frequency was 68.2% was calculated. Therefore, we added system noise with a normal distribution and a standard 
deviation of the ξ value of 1.21°C to the boundary condition of temperature for each ensemble member.
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Data Availability Statement
AMeDAS is operated by the Japan Meteorological Agency. Data are available at https://www.data.jma.go.jp/
obd/stats/etrn. The observations of water temperature, salinity, wind speed, and air temperature are operated by 
Chubu Regional Bureau, Ministry of Land, Infrastructure, Transport, and Tourism of Japan, and Aichi Fisheries 
Research Institute. Data are available at http://www.isewan-db.go.jp. SST observations by MODIS is operated by 
NASA. Data are available at https://oceancolor.gsfc.nasa.gov.
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