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Synopsis

Within the framework of strain space plasticity approach, for cyclic mobility (ai et al,. 1990),
this paper shows how to represent the realistic hysteretic damping factor under cyclic loading.
In the present approach, actual cyclic shear mechanism is decomposed into a set of one dimen-
sional virtual simple shear mechanisms. Four parameters defining ‘the virtual simple shear
mechanism under cyclic loading condition are identified with the soil parameters measured by
the cyclic simple shear test.

The paper also shows how -to identify the rest of five parameters defmmg the cumulative
volumetric strain of plastic nature for representing cyclic mobility. ~ The undrained cyclic test
results, which are commonly available in the practice of soil dynamics and earthquake engineering,
are fully utilized for the parameter identification.
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Parameter Identification for a Cyclic Mobility Model

1. Introduction

Cyclic mobility of saturated cohesionless soil during earthquakes causes limited, but often
large, amount of deformation in soil structures and foundations. In practice, cyclic mobility
occurring in the looser cohesionless soil is often called ‘liquefaction,” which is distinguished
from the ‘cyclic mobility’ occurring in the denser cohesionless soil. In the present paper,
both phenomena will be called cyclic mobility as long as the mechanism does not involve
the flow failure of soil. For estimating the amount of deformation, a simple but realistic
modeling of cyclic mobility is essential.  In particular, the reasonable representation is needed
of hysteretic damping factor during cyclic loading. In the previous study, the framework
is offered based on the strain space plasticity approach (lai et al., 1990). Explicit mod-
elmg of hysteresis loop is yet to be given by specifying memory of loading history and
unloadmg/reloadmg functions.

Reasonable identification of model parameters with the laboratory test results is also
important for estimating the damage due to cyclic mobility. Though the triaxial compres-
sion tests under drained condition are often considered as a basis for identifying all the model
parameters, this is not the case in the practice of soil dynamics and earthquake engineering ;
the undrained cyclic loading tests are considered as a basis for analyzing seismic performance
of soil structures and foundations. Therefore, a procedure is needed for identifying the
model parameters by fully utilizing the undrained cyclic loading test results.

The aim of the present study is to establish the modeling of realistic hysteretic damping
*“factor drid to show the reasonable identification procedure of model parameters within the
framework of strain space plasticity approach for cyclic mobility.

2. Basic Equations

2.1 Constitutive Relation
Cyclic mobility under plane strain condition is represented as the relation between the
effective stress and the strain given by

o'T=(0s,0/,7zy) . (1)
3T= (Er, €y, sz) . ( 2 )
in which compressive stress and contractive strain will be assumed negative. Within the
framework of strain space plasticity approach, the incremental constitutive relation is glven
by I+1 separate mechanisms for =0, ----- ,I as (lai et al., 1990)
I
© do’=Kn9n97(de—dey) + SR,y WnnTde ) (3)
i=1

in which the volumetric strain increment de, of plastic nature is given by
de,T=d(ep/2,6p/2,0) (4)
and the direction vectors n'!! are given by

— 61 —
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compression shear
] simple shear

Fig. 1 Multiple simple shear mechanism
(pairs of circles indicate mobilized virtual shear strains in positive and negative modes
of compression shear and simple shear)

nOT=(1,1,0) (5)

n T = (cosf;, —cosb;, sind;) (for i=1, .-, I) : (6)

The mechanism =1, - , I represents a one dimensional stress strain relation defined
in a yirpual simple shear which is, in concept, mobilized at angle 6;/2+=/4 to the x axis as
shown in Fig. 1.  The angle 6; for mechanism 7 is given by ' o

;= (G—1)46 (for i=1, ------ , DD (7)
in which 46=z/I.  The moduli K and Ry,y" .in Eq. (3) represent rebound modulus and
tangent shear moduli for virtual simple shear mechanism. In particular, the rebound is
given by

(8)
in which on’ : effective mean stress= (0’ +0,")/2; K, : elastic tangent bulk modulus of soil
skeleton at g, =dne’; and on.’ : effective mean stress at which K is defined as K=XK,.

K=K,(01'|6ma")?

— 62—



Parameter Identification for a Cyclic Mobility Model

* The subscript L/U for R% stands for loading/unloading and is determined for each
mechanism such that, whenever n¥7de changes its sige, the subscript changes from L to U
or vice versa.

If the relation in Eq. (3) is more explicitly written down for practical application in
mind, it is given as follows.

dos’ des 1

’ .
do) t=D1{de, 1—{1 Ka(:"‘,)o *de, : (9)
ma
drzy dyzy 0
with
110 1-10 001 000
0.
D=Ka(;m,) 1110(+Gul—-1 10|+Ga|0 0-1|+Gs|000 (10)
e 000 0 00 1-1 0 001
in which
) _ ,
G,,=;:Rz,u‘i’cm20, 1)
=1
I
Gia= 3R,y ¥ cosbisind, 12)
=1
I Py
Gia=3 Rz, Vsin?f; (13)
i=1

The stiffness matrix D is symmetric, 'giving the advantage of efficient solution.
The integrated formulation corresponding to Eq. (3) is given by

o' = —B[ep— (5.:4‘57)]2'1(0) +2Q (4) (T(l))Agn(l) . (14)

in which the functlon QY is defmed S0 that its first order derivative represents the virtual
tangent shear modulus per unit angle of :f as

(l)

Rey® = dQ“’ 46 ' (15)

The function @ can be interpreted as virtual shear stress per unit angle ¢ for mechanism
7 and its value generally depends on the state as well as history of the vu-tual shear strain
7% defined by

19 =(e;—ey)cosbi+7zysiny - (16)
The constant B in Eq.- (14) is given by .

B=[0.5K./(~0n)**J" | | an
2.2 Volumetric Strain of Plastic Nature- :

The volumetric strain of plastic nature ¢, in Egs. (9) and (14) is given as a function

of plastic shear work (lai et al, 1990). At each stage of deformation process under tran-
sient and cyclic loads, increment in plastic shear work is computed by

AW, =dWyu—c,dW,, 18
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in which -W,, " total. shear work ; Wi, : elastic shear work ; ‘and ¢, : the parameter specifying
the. threshold:limit in. pore water -pressure. generation.: - It'is understood .in.Eq.. (18): that,
if the value of right hand side should become negative, dW, is assumed zero and a correc-
tion is. applied .if the effective stress is in dilative zone. .° .

The cumulative plastic shear work W, computed by Eq. (18) is normalized by

w=Wy/Wa . ' a9)
The factor for normalization W, is given b}; o . - :
Wa=norm/2 (20)
in which 4 » _ |
Tmo=(—0md/)sing; o @1
7m0 ="mo/Grmo . - ' (22)
Gmo=Gna(omd /oma’)* (23)

with Gp, standing for initial shear modulus at ¢m’=0ms’-
The normalized plastic shear work is used for computing the liquefaction front para-
meter by

So=1-0.6(w/w,)?! Gf w<w,)
So=(0.4—8,) (w,/w)P2+.S; (if w>w,) @29

in which S, w,, 1 and p, are the material parameters which characterize the liquefaction
properties of the cohesionless soil as shown in Fig. 2. _
From the liquefaction front parameter S, and thé deviatoric stress-ratio r=(g./—0ay)/

o

T T T T TTTI

)

o O
»

Y

-

L—__.-L——L__y_-t._l_.;_;_z.l._._._—.;.—_.l-__u;t_'z_J_;i v
ot o 10
Normallzed Plastic Shear Work W/W1

Fig. 2 Relation between normahzed plastic shear work w and hquefactxon
front parameter Sp -

" Liquefaction Front Parameter S,
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r=7/(-Om)

Failure Line

4rn, (= sind;)

\’41]/"‘2 (=sin¢p)

Liquefaction Front

’{ms (=067 my)

rz /

I3 /E Phase Transformation Line
S

0o Sz So 1.0

Fig. 3 Liquefaction front, state variable S and shear stress ratio 7

(—20m0), the state variable S, which is equivalent to the effective mean stress ratio o’/omn.’
under constant total confining pressure, is computed, as shown in Fig. 3, by

S=3S, Gf r<ry)

S=S:+V(Se=3) + [ (r—7r5) /m, |t (f 7>79) (25)
in which

ro=msSo (26)

ra=msSo @n

Sy =So— (re—73) /m, (28)

and 7, : inclination of failure line, defined by the shear resistance angle ¢,/ as m,=sing/ ;
my : inclination of phase transformation line, defined by the phase transformation angle ¢,
as mp=sing,’; and m;=0.67m,.

Finally, the state variable S is used for computing the volumetric strain of plastic nature
by

ep=(0/K)(A—S)0md’ +[0mo’S/(—B)J*5+eeo 29

in which n and K, are the porosity of soil skeleton and bulk modulus of water and &, is
the initial elastic volumetric strain given by

to=—"[om//(—B)]** 30

This concludes the framework of strain space plasticity approach presented in the previ-
ous paper (lai et al, 1990).
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3. ;Mbdeling of Shear Mechanism :

3.1 Initial Loadmg

In defining the virtual tangent shear moduli Rz,z* in Eq. (3) and'the virtual shear
stress @@ (y®) in Eq.. (15), it is assumed that each virtual simple shear mechanism can be
approximated by the one dimensional stress strain relation observed in 'the actual simple
shear test. With the assumption of material isotropy, Q% is given by -

Q™ (r‘”)=[(r“’/ru)/(1+Ir“’/rvl)]Qv : ‘ ©Y)

in which @, : virtual shear strength and y, : virtual reference strain. By substituting Eqg.
(31) into Eq. (15), the virtual tangent shear moduli are obtained for the initial loading as

Ru% =[1/ A+ /1:)*1(Qo/72) 40 (32)

3.2 Memory of Loading History
To record the history of loading, it is postulated that the memory of loading- history is
registered in the normalized space defined by such variables as

E=r" /1, | (@)
7=Q% /Q, (39

In the above definition, the superscript (¢) is omitted from & and 7 for simplicity but the
following discussion is supposed to be applicable to each mechanism 7=1, ------ A According
to this definition, the hyperbolic relation in Eq. (31) is rewritten in the normalized space as

7=&/(1+¢D) : (35)

and the curve defined by Eq. (35) in the normalized space will be called back-bone curve.

. It is postulated in this study that the memory of loading history, which will affect the
present and future material behavior, is completely specified by only two points out of the
previous loading history defined in the normalized space; one being the point on the back-
bone curve of which || takes the maximum value of the previous loading history, the other
being the most recent reversal point. As shown in Fig. 4, once unloading begins and |&|
is less than the maximum value of |£| in the previous loading history, the point will either
be directed to the memorized point on the back-bone curve or to its mirror image on the
back-bone curve. When the loading continues beyond thxs pomt the point will follow
again the back-bone curve.

Thus, the formal definitions relevant to the loading processes are given as follows :

initial loading : the process which satisfies |¢|=max|¢|
unloading/reloading : the process which satisfies |£] <max|é]
unloading : the sign of d¢ is opposite to that of initial loading
reloading : the sign of d¢ is the same as that of initial loading
reversal point : a point at which d¢ changes its sign

Such formal definitions can be helpful for conceptual understanding of the present approach.
It is to be noted that the definitions given by df are consistent with the definition given
earlier for subscripts L/U of R% based on the sign of n%7de=dty,.
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{Op-——mmm—

2 B(ga,ns)

( & ,70)

Fig. 4 Schematic figure of loading/unloading curves in the normalized space

In practice of numerical analysis, however, the following set of definitions would be
much more useful ;

initial loading : either of the following two;
the process’ which never experiences the unloading, or the process which goes
beyond the previously memorized reversal point or its symmetrical image on the
backbone curve
unloading/reloading : the process which begins after the reversal but which ends when the
process goes either beyond the reversal point or its symmetrical image on the back-
bone curve.
unloading : number of the reversals is odd by counting the reversal from the back-bone
curve as one
reloading : number of the reversals is even by counting the reversal from the back-bone
curve as one
reversal point : a point at which not only d¢ changes its sign from its previous loading pro-
cess but also dZ exceeds the threshold value 6.

The threshold value §, similar to the small elastic region, is necessary for assuring sta-
bility in the numerical analysis; the values of the order of 107¢ is satisfactory in practice.

3.3 Unloading from the Initial Loading

For representing the one dimensional stress strain relation during unloading and reload-
ing, Masing’s rule was often used (Finn et al., 1977 ; Ishihara and Towhata, 1982) ; i. e. if
the initial loading curve is given by

7=£(&) (36)
then the unloading and reloading curves are given by
(—n)/2=fT(¢-¢)/2] @37
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in which &, and 7, represent the coordinates of the reversal point. It is known, however,
that Masing’s rule when combined with the hyperbolic relation does not represent the realistic
hysteresis loop when the amplitude of cyclic shear strain becomes as large as a few percent ;
at this strain level the hysteresis loop given by Masing’s rule consumes about twice the
energy as those observed in the laboratory tests (Ishihara, 1982).

Such a drawback can be corrected by introducing scaling parameters into the variables
& and 5 (Ishihara et al,, 1985). Let us define the scaled variables by

~¢/a
v=alb . R . @®

in which the scaling parameters a and b are determined by functions of max || for the
previous loading history.

Let us denote the coordinates of the reversal points on the back- bone curve as £p and
ngs and let us scale these coordinates in the similar manner as

&E5'=Ep/a .
78’ =ns/b : S 39

Using scaled coordinates in Egs. (38) and (39), let us define a function for unloading curve
from the back-bone curve by

Of =98 2=F1(¢'—€5) /2] (40)
in which
J&=6/A+1&h (41)

Because the curve defined by Eq. (40) shoulg do through the symmetrical image of the
reversal point, one obtains

~ 75/ =f(~65") ‘ “2)
whereas the reversal point is on the back-bone curve, such that .

t=fs) 43)
Elimination of s from Eqgs. (42) and (43) by using Eqgs. (39) and (41) yields

b=(a-+ &) /(L +1¢3D) | (44)

It is to be noted that strain level of cyclic loading is represented by |£s|, which coincides
with max |£| for the previonus loading history of transient and cyclic loading. In the
following discussion |£z] will be conveniently called strain level. . Because the scaling para-
meter b is determined by Eq. (44) from the parameter a and the strain level |5], it remains
to define a function of strain level |£z| for determining the scaling paramatar a.

The energy consumed by the hysteresis loop is generally expressed by a relative value
to the equivalent elastic énergy; a damping factor A. The definition of A is given by

h=(1/42) (AW W) (45)

in which 4W is the damping energy, i. e. the area within the hysteresis loop shown in" Fig. 5,
and W is the equivalent elastic strain energy defined as

W=(1/2)émms : (46)
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7

W

Fig. 5 Definition of damping factor A

It is to be noted that the damping factor % is independent of the normalization factors
or scaling factors used for the stress and strain because effect of these factors are canceled
by taking the ratio of 4W over W in Eq. (45).

As a candidate for the realistic damping factor to be represented by each virtual sunple
shear mechanism, the hyperbohc function of strain level |¢5| is adopted as

h(1&8D) =[168/6n1/ A+ 168/6n1) TR0 “n

in which A, : limiting value of virtual damping factor when virtual shear strain level is
infinity ; and &, a parameter similar to virtual reference strain.

Because the hysteresis loop defined by Eq. (40) produces the damping factor D as
(Ishihara, 1982)

D(|¢’5]) = (4/u)(1+1/l$'a|)[1 /1’8 JIn(1 +1¢'8) — (2/7) (48)

the scaling parameter a should be determined so as to produce the same value for D and
h for and same strain level {£5] such that

D(|¢s/al)=h(|¢5]) : (49)

Once unloading begins from the back-bone curve at the virtual normalized shear strain
&g, the scaling parameter a is determined by numerically solving Eq. (49) from the current
strain level |£p]. Then, the corresponding scaling parameter & is determined by Eq. (44)
and consequently the unloading curve is given by Eq. (40).

The unloading curve in Eq. (40) can be more explicitly written by converting the
normalized variables & and # to the original variables y* and @, such that
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Q% /Qu—78)/(2B) =F[ (4" [ro—8a) /(26)] . (50)

in which the function f is defined by Eq. (41) and ¢, 78, a and b are, as mentioned earlier,
separately defined for each mechanism =1, ----- , L

By substituting Eq. (50) into Eq. (15), the virtual tangent shear moduli are obtained
for the unloading from the initial loading as

Ry =g[ (9 /ro—£5)/ (20)](Qu/7v) (b/a) 46 | L)

in which the function g is the first order derivative of f in Eq. (41) and given by
g =1/A+[é]? ' (52)

3. 4 Reloading .
For representing the one dxmensmnal stress strain relatlon durmg reloadmg and re-
unloading, a function similar to Eq. (40) is used for interpolation between the most recent
reversal point (&,7,) at which the current reloading or re-unloading process initiated and ‘
the most recent reversal point or its symmetncal image on the back-bone curve to which
the current process is dlrected The function is given by

o —1)/(2) =F[(E~&/)/ 26)] ' (63

The scaling factor ¢ is determined so that the curve defined by Eq. (53) goes through the
most recent reversal point or its symmetrical image on the back-bone curve, such that

(298’ =) /2e) =f[ (£ —&/)/(20)] " (64

in which + takes plus if reloading and minus if re-unloading. By solving Eq. (54) for
¢ with the help of Eq. (41), one obtains

c=(1/2)] 86" =& (e’ =) /L(£65' &) — (75 —)] (55)

Explicit equations for Q¥ and R.,;% similar to Egs. (50) and (51) will be obtained if the
scaling factors ac and bc¢ are used on behalf of a and & in these equations and the coordinates

of :reversal point &, and " are used on behalf of €z and 7. Thus, for reloading and re-
unloading
Q% /Quv—7,)/(2bc) =fL (' /ro—&r) [ (2ac) ] o (56)
Ryy® =g[(2’(“/Tv—ér)/(ZQC)](Qu/Tv)(b/a)deb o v o 67

As mentioned earlier, &,, 7,, @, b and ¢ are separately defined for each mechanism i=1,

4. Parameter Identification for Shear Mechanism

In the previous chapter, four soil parameters are introduced for modeling shear mecha-
nism ; the virtual shear strength @, and the virtual reference strain 7, in Eq. (31), and the
limiting value of virtual damping factor A, and a parameter &, in Eq. (47).  -Though these
parameters are not directly measurable, they can be readily determined from the well defined
soil parameters which are measurable in the laboratery test.
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4. 1 Virtual Shear Strength and Virtual Reference Strain

The virtual shear strength and the virtual reference strain in Egs. (31) and (32) can
be readily determined by such measurable parameters as shear strength 7,, and shear modulus
G at small strain level. Following the approach by Towhata and Ishihara (1985), let us
consider a simple shear test under drained and monotonic loading. It is assumed that
only non zero shear strain is 7zy. When the shear strain is very small such as 7;,=0,
definition of shear modulus G,, implies

dtzy=CGndyzy (58)
whereas Eq. (32) yields

R.% =(Qo/r0) 40 59
Substitution of Eq. (59) into Eq. (11) through (13) yield

Gp=0

Gaa=(Qu/r)Zsin'0:40 (60)
and, therefore, Eqs. (9) and (10) yield

ey =T (Qu/70) Esin0:401dy 2, (61)
By comparing Eqs. (58) and (61), one obtains

Gn=(Q./ ru)‘:ElsinEB;AH (62)

Similarly, when 7z, =00, definition of shear strength r, implies

Toy=Tm (63)
whereas Eq. (31) yields '

Q1 (0)=Qy (64)

Substitution of Eq. (64) into Eq. (14) yields

Toy= Q.,és in6; 40 ' (65)
By comparing Egs. (63) and (65), one obtains

tn=QuSsind,df (66)

From Egs. (62) and (66), the virtual shear strength and reference strain are determined as

Q,,:r,,./(tzr‘,sin&A& 67)
7,,=(Q,/G,,)gsin’0(d0 (68)

When the number of multiple mechanisms are increased to infinity, the limiting value in
Eqs. (67) and (68) will be given as
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Q= Tm/2 (69)
70°=(7/2) (Qu/Gn) ' ' (70)

The relations in Eqgs. (69) and (70) are consistent with the results obtained by Towhata
and Ishihara (1985).

4. 2 Parameters Relevant to Hysteresis Loop

The soil parameters h, and &, for virtual simple shear mechanism in Ep. (47) can be
readily determined by such a measurable parameter as damping factor of actual simple shear.
Let us examine the behavior of virtual shear mechanisms during the actual cyclic simple
shear under drained condition. = The amplitude of the shear strain will be denoted 7,y5.
When unloading starts at the peak value,

Tzy=TzyB (71)
so that the virtual simple shear strain amplitude is given by Eq. (16) as '
T(i)B= rz,,Bsinﬁi (72)

and the corresponding virtual simple shear stress are given by Eq. (31) as

Q(i) B=Q(i) (T (1) B) (73)

From this and Eq. (14), the actual simple shear stress amplitude is gi'éen by
I
TzyB= EQ ) psing; 46 ) . (74)

Therefore, the equivalent strain energy for the cyclic loading process of shear strain amplitude
rzys iS given by

W= /Z)LéQ @ Bsina—LAe]szB B (75)
By rearranging this and using Eq. (72), one obtains

W=(1/2)2Q% 579 36 | D)
If the equivalent elastic virtual strain energy is defined as

W =(1/2)Q% 5“5 N
the equivalent elastic strain energy in Eq. (76) is rewritten as -

W=3W 46 D)

Thus, the equivalent elastic strain energy is obtained by summing up the equivalent elastic
virtual strain energy.

Similarly, the energy consumed by the actual hysteresis loop 4W is given by summing
up the energy consumed by each stress contribution appearing in the right hand side of Eq.
(74). In order to do the summation, some elaboration is necessary. First of all, let us
go back to the definition of damping factor in Eq. (45) and write down the explicit equation
for the damping energy 4W. As mentioned before, the damping factor is defined irre-
spective of the. scaling factors for the relevant variables..  Since the area within the hyste-
resis loop (in the actual stress and strain space) is twice the upper half of the area, one
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obtains
- elrzyal
AW = ZX [zoy— (c2y8/T2yB) T2y )12y ) (79)
— |72yl

The linear term in the integral will vanish upon integration so that

{rzysl
AW = ZSszdrzy (80)
—lrzy5l

In the manner similar to the derivation of Egs. (72) through (74), 7, is expressed by the
virtual simple stress Q% as

I
r,,.=i2Q“’sin0540 @8
=1
in whicn
QW =Qw (yw) o (82)
79 =y4,sinb; (83)

Substitution of Eq. (81) into Eq. (80) yields

|T}=vBl
AW = ZS[EIQ Wsing;401dy zy (84)

—|rzysl

By rearranging this, one obtains

: Irzysl
AW = ZZHQ “’dr,,,sinﬁtdﬂ] (85)
i=1
—|7zysl

The transformation of the variable for the integration from yz to y% =rzsind; in Eq. (85)
yields ’ )

, Iy @ 5|
AW = Z'EUQ Wdy “’]Aﬂ ’ (86)
—r® 4|

If, by the analogy to Eq. (80), the consumed energy by each virtual simple shear mechanism
is defined as :

Ir @l A -
AW = ZSQ Wy @ - ¢

_Ir(i)BI

Eq. (86) will be rewritten as
AW =S4 46 (88)

Thus, the energy consumed by the actual hysteresis loop is given by summing up the energy
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consumed by each virtual simple shear mechanism.

It remains to identify AW with the damping factor A defined in Eq. (45) for virtual
simple shear mechanism. Since the damping factor & defined in Eq. (45) is irrespective
of the scaling factors for the relevant variables, the damping factor % is equal to the ratio
of the energies 4W® over W% defined by the variables with y% and Q, such that

h(l78"® [rel) = 1 /4z) (AWD /W) (89)

in which W% and 4W* "are defined in Eqs. (77) and (87). - Therefore, AW is deter-
mined from 2 and W% as

AW D =4rh(|rp® /1)) W (90)
Substitution of Eq. (90) into Eq. (88) yields

AW=4nié}h(|rB”’ J1ol) W 48 ' (91)
=1

From Egs. (78) and (91), one finally obtains the damping factor for the actual simple shear
as

I I
H(l7s45)) =[ SW“h(lr@a/rD) | [ 57 ] ©92)

in which W% and 7% 5 are defined by Egs. (77) and (72).

Whereas the damping factor given by the present model is thus identified, the actual
damping factor to be measured in the laboratory is postulated to be given by the hyperbolic
relation proposed by Hardin and Drnevich (1972), such that

Hraysl) =Clreva/rml/ L+ 1208/ 1m) 1 Hn ~(93)

in which H, is damping factor when the shear strain amplitude is infinity and 7, is refer-
ence strain defened by

Tm= Tm/Gm (94)

From these measurable parameters H,, and y,, the parameters h;, and &, for the virtual shear
are determined as follows. First of all, when |7,,5| becomes infinity, damping factor given
by Eq. (92) becomes

H(o0)=h, | (95)
From this and Eq. (93), one obtains
ho=Hop, , (96)

The parameter &, similar to virttual reference strain is numerically determined so that H is
best fitted to H.

To summarize the discussions presented in this chapter, the shear mechanism is completely
defined by three soil parameters : i. e. the shear modulus at small strain level, the shear
strength and the damping factor at large shear strain. Once initial values are given by
Egs. (21) through (23) with the damping factor at large shear strain, the soil parameters
Tm, Gm and 7, during cyclic mobility are given as a function of current value of effective
mean stress as well as the liquefaction front parameter S, by a scheme for enhancing the
numerical robustness and efficiency (Iai et al., 1990).
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5. Parameter Identification for Volumetric Mechanism

In addition to three parameters for the shear mechanism Gna, ¢5/, Hn in Eq. (21), (23),

and (93), there are.five parameters to be specified for the present model; i. e. Sy, w,, pi,
P2, and ¢, in Eqgs. (18) and (24) through (28). Though there are four more parameters
such as phase transformation angle ¢,’, bulk moduli of soil skeleton and water K, and Ky
and porosity of soil skeleton n, they are so well defined that no more explanation would be
necessary. Given the soil parameters for shear mechanism Gna, ¢, Hn as well as the
well defined parameters ¢,’, Kms, Ky and n, the five parameters S,, w,, p1, p. and ¢, for
defining the cumulative volumetric strain of plastic nature are determined from the undrained
cyclic loading test results as follows.

D

2)

3

First of all, the test data, commonly available in the practice of soil dynamics, should be
provided for representing (i) liquefaction resistance curve (i. e. the cyclic shear stress
ratio vs. number of the cyclie loading N, required to cause shear strain of 5 percent in
the double amplitude), (ii) envelope of excess pore water pressure generation curve as
shown in Fig. 6 by a broken line and (iii) envelope of shear strain amplitude as shown
in Fig. 7 by broken lines.

S, takes small positive value about 0.005 so that S, will never be zero. In such a
special case as the stress strain curve should become a closed loop during cyclic mobil-
ity, S; can take a larger value and can be determined in a try and error manner.

The parameter ¢, for specifying the threshold level is temporarily fixed to 1.0 as a
first guess. The value of ¢, will later be modified in a try and error manner. The
modification in the value of ¢,, however, does not have a great influence upon the cyclic

1.0 ‘ 4
_0.75
o
| 0.5 S
<
« 1/~ _____ Measured
0.25+ Envelope
Computed

0.0 0.25 0.5 0.75 1.0
N/Ng

Fig. 6 Excess pore water pressure generation curve
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Fig. 7 Shear strain amplitude
mobility when the shear stress ratio is much larger than the threshold level. There-

fore, with ¢,=1.0, the rest of the parameters w,, p, and p, are determined from the
test results of reletively large shear stress ratio by the following steps.

4) The parameters w, and p, are determined in a try and error manner from the excess
pore water pressure generation curve. In particular, the portion of the curve for p/
(—om’)<0.6 is used, in which p denotes excess pore water pressure. Because w, is not
greatly influenced by the variation in p,, the parameter w, is at first determined with
appropriate guess of p;. The value of p, ranges from about 0.4 to 0.7. With the
determined value of w,, the value of p, is determined. . In general the greater w, is
and the greater p, is, the slower the pore water pressure rises.

5) The parameter p, could also be determined from the pore water pressure generation
curve for p/(—am’)>0.6. However, it is better to determine the parameter p, from
the envelope of strain amplituda if the primary purpose of the cyclic mobility analysis
is to estimate the amount of deformation in the soil structures and foundations.  The
value of p, ranges from about 0.6 to 15; the greater p, is, the faster the shear strain
amplitude increases.

6) When all the parameters are determined by the steps mentioned above from the labora-
tory data at relatively large shear stress ratio, the next step is to examine if these para-
meters are appropriate for representing the laboratory data at relatively small shear stress
ratio.  If not, then the parameter ¢, is modified in a try and égrbr manner.

; 6. Model Performance

As an example, the model parameters are determined by using the laboratory data of
Fuji River Sand at relative density of 479 presented by Ishihara (1985). - With the model
parameters shown in Table 1, the model gives the computed results shown by solid lines in
Figs. 6 and 7. Reasonable adaptability to the soil behavior in the laboratory is indicated
by these results. Model performance in representing the effective stress path and the
stress strain -curve are shown somewhere else (Iai et al., 1990).

These results are obtained with the initially isotropically consolidated condition. In
order to examine the effect of initial K, consolidation, the undrained torsion shear tests is
simulated with initially K,=0.5 but with constraining the. bulging. The same parameters
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Table 1 Model parameters

Parameters Loose Fuji River Sand Dense Fuji River Sand
(Dr=479%) (Dr=75%)
Kpa 270500 kPa - 366800 kPa
Gma 103700 kPa 140700 kPa
n ©0.45 . 0. 40
Pa 1.4 0.72
o w 2.0 2.85
S -0.0035 0.005
a 1.0 1.0
- .sings ~0.87. " 0.91
singp’ 0.42 0.42
Hp 0.3 0.3
n . 0.45 0.40
Ky ' © 2.0x108 kPa 2.0x 108 kPa

Kma and Gma are éiven for (—oma’)=98 kPa. The computation was
done with number of the shear mechanism /=12 by 50 steps of incre-
mental loadings for 1/4 cycle.

for the looser sand in Table 1 and the same initial confining pressure are used for the compu-
tation. The result, shown in Fig. 8, indicates that (1) stress strain relation is similar to
that in the initially isotropically consoldated sand (if compared with Fig. 9 in Iai et al., 1990)
and (2) initial deviatoric stress due to K, consolidation is gradually released as the cyclic
loading continues. If the shear stress ratio, i. e. the ratio of the cyclic shear stress over the
initial confining pressure, is plotted with number of the cyclic loading required to cause shear
strain of 5 percent in the double amplitude, the computed result on the isotropically consol-
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Fig. 8 Computed results of loose sand on Kj consolidated soil with K;=0.5
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Fig. 9 Comparison of liquefaction resistances between isotropically and
Ky consolidated soils
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jdated sand agrees with that on the K, consolidated sand as shown in Fig. 9. This is
consistent with the results by the laboratory study (Ishihara, et al., 1977).

The model performance examined above is closely related with the one dimensional
analysis of cyclic mobility in the level ground in which the bulging of soil is constrained.
When the two dimensional analysis is conducted for such soil structures as embankment,
initial stress due to gravity will act as a driving force for the gradual settlement and bulging.
In order to examine the ability to simulate such a mechanism, undrained torsion shear test
with initially K, consolidated sand is simulated with keeping the initial normal stress differ-
ence unchanged as the stress boundary condition.  The results, as shown in Fig. 10,
indicate the limit in decreasing value of (—on’) and the gradual settlement with bulging of
soil element (i. e. gradual increase in e;—¢,), suggesting reasonable applicability in the two
dimensional analysis. T
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7. Conclusions

In order to represent the realistic damping factor during cyclic loadig, such a conventional
tool as Masing’s rule is not applicable in large shear strain level. This study shows how
to represent the realistic damping factor in the framework of strain space plasticity approach.
The framework is used for decomposing the shear mechanism into a set of virtual simple
shear mechanisms. The virtual damping factor in the virtual simple shear mechanism is
adjusted by introducing appropriate scaling factors for virtual strain and stress.

The parameters introduced for the virtual simple shear mechanism are identified W1th
three measurable soil parameters; i. e. the shear strength, the shear modulus at small strain
level and damping factor at large shear strain level.

The rest of five parameters for defining the cumulative volumetric strain of plastic nature
are identified with the undrained cyclic loading test data. The reasonable adaptability of
the proposed model is indicated. '

(Received on September 29, 1990)
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Notation

a, b and c : scaling parameters for virtual simple shear mechanism
B=[0.5K;/(—0ma")**]? : factor for volumetric relation

¢ : parameter for specifying the level of threshold limit

D : tangential stiffness matrix

D : damping factor given by Masing’s rule with hyperbolic relation
f and g : normalized hyperbolic relation and its tangent stiffness

Gmo : initial shear modulus

Gn : shear modulus

Gu, Gy and Gys : factors for tangent stiffness

: damping factor generated by the present model
: damping factor given by hyperbolic relation
: limiting value of damping factor

: damping factor for virtual simple shear

: limiting value of virtual damping factor

: number of the multiple mechanism for shear
: elastic tangent bulk modulus of soil skeleton
: value of K at o/ =0ns’

: bulk modulus of pore water

my=sing,’ : inclination of failure line

m,=sing,’ : inclination of phase transformation line
my=0. 67m, : auxiliary parameter

RpRSE T

nt : loading/unloading direction vector for mechanism 7

n : porosity of soil skeleton

P1, P2, Wi, S : material parameters for dilatancy

QW : virtual shear stress per unit angle for mechanism 7
QWy  :virtual simple shear stress amplitude per unit angle

Qo : virtual shear strength per unit angle

r : state variable equivalent to v/(—omo’)

R,z : tangential stiffness modulus of mechanism i at loading and unloading
S : state variable equivalent to ¢//0m

So : liquefaction front parameter

w : equivalent elastic strain energy

4w : damping energy of hysteresis loop

Wa : factor for normalization of shear work

W, : plastic shear work

Wit : total shear work

Wee : elastic shear work

ww : equivalent elastic virtual strain energy for mechanism i
AW®  : damping energy in virtual mechanism for hysteresis loop
w : normalized shear work

r® : virtual simple shear strain for mechanism ¢
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Tmo : initial reference strain

Tm : reference strain

7o : virtual reference strain

TzyB : amplitude of simple shear strain

rWg : amplitude of virtual simple shear strain for mechanism ¢
&= (ez, &y, Tzy) : Strain

£p : additional volumetric strain of plastic nature

£eo : initial elastic volumetric strain

;= (—1)40 : angle for virtual shear mechanism 7 in (e;—¢y) —7zy plane
40==/1

én : a parameter for damping factor similar to virtual reference strain
&y : normalized virtual strain and stress

&, 7  :normalized and scaled virtual strain and stress

&8, 78 : coordinates of reversal point on the back-bone curve

&r, 7r  : coordinates of reversal point

o'T= (a2, 0y, tzy) : effective stress

on'=(0;+0,)/2 : mean effective stress
4

Tmo : initial mean effective stress
7= (0,'—04’) /2 : deviatoric stress

Tm : shear strength

Tmo : initial shear strength

&7 : shear resistance angle

@y : phase transformation angle





