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1. Stability Analysis of Geotechnical Structures" by
Adaptive Finite Element Procedure

Masaki KOBAYASHI*

Synopsis

A new method of stability analysis for geotechnical structures has been
developed by using the finite element method including the adaptive procedure.

The bearing capacity of strip footings was analyzed by this method. The
results agree favourably with the classical bearing capacity equations.

The stability of simple slopes was analyzed and was compared with conven-
tional results by Taylor. The finite element method appears to give higher safety
factors in frictional slopes whereas it gives favourable agreement with the results
of the conventional method in cohesive slopes.

The effect of a sheet pile on the stability of a slope was analyzed to show
the powerful capabilities of the finite element method. The increase of the stability
due to the existence of a sheet pile can be analyzed. The effect of its flexural
rigidity also can be evaluated. ‘ ’ ’

To improve the results of the finite element method, the adaptive procedure was
applied to the limit analysis. Extremely accurate results can be obtained. by the
adaptive procedure both in the bearing capacity analysis and in the slope stability
analysis.

Key Words: Stability Analysis, Finite Element Method, Slope Stability, Bearing
Capacity

* Chief of Soil Mechanics Laboratory, Soils Division
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Stability Analysis of Geotechnical Structures by Adaptive Finite Element Procedure

1. Introduction

Limit analysis such as bearing capacity, slope stability and earth pressure has
been one of the most important subjects in geotechnical engineering. Conventional
methods are usually employed for the limit analysis. For example, classical closed
form solutions are frequently used to obtain the ultimate bearing capacity and the
circular slip method is the most popular one used in the slope stability analysis.
However, there are many problems where we have a lot of difficulties in applying
conventional methods.

Recently, it was shown that the finite element method can be applied to the limit
analysis if a careful algorithm is employed. Although usual finite element approach
fails to give the accurate limit value, fictitious viscoplastic algorithm® yields satisfactory
results. However, the comparison of the finite element solutions with the closed form
solutions shows that relatively high limit values are obtained in the finite element
analysis where the high stress singularities exist. One typical example is the bearing
capacity problem of a footing whose edge causes stress singularity. Another example
is the stability problem of a vertical slope where stress singularities are seen at
the corner. One useful method to divert these stress singularities is the introduction
of a singular finite element. However, the application of this element is limited to
the stress singular point and the overall accuracy cannot be estimated.

Recently the application of the adaptive refinement procedure has become popular
in the finite element analysis. In this method, mesh refinements are carried out based
on the error estimate. Because of the difficulties in incorporating the whole refinement
procedures into usual computer codes, the application of the mesh refinement analysis
has been limited to a few problems. Zienkiewicz et al. developed a new algorithm
of the error estimate which can be easily applied to the usual finite element method.
However, their algorithm cannot be directly used for the limit analysis because its
application is limited to the linear elastic problems. The author extended the algorithm
to non-linear problems.

In this report, at first, we show that the finite element method has powerful
capabilities for the limit analysis. Then, we demonstrate that extremely accurate
limit analysis is made possible by the non-linear adaptive finite element procedure.

2. Limit Analysis by Finite Elements

2.1 Mechanical model of soil

Conventional limit analysis in soil mechanics employs the Mohr-Coulomb yield
criterion whose strength parameters are defined as the cohesion ¢ and the angle of
shear resistance ¢. Therefore, in the finite element analysis we also use the Mohr-
Coulomb yield criterion. However, soil is assumed to be elasto-plastic material in
the finite element analysis although rigid plastic theory is used in conventional limit
analyses. In the rigid plastic analysis, the yield or failure criterion consisting of
only two parameters ¢ and ¢ suffice to describe the mechanical model. On the other
hand, in the elasto-plastic analysis we have to determine four parameters, i.e., c, 9,
Young’s modulus E and Poisson’s ratio v. Furthermore, the concept of the plastic
potential and the hardening rule are necessary in the elasto-plastic analysis. Usually,
the plastic potential is assumed to be identical to the yield function (associated flow
rule) and the strain hardening is neglected (perfect plasticity). Therefore, four
parameters given above suffice to describe the elasto-plastic material employed in
the finite element analysis.

Although two shear strength parameters ¢ and ¢ are familiar to most geotechnical
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engineers, other two parameters £ and v are seldom used in soil mechanics. Thus,
there may be a lot of difficulties in determining E and v. However, we need not be
worried about how to determine E and v because they have a negligible influence
on the results of the limit analysis as will be shown below.

2.2 Computational procedure

In the limit analysis, we have to obtain ultimate values or safety factors. It is
straightforward to get the ultimate value such as the ultimate bearing capacity.
For example, we can calculate the ultimate bearing capacity of a rigid footing by
increasing nodal displacements on the footing and by summing up the nodal reactions
on the footing. However, to obtain such safety factors as calculated in the slope
stability analysis, we have to devise a special algorithm. A simple and yet effective
algorithm is to assume that computational divergence is equivalent to the total failure
in soil mechanics. In this algorithm, shear strength 7; is reduced by a factor of F
and the mobilized strength z,, is obtained as follows:

Tm=Tj/F

If a computational value converges under the condition of Tm, the safety factor must
be greater than F. On the other hand, if the solution never converges after a large
number of iterations, the safety factor is assumed to be less than F. We start a com-
putation at a small value of F where the convergence is guaranteed. By increasing F
which means a gradual reduction of shear strength parameters. we can obtain a point
at which the solution no longer converges. The safety factor is given as F at this
point.

In this analysis, it is essential to accurately judge whether a solution’ converges
or not. If the solution diverges because of the drawbacks of the computational
algorithm, we have unreasonable results. Recently, a new algorithm has been
developed to analyze elasto-plastic problems. Here a fictitious elasto-viscoplastic
analysis is performed instead of the simple incremental elasto-plastic analysis. It is
shown that very stable and accurate limit value can be obtained by this new algorithm.
In this report, we applied this algorithm to the Mohr-Coulomb material. The details
of computational procedure are described in Appendix.

2.3 Numerical examples
(1) Bearing capacity of strip footing

To show that the finite element method has powerful capabilities for the limit
analysis, we obtained the ultimate bearing capacity of a strip footing. According to
the classical bearing capacity theory, the ultimate bearing capacity g¢; is given by

ga=cN:+0.5B N,+¢gN,

F oo

Fig. 1 Mesh division for bearing capacity
analysis (original mesh)
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where ¢ is the cohesion, 7 is the unit weight of soil, B is the footing width, ¢ is the
surcharge and N, N,;, N, are bearing capacity factors.

In the finite element analysis, these three bearing capacity factors are obtained
separately and compared with those in the bearing capacity theory. Figure 1 shows
the finite element mesh used in the bearing capacity analysis. 8 noded quadratic
isoparametric elements are employed throughout in this report. The footing is
assumed to be infinitely rigid. The following Elastic constants were used in the
analysis: £=20000 tf/m? and v=0.35.

At first the bearing capacity factor N, for ¢=0 was calculated. Figure 2 shows
the result of the load-settlement relationship. In the conventional incremental
elasto-plastic finite element analysis, the load increases gradually even at a extremely
large settlement. Thus, it is difficult to define the ultimate load. On the other hand,
as shown in Fig. 2, it is very easy to obtain the ultimate bearing capacity because
a peak value of the load is observed clearly in the elasto-viscoplastic analysis.

In the elasto-plastic finite element analysis, we have to use the elastic constants
E and v together with the shear strength parameters ¢ and ¢. To examine the
influences of the elastic constants in the finite element analysis, the values of N, for
¢=0 was calculated for various EF and v as listed in Table 1. As shown in this .
table, elastic constants have a negligible effect except when v approaches quite near
to 0.5. Thus, it was shown that the fictitious viscoplastic finite element analysis can
give reliable bearing capacity factors.

The bearing capacity factors N.,, N,, and N, for various values of ¢ were

Table 1 Effect of elastic constants on bearing
capacity factor N,

E v Ne
200 0.35 5.42
20, 000 0.35 5.42
2, 000, 000 0.35 5. 42
20, 000 0 5.41
20, 000 0.45 5.44
20, 000 0. 499 5.54
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calculated with two footing conditions; smooth footings and rough footings. The
mesh is the same as shown in Fig. 1. The same elastic constants were used as in
Fig. 2; £E=20000tf/m? and »=0.35. The results of the finite element analysis were
compared with the classical bearing capacity equations.
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80 | |
—Prandtl
o FEM (Smooth)
e FEM (Rough) -

40 - :

Zv
20}
00 10

20 30 40
¢ (degrees) S

Fig. 4 Relationship between N, and ¢

60 T
I [ /
—Hill ]
———Prandtl ,’

o FEM (Smooth) !

40— . FEM (Rough) ]

/

z" 9

y
20 1/

00 10 30 40

20
¢ (degrees)
Fig. 5 Relationship between N, and ¢



Stability Analysis of Geotechnical Structures by Adaptive Finite Element Procedure

Figure 3 shows the relationship between N. and ¢. In this figure, the values
of N, for a smooth footing are shown as open circles and those for rough footing
are shown as closed circles for the finite element results. According to Prandtl, the
values of N, for both smooth footing and rough footing are the same as shown as
the solid curve in Fig. 3. Although the finite element analysis gives a little differences
in N, between the smooth footing and the rough footing, the overall accuracy appears
to be quite. satisfactory.

Figure 4 shows the relationship between the bearing capacity factor N, and the
angle of shear resistance ¢. In this figure, similarly to N, the finite element solutions
for both the smooth footing and the rough footing are shown together with the

g=27

B=45

=63

g=90

Fig. 6 Mesh division for slope stability
analysis (original mesh)
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theory due to Prandtl who confirmed that the values of N, for the smooth footing
is the same as that for the rough footing. The finite element analysis again gives
satisfactory results.

Figure 5 shows the relationship between the bearing capacity factor N; and the
angle of shear resistance ¢. In this figure, the finite element solutions for both the
smooth footing and the rough footing are compared. It should be noted that we
have quite different values of N, depending on the footing roughness. In fact, it is
impossible to calibrate the solutions obtained by the finite element analysis because
there is no closed form solution for N,. The slip line analysis by Chen® gives
similar differences in N;. He assumed that the Hill type failure mechanism holds
for the smooth footing and the Prandtl type failure mechanism holds for the rough
footing, respectively. In Fig. 5, the results of his analysis are compared with these
by the finite element analysis, which gives reasonable results.

(2) Slope stability analysis

In this section, a slope stability analysis was performed for simple slopes having
simple geometric conditions and a uniform soil condition. The finite element analysis
was carried out for four slopes whose angles of inclination range from 27° to 90°.
Figure 6 shows the element mesh of each slope. Safety factors were calculated by
the finite element method and the results were compared with those by the conventional
stability charts.
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At first, the stability analysis was carried out for the case of ¢=0. Figure 7
shows the comparison of the stability factors N, derived by the finite element method
and those by the Taylor’s stability chart3). In this figure, the stability factors are
plotted against the slope inclination 8. As shown in this figure, the finite element
analysis gives very accurate results except when B=90°.

Subsequently, similar comparison was made for the case of ¢>0. Figure 8
shows the results. In this figure, the relationship between the safety factor F and
B are given for three 1 values; 2 is the nondimensional parameter given by i=
yHtang/c where H is the slope height. It is clear that the finite element analysis
gives slightly larger safety factors than the Taylor’s stability chart. The difference
is the largest when B8=90°.

(3) Effect of sheet pile in preventing slope failures

As was described above, the finite element method can give almost as accurate
results as conventional methods in the limit analysis. To show further capabilities
of the finite element analysis in the limit analysis, another computation is carried
out on the effect of sheet piles in preventing slope failures.

Figure 9 shows a vertical slope consisting of two clay layers with different
shear strength. We can expect that failure may be prevented if a sheet pile is
driven deep enough to the lower clay layer because the lower clay has quite high
strength compared with the upper clay. Conventional limit analysis fails to give
satisfactory results for this kind of problem. The finite element analysis can give
a reasonable safety factor even for this kind of problem because the computational
procedure is the same as for simple slopes.

Figure 10 shows the relationship between the safety factor and the depth of

Upper Clay
10m ¢ =5 tf/m?

y=1 tf/m?
Lower Clay [~~~ Sheet Pile
c =20 tf/m?® £I =5000 tfm?*
=1 -tf/m?

| 40m ]

20m

Fig. 9 Analysis of effect of sheet pile in
preventing slope failure

6

<3
’A

54 —
[4) -
o A
(1 i
[ ///
Zar
o
|72}

0 2.5 5.0 7.5 10.0

Depth of embedment of sheet pile (m)

Fig. 10 Relationship between safety factor
and depth of embedment
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embedment of a sheet pile.. In this analysis, the sheet pile is assumed to be a linear
elastic- material with flexual rigidity EI=5000 tf-m2. Different elastic constants are
used for the clays; E=10000 tf/m? for the upper clay and E=4000 tf/m? for the lower
clay with v=0.49 for both clays. As shown in Fig. 10, the overall safety factor of
this slope.-increases with the increase of the depth of the sheet pile. By conventional
methods, it is almost impossible to obtain this kind of tendency. Although the
sheet pile is assumed to be linear elastic in this analysis, we can obtain further
satisfactory results by assuming a sheet pile as elasto-plastic material.

The safety factors in Fig. 10 may vary if the flexual rigidity EI of the sheet
pile is different. Figure 11 shows the relationship between the safety factor and
EI for the case where the depth of:the embedment is 5m. As shown in this figure,
the factor of safety remains almost contant if ET is large enough. On the other
hand, if EI is less than apprbximately.'iOO‘O' tf-m?, the safety factor decreases gradually
and it becomes equal to the safety factor for the case without a sheet pile when EI
approaches infinitely small. Conventional limit analyses can never give this kind of
useful information on the effect of a sheet pile in preventing the slope failure. Thus,
finite element analysis appears to be a powerful tool for the limit analysis in soil
mechanics. .

3. Adaptive Refinement

3.1 Error estimate and Adaptive analysis

In the previous section, it was shown that the finite element method can give
satisfactory results in the limit analysis in soil mechanics. However, there are some
cases where the finite element analysis gives limit values that are too large. This
is due to the fact that the mesh division is too coarse, especially near the stress
singularity point such as the corner of the vertical slope. Mesh refinement is necessary
to improve such results. Mesh refinement has been carried out based on a mixture
of experience, intuition and guesswork and its validity was verified by the comparison
with the closed form solutions. However, new procedure called the adaptive analysis
was developed for improving finite element results®.

In the adaptive finite element procedure, the results are successively refined
based on accuracy estimates. Thus, how to estimate the accuracy and/or the error
is a key to the analysis. Most of the methods of error estimate involve in the energy
norm evaluation of integrals interelement stress discontinuities. We have difficulties
in implementing this error estimate to usual finite element codes because it requires
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explicit determination of the interelement traction jumps and an integration along
element interfaces. Another error estimate procedure was developed by Zienkiewicz
et al.®). In this method, the error is easily estimated based on usual finite element
procedures as will be described below.
Let us consider a linear elastic problem which is described by the following

differential equation.

Lu+p=0
where L is a suitable linear operator and u is displacement. In the finite element
method, we obtain approximate solution of the original differential equation by
minimizing the potential energy. The final equation is expressed by the following
equation in a matrix form®.

| BTo=f
approximate stress ¢ is obtained by elasticity matrix D and approximate strain e

d=De
strain is derived from-nodal dlsplacements % and shape function N

e=Ni
The error is defined as the difference between the approximate values 7,6 and the
exact values %, o.
Thus, we have the error in stress es

e=0—0

We cannot obtain the exact stress except for simple problems where closed form

solutions are available. However, if we can obtain a_better approximation than &,
we may use it to estimate the error. To calculate better approximation in stress,
Zienkiewicz et al. proposed to use nodal stresses and displacement shape function N.
By the weighted residual method, the following equation can be derived.

§ NT(e*—a)d2=0
because nodal stress ¢* is expressed by the nodal stress * and the shape function N

Na* .- .
we can obtam o* as
=A"! SNT DSNd.Qu

where
A= SNTNd.Q

we can use as a better approx1matlon to obtain the error
ea=0'*""0'

It was made clear that by using the procedure described above, we can evaluate
the error successfully. In fact, it was shown that this procedure is approximately
equivalent to the method in which interelement stress discontinuities are integrated.
Furthermore this procedure can be implemented to usual finite element program
quite easily.

Now that we can estimate the error, the next step is how to make mesh refine-
ment. There are two main strategies in mesh refinement. The first is the simple
reduction of the subdivision size which is called h-refinement. The second is called
p-refinement where the order of shape function is increased. Because the former is
simpler and more versatile, we use the former procedure in this report.

3.2 Numerical examples
(1) Bearing capacity of strip footing on clay

In the previous section, it was shown that fairly accurate N, can be obtained
by using conventional finite element analysis. For example, the values of N, for a
smooth footing with v=0 is 5.42 as shown in Table 1. Although this value is
satisfactory from the engineering point of view compared with N,=5.14 by the
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Fig. 12(a) Refined mesh 1 for bearing
capacity analysis

Fig. 12(b) Refined mesh 2 for bearing
capacity adalysis

HEH

Fig. 12(¢) Refined mesh 3 for bearing
capacity analysis

I
HHH
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Fig. 12(d) Refined mesh 4 for bearing
capacity analysis

-
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Fig. 12(e) Refined mesh 5 for bearing
capacity analysis
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closed form solution, we can expect more improved value can be obtained by the
adaptive analysis.

Figure 12(a) shows a refined mesh based on a error estimate of the original mesh
(Fig. 1). Here, about 100 tf/m? pressure was applied to the footing and elements
whose error in stress exceeds 1tf/m? were refined. In the refinement, isoparametric
elements were halved in both horizontal and vertical directions. Using the same
strategy, successively refined mesh can be obtained based on the error estimates of
the previous mesh as shown in Fig. 12(b)-Fig. 12(e). Because the elements are
extremely fine for the mesh 5 and 6, enlarged elements close to the footing edge are
shown in Fig. 13. N, was newly calculated for 5 mesh of Fig. 12. Table 2 shows
the results where error in stress S, S/A which is a normalized error with total
area A and N, are compared for 6 cases including the original mesh 0. As shown
in this table, extremely accurate N, which is equal to 5.14 of the closed form solution,
can be obtained by the adaptive analysis.

Fig. 13(b) Enlarged mesh 4 for bearing
capacity analysis

HEH

Fig. 13(a) Enlarged mesh 5 for bearing
capacity analysis

Table 2 Relationship between stress error and
bearing capacity factor N,

MESH S S/A Ne
0 125.4 2.18 5.42
1 78.4 1.19 5.29
2 36.3 0.63 5.22
3 15.7 0.27 5.18
4 7.9 0.14 5.15
5 4.0 0.07 5.14
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Fig. 14(a) Original mesh 1 for solpe stability
analysis

Fig. '14(b) Refined mesh 2 for slope stability
analysis

(2) Stability of vertical slope

In the slope stability analysis, it was shown that the finite element analysis
overestimated the safety factor for vertical slopes. This is due to the fact that high
stress singularity is observed at the corner of the vertical slopes. To obtain more
accurate safety factor, the adaptive analysis was applied to the vertical slope of clay
with ¢=0. Same refinement strategy which was used in the bearing capacity analysis
was employed.

Figure 14(a) shows a very simple mesh division which is necessary and yet
sufficient to simulate a vertical slope by rectangular elements. The slope height is
20 m in this analysis and necessary parameters are as follows: ¢=20tf/m? 7=
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Fig. 14Ce) Refined mesh 3 for slope stability
analysis :

Fig. 14(d) Refined mesh 4 for slope stability
analysis

3.83 tf/m3, E=100 tf/m2, v=0.3. Figure 14(b)-14(f) show refined mesh based on error
estimates. Table 3 shows the results of stability factor N, and error estimates. In this
table. error in stress S and normalized error S/A are listed. As shown in this table,
exact N, value which is"equal to 3.83 can be obtained by the adaptive analysis. Further-
more, this example shows the possibility that computers can automatically obtain an
appropriate mesh division based on a simple mesh which suffices to simulate both
geometric conditions and soil conditions.

4. Conclusion

In this report, it was shown that the finite element method has powerful
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Fig. 14Ce) Refined mesh 5 for slope stability
analysis

ne

asw

Fig. 14(f) Refined mesh 6 for slope stability
analysis

Table 3 Relationship between stress error and
stability factor N,

MESH S S/A N,
1 11, 607 9.67 4.55
2 9,975 8.31 4.31
3 4,951 1.91 4.07
4 2,297 4.13 3.95
5 1,075 0.90 3.89
6 507 0.42 3.83
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capabilities for the limit analysis. Main conclusions can be summarized as follows:

1) Elastic parameters E and v have a negligible effect on the results of the limit
analysis in the finite element method.

2) The bearing capacity of strip footings was analyzed. The results of the finite
elements agreed favourably with the classical bearing capacity equations.

3) The stability of simple slopes was analyzed. The finite element method gives
higher safety factors for slopes with ¢>0 whereas it gives favourable agree-
ment with the Taylor’s stability chart for slopes with ¢=0.

4) The effect of a sheet pile on the stability of a slope was analyzed to show the
powerful capabilities of the finite element method. The increase of the stability
due to the existence of a sheet pile can be analyzed. The effect of its flexual
rigidity also can be evaluated.

5) Extremely accurate results can be obtained by the adaptive procedure both in
the bearing capacity analysis and in the slope stability analysis.

(Recetved on March 31, 1988)
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It is useful to introduce the following three stress invariants to express the
yield criterion.
on="C0z+0y+a3:)
o= [(312+Sy2+832)+T:y2+1'y32+1'zzz]

1. o[ _3v3 Al(_= T
0—‘3—511'1 l[ Ta—;,]( €<0<'6—)

where 3= 8:5y5: %2t zytyets0—STys’ — SyTaz’ — SeTay’s Sz =0z~ Gmy Sy=Gy—0'm»
Sz2=0z—0Om.
Using these stress invariants, the yield surface F' and the plastic potential Q of
Mohr-Coulomb materials can be written as

F=Q=gn sin ¢+a cos 6—%sin ¢ sin —ccos ¢

In the fictitious viscoplastic algorithm, the flow rule is expressed as
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The stress increment can be calculated as follows
do=D(de— A4tB)
D=[D'4-485]!
where D is elastic stress matrix and S=(d3/d0)
B is written as

B=r<-> a
where 7 is the fluidity parameter and F, is the unit stress
The notation < > implies
<zg>=zg forz>0
. <g>=g forzx=0
The matrix S is given as

=38 =#A5 5o+ 58

- 92 —





