PARI

Independent Administrative institution
Port and Airport Research Institute
理事長挨拶

ごあいさつ

平成13年4月に独立行政法人港湾空港技術研究所は、「世界に貢献する技術をめざして」を不動の目標に掲げ、新たなスタートを切りました。

これまでの活動をつうじて、関連研究分野における多彩でレベルの高い研究者の存在と相互発の伝統、全国の港湾、海岸、空港、沿岸域等現場の技術データ・技術課題の入手の容易性と入手情報の長年にわたる蓄積、および全国の港湾、海岸、空港、沿岸域等を研究のフィールドとして活用することの容易性、世界最大規模・最新鋭の多数の実験・研究施設の保有、などのコアコンビナンスを獲得したところです。

港湾空港技術研究所はこれからも、このコアコンビナンスを活用して、研究所の不動の目標である「世界に貢献する技術をめざして」を達成するため、その研究水準・研究成果が科学技術発展の要地から国の内外で高く評価される質の高い研究であることは勿論、その研究成果が日本および世界で現実に役立つ研究であることの重要性にも重きを置いて、役職員一同努力する所存であります。

皆様には今後ともご指導と鞭撻を賜りますようお願い申し上げます。
目次

○ 独立行政法人港湾空港技術研究所の目指すもの 2
○ 港空研の研究領域 2
○ 中期目標と中期計画 3
○ 各研究部の紹介
 海洋・水工部 4
 地盤・構造部 6
 施工・制御技術部 8
○ 主な研究施設 10
○ 役立つ港空研の技術 12
○ 港空研の社会的貢献 13
○ 沿革 ／ マップ・アクセス 14
独立行政法人港湾空港技術研究所の目指すもの

■ 目的

独立行政法人港湾空港技術研究所（略称：港空研）は、港湾及び空港の整備等に関する調査・研究及び技術の開発等を行うことにより、効率的かつ円滑な港湾及び空港の整備等に貢献するとともに、港湾及び空港の整備等に関する技術の向上を図ることを目的としています。

■ 業務内容

港空研は以下の業務を行っています。（独立行政法人港湾空港技術研究所法より）

一 次に掲げる事項に関する基礎的な調査、研究及び技術の開発を行うこと。
イ 港湾の整備、利用及び保全に関すること。
ロ 航路の整備及び保全に関すること。
ハ 港内の公有水面の埋立て及び干拓に関すること。
ニ 港内の海岸の整備、利用及び保全に関すること。
ホ 飛行場の整備及び保全に関すること。
二 前号のイからホまでに掲げる事項に関する事業の実施に関する研究及び技術の開発を行うこと。
三 前二号に掲げる業務に関する技術の指導及び成果の普及を行うこと。
四 第一号からホまでに掲げる事項に関する情報を収集し、整理し、及び提供すること。
五 前各号に掲げる業務に附帯する業務を行うこと。

港空研の研究領域

港湾空港技術研究所では、中期目標期間（平成18年度～22年度）に示された以下の3つの研究分野について、社会・行政ニーズ及び重要性・緊急性を踏まえて、計11のテーマについて、研究を進めています。

研究分野1 安心して暮らせる国土の形成に資する研究分野

ア）大規模地震防災に関する研究テーマ
イ）津波防災に関する研究テーマ
ウ）高潮・高波防災に関する研究テーマ
エ）海上流出油対策等、沿岸域の人为的災害への対応に関する研究テーマ

研究分野2 快適な国土の形成に資する研究分野

ア）閉鎖性海域の水質・底質の改善に関する研究テーマ
イ）沿岸生態系の保全・回復に関する研究テーマ
ウ）広域的・長期的な海浜変形に関する研究テーマ

研究分野3 活力ある社会・経済の実現に資する研究分野

ア）港湾・空港施設の高度化に関する研究テーマ
イ）ライフサイクルマネジメントに関する研究テーマ
ウ）水中工事等の無人化に関する研究テーマ
エ）海洋空間高度利用技術、環境対応型技術等に関する研究テーマ
中期目標と中期計画

港空研では、独立行政法人通則法の規定に基づき、中期目標期間における目標の指示を国土交通大臣から受けてそれを基に中期計画を定めています。この中期計画に基づき、研究所の運営、業務を行っています。

中 期 目 標

＜業務運営の効率化に関する事項＞
・研究所の業務運営の基本方針の明確化等による戦略的な研究所運営の推進
・定型的業務の外部委託、一般管理費や業務経費の削減等による管理業務の効率化

＜国民に対して提供するサービスその他の業務の質の向上に関する事項＞
・国との役割分担を明確にしつつ社会・行政ニーズ等を踏まえた研究の重点的実施
・波浪・海浜・地盤・地震・環境等に関する基礎研究の重視、また萌芽的研究の実施
・産学官連携による共同研究や国際会議への参加による国内外の研究機関・研究者との交流・連携の推進
・論文発表の奨励、ホームページの充実、講演会の開催等による研究成果の積極的な公表
・知的財産権の取得・活用や民間企業、大学等への技術移転の推進等研究成果の広範な普及
・公共事業の実施上の技術的課題への対応等の行政支援の積極的実施や災害時の技術支援等の要請への対応

＜その他業務運営に関する重要事項＞
・研究所施設の計画的整備と適切な維持・補修の実施
・国家公務員に準じた人件費削減への取り組み、職員の適切な部署への配置

中 期 計 画

＜業務運営の効率化に関する目標を達成するためとるべき措置＞
・研究所の戦略的な業務運営の推進のための研究所運営に係る基本方針の明確化
・業務の簡素化、電子化、定型的業務の外部委託等による管理業務の一層の効率化や一般管理費、業務経費の抑制

＜国民に対して提供するサービスその他の業務の質の向上に関する目標を達成するためとるべき措置＞
・社会行政ニーズ及び重要性・緊急性を踏まえた研究の重点的実施
・波浪・海浜・地盤・地震・環境等に関する原理・現象等の解明に向けた基礎研究への取り組みと先見性と機動性をもった萌芽的研究の推進
・産学官連携による共同研究の推進や国際会議への積極的な参加による国内外の研究機関・研究者との幅広い交流・連携
・研究所報告等の刊行による研究成果の国内外の大学・研究機関への普及、及びインターネットでの公表
・論文投稿や国際会議等での研究発表の奨励、また外国語での論文発表による海外への研究成果の普及
・広報誌の配布、ホームページの内容充実、研究所の一般公開、講演会の開催等による一般国民に対する情報提供
・特許の出願・取得の奨励、保有特許の利用促進
・関連学会等への研究者の派遣・民間企業からの研修生受入れ及び大学等からの実習生受入による技術移転の推進
・公共事業の実施上の技術課題等の解決への的確な対応や行政への研究成果の反映及び技術移転の推進
・災害時の被災地への研究者の派遣、被災原因の解明、復旧等の技術指導等の適切な実施

＜その他主務省令で定める業務運営に関する重要事項＞
・既存施設の維持・補修、機能向上
・人件費の削減、また役職員の給与に関して、国家公務員の給与構造改革を踏まえた給与体系の見直し、また職員の適性に照らした適切な部署への配置
各研究部の紹介

海洋・水工部

海洋・水工部およびアジア・太平洋沿岸防災研究センターは、港湾・空港等のインフラ整備、あるいは海岸の保全や海洋の利用・開発に関する技術レベルの向上を通じて、国民の社会・経済活動の安全性や利便性を高めることを目的とし研究、具体的には以下の3つの大きな目標を掲げた研究を実施しています。

(1) 環境としての海域に関する技術の開発・向上
(2) 津波・高潮・高波等の海の脅威から国民や国土を守る技術の開発・向上
(3) 海域の利用を通じて国民生活に役立てる技術の開発・向上

この結果、かつては困難とされた自然条件を克服して、港湾や空港の建設を可能とし、高潮・高波や津波などに対する推算・対策技術の高度化による広範な防災に関する恩恵が、国民に享受されつつあります。

また、沿岸域の良好な環境の保全・修復・創造に関する広範な技術の体系化も進みつつあります。

こうした研究を効率的に実施するため、沿岸環境研究領域、海域情報研究領域、海洋研究領域およびアジア・太平洋沿岸防災研究センターという、3研究領域、1センターといった組織から構成される研究者集団を形成しています。

主な研究課題

津波防災に関する研究

我が国はこれまでに何度も大きな津波災害を経験し、今後も津波の来襲が避けられません。世界的にみても2004年のインド洋津波で発生したような大被害を今後起こさないように津波防災は重要な課題です。

被災を防ぐあるいは軽減する対策を講じるためには、起こりうる被害を想定することから始める必要があります。さらに、今後生じる津波をより現実的に推定するための数値モデルの開発を進めています。また、津波を防ぎ止めるハード的な対策技術および浸み合う津波観測技術を活用して、沿岸に来襲する津波を即時に推定するソフト的な対策技術の開発や、現象解明に必要な模型実験を合わせて実施しています。

沿岸域の環境保全と修復に関する研究

沿岸域の生物や生態系は、人々に豊かな恵みをもたらしてきましたが、近年的人為的活動によるインパクトによって、貴重な生態系が喪失したり、損傷を受けている場合が見られます。

海洋・水工部では、本州から亜熱帯域までを含む干潟・藻場・サンゴ礁での観測やフェリーによる海域のモニタリングを通じて、沿岸域における水質の変動や物理過程の経緯を探り、さらには浚渫土砂を活用した干潟などの修復、海底堆砂の修復など、より実用的な自然修復技術の開発という課題にも取り組んでいます。
GPS波浪計による全国港湾海洋波浪情報網（ナウファス）の高度化

私が国は、四方を海に囲まれて海象条件が厳しいため、海洋及び沿岸域の開発・利用を含む防災・気象情報の海象条件を適切に把握しなければなりません。

港湾空港技術研究所は、国土交通省港湾局関係機関と協力し、1970年以降、全国沿岸の波浪観測情報の集中処理を行う、全国港湾海洋波浪情報網（ナウファス：NOWPHAS：Nationwide Ocean Wave information network for Ports and Harbours）の開発・改良・運営を実施しています。

2006年現在、全国60観測点におけるリアルタイム波浪観測情報は、気象庁にも提供され、波浪予報にも貢献しています。

港湾空港技術研究所は、波浪観測機器についても長年にわたり開発研究を行ってきました。現在のナウファスの中心的な海底設置式波浪観測機器である海象計も、前身の運輸省港湾技術研究所が1990年代に共同研究によって開発したものです。

国土技術開発賞最優秀賞（2004年）や日本産業技術大賞（2005年）特別賞を受賞したGPS波浪計も、やはり、共同研究により開発されました。GPS波浪計は、より大水深域で波浪を計測できる長所を有するため、2006年度以降、全国沿岸へのネットワーク配置が進められています。

総合土砂管理に関する研究

戦後、ダム建設や海岸・港湾構造物の建設などが進むにつれて河川からの供給土砂量や岸に沿った方向の土砂の移動量が減少することにより、国土に侵食が激しくなってきました。一方で、中型河川のみならず比較的大規模な河川でも港湾の航路や河岸への埋没問題が顕著化してきています。これらの問題を解決するために総合的な土砂管理が必要であり、そのためには、沿岸域の底質移動や地形変化の特性を十分に把握しておく必要があります。そこで、海洋・水工部では、茨城県の波崎海岸に位置し、長さ約400mの観測機関を有する波崎海洋研究施設（写真1 Hazaki Oceanographical Research Station,HORS）を用いて、沿岸域の波、流れ、地形変化に関する研究を行っています。

図1は平均断面を基準としたときの15年間の断面変化を示したものであり、温暖、寒帯はそれぞれ平均断面よりも上方、下方の領域を示しています。岸に近い沖方向距離50m付近では、平均地形よりも高い地域と低い地域が時間的に交互に現れているのに対して、沖では堆積域が1〜2年周期で沖に移動しています。
主な研究課題

安心して暮らせる国土の形成に向けて「大規模地震防災に関する研究」

東海、東南海・南海地震等の大規模地震発生時には、大きな震幅の地震動だけでなくこれまで記録に残されていないような長周期の地震動や短周期の地震動が発生することが予測されており、地震動そのものの規模や地域の地盤特性による地震動特性の把握、耐震性能照査手法の精度、構造物の耐震性能の向上策、必要なる対策を速やかに実施可能とするため耐震性能を上げつつ整備コストを縮減する技術等に関する未解決の課題が多く、格段の技術力向上が不可欠である。このため、

①耐震対策の基礎的な知見を得るための強震観測、
②地震による被害状況の把握、復旧支援による防災機能に関するノウハウの蓄積のための被災状況調査、
③被災モニタリングによる地震被害発生メカニズムの把握、
④設計対象地点での地震観測結果に基づく設計手法の適用による設計地震波動を設定するための強震動予測と推定手法の更なる精度向上への取組、
⑤巨大地震発生時に想定される長周期、長継続時間の地震動に対する地盤の地盤挙動予測、解析手法の開発と防災対策の検討、
⑥地震対策により航、矢板等を含む複雑な断面となった構造物の耐震解析手法の整理による地震時の構造物の挙動予測と対策の検討、などに関する研究を行っています。

岩盤上の静内、門別と親等岩盤上の若木牧の地震波動の違いの様子

水中振動台を用いた構造物の耐震強化に関する実験の様子
活力ある社会・経済の実現に向けての「港湾・空港施設の高度化に関する研究」

①構造物の設計が性能設計に移行することから、地盤の強度パラメータの評価方法、杭の支持力推定法の標準化、改良地盤の安定性評価手法、構造・材料の耐久性評価精度の向上等により、構造物の性能を高度に評価する手法の開発・改良に関する研究を行っています。②国際物流の基幹施設である港湾の機能向上により国際物資の安定化に資するため、地盤改良技術の高度化、耐衝撃性の高いコンクリートや補修の容易な構造構造の開発等によるライフサイクルコストの縮減、荷役効率向上のための新しい荷役システムの開発等による港湾施設の機能向上等についての研究を行っています。③国内外の人流の基幹施設となっている空港の機能を長期的かつ安定的に保持するため、空港舗装の航空機荷重に対する変形予測手法の開発、舗装の損傷の非破壊検査手法の実用化、補修設計・品質管理手法の高度化に関する研究を行っています。

港湾構造物のライフサイクルマネジメントに関する研究

高度成長期に大量に建設された港湾構造物の老朽化や劣化・変状の顕在化が問題となっています（写真1）。これらの構造物をより長期に安全に使用していくためには、ライフサイクル評価に基づく維持管理を合理的に進めていく必要があります。これをライフサイクルマネジメント（LCM）と呼びます（図1）。

ライフサイクルマネジメントの実行により、構造物の点検診断結果から安全性や使用性等に係わる構造物の残存性能を評価され、これに基づいた適時適切な対策が行われます。写真2は、長期間使用された橋脚から切り出したコンクリート部材の載荷実験の状況です。この実験により、鉄筋腐食などの劣化状態が構造物の残存性能に及ぼす影響を調べることができます。
各研究部の紹介

施工・制御技術部

施工・制御技術部は、陸上工事に比較して作業環境が厳しい海上・海中工事を安全で効率的に行うための建設機器の無人化技術の開発、海洋環境保全のため船舶事故等による海上流出油の効率的な回収システムの開発及び海岸環境の保全、航路の維持浚渫に有効な海砂の浚渫・輸送技術の開発等を行っています。

当部は新技術研究官及び2研究チームで構成し、幅広い産学官との研究連携の推進、水中作業の無人化技術を開発するための大型実験水槽や海上流出油回収機器を開発するための大型実験水槽等の最先端の研究施設の活用により、効率的な研究を実施しています。主な研究の領域は以下のとおりです。

〇水中作業の無人化のための研究　港の施設の大部分は海の中に作られるため、建設・点検・補修などの作業の相当程度が今もなお危険性を伴う潜水士によって行われています。このため、安全にかつ効率よく港づくりを進めるため、無人で建設・点検・補修を行う技術の開発を進めています。

〇海を汚染から守るための研究　わが国周辺を航行する船舶による燃料油の流出事故は後を絶たず、環境への被害を防ぐためには事故発生時に迅速に油回収等の対策を講じる必要があります。このため、油回収資機材や油回収作業の支援技術の研究開発を行っています。

〇海浜の保全・創造のための研究　土砂・砂の浚渫、輸送、排出による海浜造成のための新たな効率的、経済的なサンドバイパス工法等の研究開発を進めています。

主な研究課題

水中無人施工システムの開発

港の施設の大部分が位置する水中部では、海上から直接的に構造物を見ながら作業することが困難なだけでなく、TVカメラ等を用いて遠隔操作を行うとしても漂着や浮遊物質による光の散乱によって対象物の視認が困難であるなど、陸上とは作業環境が大きく異なるため、作業の無人・遠隔操作は容易ではありません。本研究では、水中で使用可能な作業機械にセンサーを取り付け、対象物に接触することにより得られる触覚情報（触覚）や音響技術を活用することにより、水中の漂着により水中カメラでは視覚情報が得られないような状況においても遠隔操作が可能な水中無人施工システムの開発に取り組んでいます。

また、港の施設を健全に維持するための点検・診断作業を効率的に実施可能な水中無人点検システムの開発も進めていきます。
効率のよい油回収機や流出油の位置を追跡・予測する技術の開発

事故などで海上に流出した油は、水分だけによりされる。油は、風化して、さらに海水を取り込む（エマルジョン化）非常に粘り気の強い取り扱いにくいものになります。また、潮流や風、波によって流出した位置から大きく移動してしまいます。このため、油の粘り気の強さに左右されず、効率よく油を回収する新方式の油回収機を研究開発しています。また、大学や民間企業と連携して流出した油に自動的に追従して位置等の情報を発信するブイと、この情報からより正確な漂流位置予測を行う研究を行っています。

新しい油回収機の開発例
（蒸気駆動式油回収システム）

効率的・経済的なサンドバイパス工法の開発

海岸侵食に苦慮する海浜も多く、サンドバイパス工事等による良好な海浜保全・創造の要請が高まっています。
そのため、新たなサンドバイパス工法として、波の力を利用して砂を集積し輸送する简易で効率的・経済的な工法の開発に取り組んでいます。この工法は、有孔管に泥水ポンプ及び水ジェット噴射装置を付加しただけでなく、簡易な構造で、実用化に向けて実証実験を行っています。

効率的・経済的なサンドバイパス工法イメージ
（水ジェットで土砂・砂を攪乱し、有孔管を通じて泥水ポンプで土砂・砂を浸食された海浜等に輸送する）
主な研究施設

大規模波動地盤総合水路

模型実験は、現地を縮小して現象を把握するものです。小さな模様による実験は、砂や構造物の性質が現地と異なるため、実際の現象を正しく再現できないことがあります。この施設の大きさは長さ184m、幅3.5m、深さ12mで、底には深さ4mの砂地盤があります。この水路では、世界最大の3.5mの風波を起こすことができ、小さい模型実験では再現の難しい地盤の動きや構造物の破壊過程について再現可能となります。

また、2005年より世界最大の2.5mの津波も起こすことができるよう改良し、津波の破壊力のメカニズムの究明に大きく貢献しています。

環境インテリジェント水槽

環境インテリジェント水槽は、海の波の多方向性を考慮した海域の力学的な環境を再現することを目的として、2000年に整備されました。環境インテリジェント水槽は、幅2m×深さ1.3mの主水槽と、幅2m×長さ40m×深さ1.3mの周回水槽で、主水槽の2辺と1辺には3面式多方向不規則波波装置、およびその下方を含めた4辺すべてには変動流れ発生装置が設置されています。

干渉実験施設

我々国の多くの干渉は、埋め立てによって失われられてきました。干渉実験施設では、失われた干渉を再生する技術の確立を目指し、「メソコスム実験」（大型水槽を用いた実験生態系）手法を用いた干渉生態系の発達メカニズム解明に関する研究に取り組んでいます。実験は1995年に生物が全くいない状態からスタートし、現在まで一度も止めることなく継続しています。この間に、コアマコをはじめとした多くの干渉生物が水槽内に加入し、未だに生態系は発達し続けています。

沿岸化学物質メソコスム実験施設

沿岸域に存在する化学物質の生態系における挙動を明らかにすることを目的として、沿岸化学物質メソコスム実験施設における研究が2003年から本格的にスタートしました。実験施設は、わずかな濃度（例えば10億分の1レベル）で存在する沿岸化学物質を分析可能な超微量分析装置など環境物質の分析には欠かせない数多くの分析装置を備え、更には沿岸生態系を自然に近い環境で創出できるメソコスム水槽を有しています。これらの最新設備を活かすことで沿岸生態系における化学物質の挙動解明へ向けた研究に取り組んでいます。

海底流動実験水槽

沿岸域の海底堆積物（泥や砂）は、波や潮流などの作用により巻き上げられ移動します。堆積物の移動は、海底地形の変化や、濁りの発生と同時に堆積物中に含まれる化学物質の海水中の拡散を生じさせるなど、海の環境変化に密接に関係した現象です。本実験水槽は、このような海底での堆積物の巻き上げなどの移動現象を再現し、水質環境への影響を把握するためのものです。プロペラ式の循環装置や水槽両端に設置されたバストンアクチュエーターをコンピュータ制御することにより、波浪や潮流などによる沿岸域特有の海底での複雑な海水の動きを再現することができます。本水槽は、平成19年3月に、環境理水実験棟内に新しく完成しました。
大型構造実験施設

構造物や部材の性能を詳細に知りたい場合、実物あるいはその模型に実際に力作用させて破壊する構造実験が有効です。その場合、加えた力に対する反力の保持および模型等の支持のため、高強度の床（反力床）および壁（反力壁）が必要となります。本施設には、長さが15m×16.5mの反力床と高さが7mの反力壁2面があります。これを用いて、構造物や部材の安全性や使用性といった性能の確認や合理的な設計手法の確立等を目的とした各種の構造実験を行っています。

三次元水中振動台

臨海施設や沖合人工島の護岸や防波堤などは水中に建設されるために、地震時に陸上構造物とは違った挙動を示します。この施設は、13m角、水深2mの水槽の底に設置された振動テーブルが最大変位±30cm、最大加速度±2Gで水平2方向・鉛直1方向の三次元で振動させることができます。これを用いて施設の模型に地震力作用させ水中での地震の影響を研究しています。

遠心模型実験装置

力を受けて現地の地盤が変形する現象や破壊に対する安全性を予測するために模型実験が行われますが、実物よりも小さな模型では地盤内の力を小さく、実際の現象を正しく把握できません。

この施設では、模型地盤に大きな遠心力を加えて実物相当の力を地盤内に発生させ、現地での変形挙動を再現します。最大で2.7トンを超える模型を搭載し、重力の100倍以上の遠心力を作用させることができる遠心力装置です。

実験装置には振動台も搭載されており、遠心力を加えた状態で模型地盤に地震力を作用させることが可能です。

マイクロフォーカスX線CT装置

X線CT装置は物質内部の密度分布を非破壊で観察できる装置です。この装置では、X線に最大225kV、1000μA（最大出力135kV）の負荷をかけることでX線を照射します。この装置は、内部で力学試験を実施しながらX線CTスキャンができるように設計されています。この装置を用いて、人工地盤材料の内部構造の観察や構造物周辺地盤の変位変形挙動を観察しています。

油回収実海域再現水槽（STORMS：Simulation Tank for Oil Recovery in Marine Situations）

本水槽は、海域の実際の重油を浮遊させて使用できる国内唯一の大型回収油水槽で、波、油回収船の速度（または潮流）、風、海域の塩分濃度、水温を調整することにより、実海域に近い条件で油回収機の実験を行うことができます。

【主要スペック】

規模：全長約3.2m、全幅約1.3m、全高3.5m
計測水面：幅6.0m×長さ20.0m×水深2.5m
特徴：波高最大0.5m、周期1～5秒、流速最高1m/s、水温調整約5℃～30℃、海水使用

油中ロボット水槽（Simulation Tank for Underwater Working Environment）

本水槽は、実際の工事に使用されている作業機械を使用して実験ができる国内最大の水槽で、水深、波高、波長等、実際の海中状況を再現することにより、実海域に近い条件で作業機械の実験を行うことができます。

【主要スペック】

規模：全長30m、全幅10m、水深6m
特徴：波高最大0.5m、周期0.7～2.4秒、
作業機械の実験に備えて底面及び側壁を強化。
役立つ港空研の技術

岸壁の耐震化

東海地震等の大規模地震の発生が切迫しているといわれていますが、地震災害時の救急対応、緊急物資輸送、また幹線物流機能を平時のように維持するために、岸壁の耐震化は極めて重要です。

この岸壁の耐震化は費用や時間がかかりますが、当研究所が所有する実験施設・装置、数値解析手法等により、耐震化を経済的かつ効果的に行えるよう新工法の開発を研究していきます。

羽田沖合展開事業

東京国際空港（羽田空港）は、年々増加している航空需要に伴い、沖合への展開が段階的に行われてきました。その沖合展開においては、元々ある軟弱な地盤の上に浚渫されたヘドロや建設残土による埋め立てが行われたため、水分を多く含む超軟弱地盤上空港を建設しなければなりませんでした。

当研究所では、このように軟弱地盤上への空港建設という非常に困難な問題に対応すべく、大規模で急速な施工が可能な地盤改良工法等に関する技術支援を行う等、羽田沖合展開事業の円滑な実施に寄与しています。

油回収装置の開発

海上での油流出事故がもたらす社会的、経済的損失や生物に与える影響は大きく、事故への迅速な対応が求められます。

当研究所においては、海上流出油の物理的特性を把握するとともに、流出油の効率的かつ低廉な回収をするための装置を開発し、流出油によって汚染された海が元の美しい環境を取り戻すことに貢献しています。
港空研の社会的貢献

災害対応

当研究所では、国内外における災害発生時において、国土交通大臣の指示、または研究所独自の判断で被災原因の究明や被災国、国内の地方自治体への技術支援を行うために研究者により編成されたチームを現地に派遣しています。

国内で発生した大規模地震や台風災害、高潮災害をはじめ、国外ではスマトラ沖大地震やインド洋津波、ハリケーン・カトリーナの高潮災害等の大規模災害発生時には研究者を派遣し、被災状況の調査、その調査結果を発信するとともに防災対策に関する研究に努めています。社会に貢献すべく、災害への迅速な対応をしています。

産学官連携（共同研究）

当研究所においては、より質の高い研究成果を効率的に得るため、民間企業、大学、国の機関、地方自治体、他の独立行政法人等、幅広い機関と連携し、共同研究を推進しています。また、国内外の研究機関等と研究協力協定を締結し、より高度な研究の実現に努めています。

研究所一般公開

当研究所が取り組む研究や技術開発の活動がどのように行われているのかを多くの国民に理解していただくため、実験施設や実際の実験の模様を一般の方へ公開しています。

国際交流

研究所の研究成果の普及、技術協力、研究課題の解決・情報共有を進めるために、共同研究の実施、国際会議の主催・共催、国際会議への派遣、講習会の実施、研究者の派遣、海外からの研究者の研究所への受入などを積極的に行っています。
沿革

昭和21 1946
- 運輸省鉄道技術研究所として発足
- 現地（横須賀市長瀬）に移転

24
- 運輸省運輸技術研究所発足による組織替え

25
- 運輸省港湾技術研究所設立（管理、水工、構造、機材の4部で発足）

37 1962
- 設計基準部を設置（5部体制）

38
- 土質部を設置（6部体制）

41
- 海洋水理部を設置（7部体制）

47
- 企画室を設置（1室7部体制）

55
- 計算センターを設置（1室7部センター体制）

63
- 機構改革で組織名変更・・・企画室、管理部、水工部、海洋水理部、土質部、構造部、計画設計基準部、機械技術部、情報センター（1室7部1センター体制）

平成 元 1989
- 研修センターを設置

3
- 企画部に組織改正（8部1センター体制）

7
- 海洋水理部を海洋環境部に組織改正

13 2001
- 中央省庁再編に伴い国土交通省港湾技術研究所となる
- 独立行政法人港湾空港技術研究所と国土交通省国土技術政策総合研究所に分離移行（企画管理部、海洋・水工部、地盤・構造部、施行・制御技術部、空港研究センターの4部1センター体制）

15
- 客員フェロー制度を創設

16
- 津波防災研究センターを設置（4部2センター体制）

17
- LCM研究センターを設置（4部3センター体制）

20
- 海洋・水工部に海洋情報研究領域、海洋研究領域を設置

21
- 地盤・構造部に地盤研究領域、地震防災研究領域、構造研究領域を設置

22
- 海洋情報研究領域を海洋情報研究領域に組織改正

- 津波防災研究センターをアジア・太平洋沿岸防災研究センターに組織改正

マップ・アクセス

港湾空港技術研究所

独立法人 港湾空港技術研究所 〒239-0828 神奈川県横須賀市長瀬3丁目1番1号

TEL 046-844-5010（総務課） FAX 046-844-5072 URL：http://www.pari.go.jp

2010.11