
高耐久対策の導入を検討した桟橋上部工の設計・LCC 算定事例

No.		1–2
基本情報	構造形式	桟橋
	水深	-12m
	桟橋上部工構造	桟橋:PC ホロー桁(二次製品)および RC 受梁
	設計年次	基本設計: 平成 20 年細部設計: 平成 20 年
	建設年次	平成 21 年~平成 23 年
	新設•既設改良	新設
検討条件	性能の経時変化に対する 検討時期	基本設計時に検討
	設計供用期間	50 年
	部材の維持管理レベル	維持管理レベル I
	性能の経時変化に対する 検討項目	塩化物イオンによる鉄筋腐食
	鉄筋腐食発生限界となる 塩化物イオン濃度 Clim	2.0kg/m ³
	性能の経時変化に対する	・普通ポルトランドセメント(PCホロー桁)
	検討時のセメント種類	・高炉セメント(RC受梁)
検討結果	無対策時の性能の経時変化に対する検討結果	塩化物イオンによる鉄筋腐食
		・PC ホロー桁: OK ^{※1}
		•RC 受梁:NG ^{※1}
	検討された高耐久対策および 性能経時変化に対する検討結果 ^{※3}	・エポキシ樹脂塗装鉄筋:OK ^{※1}
		・炭素繊維FRPグリッド工法 ^{※2} :未検討(エポキシ樹脂塗装鉄筋と のコスト比較のみ)
		のコストに戦のの) ・炭素繊維シート接着工法※2:未検討(エポキシ樹脂塗装鉄筋との
		コスト比較のみ)
		- ^ 、
		鉄筋とのコスト比較のみ)
	選定された高耐久対策	エポキシ樹脂塗装鉄筋
	高耐久対策の選定経緯	ライフサイクルコストが最も安価となるため

- ※1 性能の経時変化に対する検討結果の凡例
 - OK:設計供用期間中、鉄筋腐食限界濃度(塩化物イオンの場合)には達しない
 - NG:設計供用期間中、鉄筋腐食限界濃度(塩化物イオンの場合)に達する
- ※2 部材の維持管理レベルをⅡとした場合で検討
- ※3 PCホロー桁は無対策でも供用期間中の性能を満足するため RC 受梁のみ検討対象

標準断面図

写真

RC 受梁