


Curved Slit Caisson Breakwater

View of curved slit caisson breakwater completed in the construction
at the port of Funakawa. {Courtesy of Akita Port Construction Office,

the First District Port Construction Bureau, Ministry of Transport)

Faeilities for Ocean
Directional Wave
Measurement

Four step type wave
gauges and a two-axis
directional current meter
with a pressure sensor are
installed on the legs of
an offshore oil rig.
They are operated
simulianecusly for
detailed directional wave
analysis.




Serpent-type Wave Generator
The photograph shows the serpent-type wave generator in the short-
crested wave basin and the superimposition state of two different
oblique waves generated by the generator.

Wave-soil Tank

The experiments concerning the wave-soil interactions are conducted
in this tank. The soil tank and the test section are located at the
center of the tank. A movable floor is provided at the bottom of
the test section and the level of the interface of mud layer and water
can easily he adjusted to the level of the flume bottorn.
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Pararionospio Pinnata
The biomass of benthos is one of the most sensitive indices to know
the effect of sea-bed sediment treatments on the marine environmental
improvernent, The picure shows a kind of henthos, pararionospio
pinnale, which preferentially exists in the polluted sea-bed.

Breakwater Damaged by Storm

This photograph shows a breakwater damage by a storm,

The breakwater is of the composite type with concrete caisson on
a rubble mound. Two caissons were severly damaged due to the insta-
bility of a rubble mound.




Nondestructive Evaluation of -Pavement

Nondestructive methods for evaluating the load carrying capacity
of airport concrete pavements have been developed by using Falling
Weight Deflectometer(FWD).

Seismic Damage to Gravity Quaywall

The 1983 Nipponkai-Chubu earthquake(Magnitude : 7.7)caused serious
damage to port facilities in northern part of Japan. This photo shows
the damage to gravity quaywall. The concrete cellular block walls
were collapsed and completely submerged.



Model Experiment of Mooring Ship

Model ship is moored at a quay wall with fenders and mooring ropes
subjected to gusty wind and/or irregular waves.

Vessel Congestion in Japan

As Japan is surrounded by the sea, there are many crowded water
areas with various sizes and types of vessels. Arround there, many
construction works were planned such as ports and harbours, off-shore
airports, huge bridges and so on, so that many marine traffic
observations and marine traffic simulations have been carried out.




Underwater Inspection Robot

This is the six-legged articulated underwater inspection robot named
“AQUAROBOT” . The robot controlled by a computer can walk on
uneven sea bed without making water muddy.



Foreword

The Port and Harbour Research Institute iz a national laboratory under the
Ministry of Transport, Japan. It is responsible for solving various engineering
problems related to port and harbour projects so that governmental agencies in
charge of port development can execute the projects smoothly and rationally. Its
research activities also cover the studies on civil engineering facilities of air ports.

Last April we have celebrated the 25th anniversary of our imstitute because the
present organization was established in 1962, though systematic research works on
ports and harbours under the Ministry of Transport began in 1946. As an event
for the celebration, we decided to publish a special edition of the Report of the
Port and Harbour Research Imstitute, which contains full English papers only. These
papers are so selected to introduee the versatility of our activities and engineering
practices in Japan to overseas engineers and scientists. It is also intended to remedy
to a certain extent the information gap between overseas colleagues and us.

The reader will find that our research fields cover physical oceanography, coastal
and ocean engineering, geotechnical engineering, earthquake engineering, materials
engineering, dredging technology and mechanieal engineering, planning and systems
analysis, and structural analysis. Such an expansion of the scope of research fields has
been inevitable, because we are trying to cover every aspect of technical problems
of ports and harbours as an integrated body.

The present volume contains eleven papers representing six research divisions
of the institute. The materials introduced in these papers are not necessarily original
in strict sense, as some parts have been published in Japanese in the Reports or
the Technical Notes of the Port and Harbour Research Institute. Nevertheless they
are all original papers in English and are given the full format accordingly. We
expect that they will be referred to as usual where they deserve so.

It is my sincere wish that this special edition of the Report of the Port and
Harbour Research Institute will bring overseas engineers and scientists more
acquainted with our research activities and enhance the mutual cooperation for
technology development related to ports and harbours.

December 1987
Yoshimi Goda
Director General
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REPORT OF THE PORT AND
HARBOUR RESEARCH INSTITUTE
Vol. 26, No. 6 (Dec. 1987)

2. Estimation of Directionai Spectrum wusing the Bayesian

Approach, and ifs Application to Field Data Analysis#

Noriaki HassIMOTO*
Koji Eopung**
Yutaka KAMEYAMA®®¥

Synopsis

Directional speetra ars the fundamental properties of sea waves, which expressz
the energy distribution as a funetion of wave frequency and the direction of wave
propagation. So far, several methods for estimating directional speetra for various
types of ocean wave measurements have been proposed but no method has yet taken
into consideration the errors emerging from estimating cross-power spectra that forms
the base information for the directional spectral estimation. These errors often lead
to ill-econditioned directional spectra depending on the arrangement and the number
of wave probes.

Therefore, it is of great importance to develop a method which gives an aceurate
estimate of the directional specirum even though the cross-power spectra are con-
taminated with estimation errors.

Initially, the report discusses several methods for estimating directional spectra
from the viewpoint of considering the estimate instability caused by cross-power
speetral estimation errors. Secondly, a new directional speetral estimation method
using the Bayesian approach is proposed. The Bayesian approach was originally in-
troduced by Afkeike in the field of regression analysis problems where the number
of the parameters to be determined was large, when compared with the sample size.

The proposed method is examined for numerical simulation data, and the validity
of the method is discussed. Some examples of the directional spectra estimated
from field observation data attained at an offshore oil rig utilizing 7 wave probes
are also shown in this report.

The major conelusions of the report are:

1) The proposed method ecan be applied to arbitrarily mixed instrument array
measurements.

2} The Bayesian model has 2 higher resolution power than other existing methods
for estimating the directional spectrum.

3) The Bayesian model is better method for estimating directional spectra from the
cross-power spectra contaminated with estimation errors.

4} The Bayesian model iz more adaptable to reformulation of estimation equations
as the study of structures of directional wave spectrum progresses.

# This report is a translated and re-edited version of the report in Vol. 26, No. 2 of
the Rept. of P.H.R.I., under the title “Estimation of directional spectrum from a
Bayesgian Approach’ by N. Hashimoto.

* Senior Research Engineer, Hydraulic Engineering Division.

#%  (Chief, Coastal Observation Laboratory, Hydraulic Engineering Division,
#**%  Member, Coastal Observation Laboratory Hydraulic Engineering Division.
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Estimation of Directional Spectrum using the Bayesian Approach

1. Introduction

Directional speetra are the fundamental properties of ocean waves expressing
the energy distribution of random ocean waves as a function of the wave frequency
and the direction of wave propagation. Many efforts have been made fo estimaie
directional spectra on the bases of point measurements utilizing various wave probes,
and several methods have been propesed to improve the directional resolution of the
estimation.

These methods are based on a mathematical relationship between the directional
spectrum and the cross-power spectra (4.e. the cross-power spectra are egual to the
Fourier Transformation of the directional spectrum with respect to the wave number
vector). The cross-power spectra are computed from time series records of various
wave properties. In practice, wave records are offen contaminated with noises. This
leads to errors in the cross-power spectral estimation. Thus, the estimate of the
divectional spectrum is offen biased by fhe noises and the errors associated with
the observed ecross-power spectra.

However, no current methods take into account the existence of such errors.
The directional spectrum is estimated only to satisfy the above mentioned relationship
with the observed cross-power spectra, and this may be one of the causes of estimates
of the directional spectrum sometimes resulting in poorly conditioned shape, t.e.
negative values or zigzags, for instance. :

The same type of problems are seen in the field of the regression analysis of
sample data to determine a regression model which best approximates the observed
data. In order to overcome these difficulties, Akaike? introduced a Bayesian model
which betier approximates the sample data, and which is compatible with an a priori
condition subsistent in the phenomenon to be analyzed.

The estimation of the directional spectrum ecan be considered as a regression
analysis to find the most suitable model from limited data. Therefore, the Bayesian
approach should be useful to obtain the most reasonable model (direetional spreading
function) which best approximates the sample (cross-power spectrum) and which
also conforms to the subsistent nature of the physical phenomenon, i.e. continuous
and smooth variafion of ifs value. This is accomplished by maximizing the likelihood
of the model with the a priori condition that the directional spreading function
varies smoothly over the wave direction.

In thé practical computation, another parameter which is ecalled a hyperpa-
rameter, is introduced to consider the balance of the two requirements imposed on
the model: to maximize the likelihood of the meodel and to maintain the smoothness
of the model. In order fo select the most suitable value of the hyperparameter for
the given cross-power spectra, the ABICY (Akaike’s Bayesion Information Criterion)
is also introduced as a criterion to determine the most suitable model.

The report initially diseusses how ill-conditioned estimates are obtained when
current methods are employed. Secondly, the idea of the Bayesian approach is
briefly reviewed, and proposed a new method to overcome the shortecomings of the
current methods®.

The proposed methed is examined by numerical simulations, and its application
to a practical directional wave analysis is also presented with the data recently
recorded on an offshore oil rig at a water depth of 150 meters.
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2. Literature Survey for the Estimation of Directional Spectrum

2.1 Fundamental egunation related to directional spectrum®.®

The relationship between the cross-power spectrum for a pair of arbitrary wave
properties and the wave number-frequency spectrum (which is called the directional
spectrum as a function of wave number and freguency hereafter) is infroduced by
Isobe et al.® The relationship shows that the Fourier Transformation of the product
of the transfer funetion of respective wave property and the directional spectrum
given as a function of wave number and frequency is egual to the cross-power
spectrum, and is expressed as the following equation:

Oun(a)= Holh ) H¥Ch, o) exp (—ik(on—m)} SCh o)dlk (1)

where ¢ is the angular frequency, k is the wave number veector, &,.,.(s) is the cross-
power spectrum between the m-th and the n-th wave properties, H,(k, s) is the
transfer function from the water surface elevation to the m-th wave property, 7 is
the imaginary unit, a,, is the location vector of the wave probe for the m-th wave
property, S(k,¢) is the directional speetrum as a function of wave number and
frequency, and the superseript * denotes the conjugate complex.

Since the wave number % is interrelated with the frequeney f by the dispersion
equation (2),

o*=(2rnf)i=gktanh kd (2)
the directional spectrum can be expressed as a funetion of the frequency and the
direction of wave propagation. Thus, Eq. (1) can be rewritien as follows:

@mn(f)—"_"szz Hol f, OO HF(F, 6D [eos {E(@mn €OS 8+ Yma in 6}

—i gin {£(@mx cos 0~ Ymx sin €)1 15CF, 849 (3)
where # is the direction of the wave propagation, Z,s=Cs—%m, Yms=Yn—Ym, and
S(f,8) is ihe directional spectrum.

The directional spectrum S(f, #) is often expressed as a product of the frequency
spectrum and the directional spreading function.

SCAO=S(FGEI (43
where, S{f) is the frequeney spectrum and G{(A|f) is the directional spreading
function. The directional spreading funetion takes non-negative values and satisfies
the following relationship.

2
§. celpan=1 (5)
In the other expression,
Iz
(. SCs0)ds=5C (6)
The transfer function H.(f, §) in Bq.(8) is generally expressed in the form
Hn(f, 83=hal f) cos™§ sinf=g €7
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Table 1 Transfer function from small amplitude wave theory®

s o SYMBOL (k0 « B
ot e : 1 B
Excess pressure b pg%i‘—g;— 0 0
Srtace velockty 2 —ic o | 0
;T:ftjgzla‘:gégration K —a? 0 0
Surface slope (&) Tz ik 1 0
Surface slope () 7y ik 0 1
e | v | cmee |t |0
Water particie cosh kz
velocity (o) Y sinh kd 0 1
o w | ~ivgmar | 0 (O

%: wave number, o: angular frequency, 4: water depth, z: elevation
from the bottom, p: fluid density, g: gravitational acceleration.

where the function h, and the parameter «, and g, in Egq. (7) are the functions
and the values as shown in Table 1%,

Equations (1) and (3) are the fundamental equations for the estimation of the
directional speetrum on the bases of the simultaneous measurements of various wave
properties. If the functions S(k, o) or S(f, ) which satisfy Eq. (1) or Eq. (3)
respectively and which take only non-negative values are obtained, the funetion is
called a directional spectrum.

2.2 Existing methods for the estimation of directional spectrum

When an infinite number of wave properties are measured, {.e. the cross-power
spectra are given for infinite pairs of m and % in Eq. (1) or (3), the directional
spectrum can be uniguely estimated. However, in practice, only a limited number of
wave properties are measured, and the directional spectrum cannot be determined
uniquely. Therefore, several methods have been proposed to choose a single estimate
of the directional spectrum,

(1) Direct Fourier Transformation Method (DFT)

This method is the fundamental approach and which gives the base for other
method presently available. The method was first proposed by Barber® for directional
wave analysis utilizing an array of wave probes.

Rewriting Eq. (1) with the notation of the location vector x in place of xy,—2xns
and with the operation of the Fourier Inverse Transformation of Eq. (1), we obiain
the following relationship:

SCh, ) =-pyr)_ 9, o) exp (kD (8)
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In practice, the cross-power spectra are obtained only for a limited number of
x, and the integration of Eqg. (8) cannot be performed. Barber assumed that the
values of the cross-power spectra be assigned zero at any distance x other than those
realized by the measurement, and he proposed fo use the following summation in
place of Eq. (8).

S, )= 0n(0) exp (il{za—zr)} (9

where « is a proportionality constant so that the estimate of the directional speetrum
satisfies Eq. (6). :

Equation (9) shows the estimate of the directional spectrum is expressed in a
quadratic form and is rewritten in the form of a product of matrices as the following
equation,

Sk, D =a Dk, B D, . (10)

where D(k, o) ={exp(ikx,),....... , €xp{ikay) ¥, the superseript ¢ denotes the trans-
pose of a matrix, @(s) is a M X M square matrix consisting of mn element being
Oma(s), and is hermitian®, Equation (10) shows that the estimate of the directional
spectrum S(k, ¢) is a real function, because it i expressed in a hermitian form of
hermitian matrix.

When the hermitian matrix @ (¢) is positive definite, the estimate of the direc-
tional spectrum S(E, o) is always greater than zero, and when it is positive semi-
definite, S(k, o) is greater than or equal to zero,

The Direct Fourier Transformation Method is generally more stable than other
methods to obtain the estimates of the directional spectrum, but the directional
resolution is not high. In addition, the directional resolution and the stability of
the estimates depends on the layout of the probe array. The optimum layout of
the probe array is disecussed by Goda®.

Since this method computes the Fourier Inverse Transformation directly, and
does mnot take into account the errors contained i the cross-power spectra, the
stability and the reliability of the estimates depends on the accuracy of the crosg-
power spectra. If the probe array has an improper layout, errors contained in the
cross-power spectra may result in an erroneous estimate of the directional spectrum.

A typical example of an improper array is illustrated in Fig. 1, where the sea
state is supposed to be homogeneous over the sea area where the cross-power spectrum
between the wave properties at point ¢ and at point § should coincide with that
between point % and point 1. In praetice, however, it i3 expected that the cross-power
spectra measured from these two different pairs of wave probes give different values
from each other because of the errors occurred in the measurement and in the
computation of the cross-power spectra. Thus, the theoretical relationship between
the frue cross-power spectra and the true directional spectrum does not stand any
more between the estimated cross-power spectra and the trne directional spectrum.
(2) Extended Maximum ILikelihood Method (EMLID)

The Extended Maximum Likelihood Method was proposed by Isobe, et al.®, and
the method is an expansion of the Maximum Likelihood Method developed by Capon®
so that any combination of wave probes can be utilized for directional wave analysis,

& If a matrix is equal to its associate (or its transposed conjugate), i.e. A=d4% the matrix
is hermitian,
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(o]
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o]
o

o o o o o

Fig. 1 Example of an improper
layout of a wave probe
array

The idea of the method is as follows.
Assuming the directional spectrum can be expressed by Eg. (11) as a linear
superposition of the cross-power spectra on the analogy of Eq. (8).

Sk, 7)=2 1 lamn (R Pma0) an
Substituting the above equation into Egq. (1), we obtain the fellowing equations:

8k 2= SCK, oy, Kait (12

wlk, kf)=¢§g§ﬂmn(kjﬂm(kl o)L, 6) exp {— il (@a—zn)} a3

Equations (12) and (13) show that the estimate of the directional spectrum is
a convolution of the true directional spectrum and a window funetion w(k, k).
Therefore, the closer the window function w(k, k") to the delta function, the closer
the estimate reaches the irue directicnal spectrum. After some manipulation of
above mentioned window funection, Isobe proposed the following formula to estimate
the directional spectrum.

§<k, 0')=I€/ [,?%:@mnnlcﬂ')ﬂm*(ks O')Hn(k: 0') exp ﬁk(mﬂ— Im)}] (14)

where @,,.,"1(c) is the mn element of the inverse matrix @{«) of @(s), and « is 2
proportionality constant which is determined so that the estimate of the directional
function S(k, o) satisfies Eg. (6).

The EMLM is said to have a high directional resolution and versatility, and has
been widely employed in the directional wave analysis.

The above Eq. (14) can be rewritten in 2 matrix expression as follows.

Sk, )= B T3 D o) (15)

where, D(k, o) ={H (E, 0)exp(ikax,)},..., Hy(k o)exp(ikx,)}’, and @73(g) is the
inverse matrix of @ (s). :

# 1f A is a hermitian matrix, the expression X* 4X is known as a hermitian form.
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Az seen in Eq. (15), the estimate of the directional spectrum is given by a
function having a denominator given in a hermitian form#. Therefore, the estimate
of the directional speetrum S(k, o) is real, since the matrix @ 1(¢) is hermitian.
The estimate of S(k, ¢) takes non-negative and finite values only if the matrix
@7 (¢) is positive definite. In case the matrix &(¢) is not positive definite, the
directional spectrum S(k, #) may result in negative or infinite values.

In addition, since the directional spectrum given by the EMLM is expressed as
a reciprocal of the function expressed in a quadratie form, the spectral peak appears
at the direction where the denominator takes a minimum value which may be very
close to zero, while the denominator takes very large value for the direction where
the spectral density is zero. Thus the peak value of the directional spectrum is very
vulnerable to the truncation error in the computation, and the values of the diree-
tional spreading function are sometimes overestimated for the directions where the
spectral density is close to zero. This might often lead to an ill-conditioned shape
for the resulting estimate of the directional spectrum,

Furthermore, when the cross-power spectra are contaminated with errors, matrix
(¢} is not always positive definite, Jefferies® proposed to modify the matrix by
adding a certain constant value to the elements of it. However, this technique is
just for the purpose of convenience, and it does not give a solution to the essential
problem,

It is seen that one of the causes why those problems mentioned above happen
is the utilization of Rg. (11) in place of Eqg.(8). The relationship between the
cross-power spectra and the directional spectrum expressed by Eq. (8), i.e. the
Fourier Inverse Transformation of the cross-power spectra is equal to the directional
spectrum, is mathematically valid. However, this does not guarantee the validity of
Eq. (11), since the summation is truncated for finite numbers of m and #. Ii is some-
times true that simple mathematical manipulation misleads the proper recognition
of complicated actual physical phenomena.

As described for the DFT, the EMLM neither takes into account the errors
associated with the cross-power spectra, and may therefore yield erroneous estimates
of the directional spectrum when the layout of the probe array is not proper.

(3) The Maximum Entropy Principle Method (MEP)

This method was proposed by the authors®, and ig a powerful method for
estimating the directional spectrum for 2 point measurement of three elements of
the wave properties, such as a diseus buoy or a two axis directional current meter
with a wave gauge. The following is the brief explanation of the method.

The directional spreading function G(8{f) is defined within the directional range
[0,2z], and does not take negative values. It also satisfies Eq. (5), i.e. the definite
integral of G(8|f) over the full directional range from 0 to 2z is equal to 1.0. These
restrictions imposed on the directional spreading function ave the same as those
imposed on probability density functions which are often utilized to describe the
statistieal characteristics of random variables. Thus, it is expected that the direc-
tional spreading functions ean be estimated through the same procedure as when
the probability density function is determined.

One of the popular approaches is to choose the probability density function
which maximizes the entropy. The information entropy which is called the Shannon’s
entropy iz defined by Eq. (16).
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mmS:" CCa1 In GOl Hdo (16

The estimate of the directional spreading function G(|f) which maximizes the
entropy H under the restriction condition given by Eq. (8) is called the maximum
entropy estimate. In consequence, the estimate for the case of three-eclement measure-
ments is given hy Eg. (17)%.

GCO1 ) =exp{—2—2 cos 6~ 2z sin §— s cos 20— 2 sin 26} an

where the coefficients 2, ...., 14 are the Lagrange’s multipliers which are determined
by nonlinear equations so that the estimate satisfies the restrietion conditions Eq. (3).

As mentioned later, both of the MEP and the EMLM approximate the direc-
tional spreading function by certain models. The former employs an exponential
function of which power is expressed in series, while the later utilizes a reciprocal
of a function expressed in a quadratic form. The advantage of the former over the
latier is that the model utilized does not take negative values, which well refleet the
nature of the directional spreading function.

Tor the cases of three-clement measurements, the nonlinear equations can be
solved relatively easily by numerical iteration. On the other hand, when the wave
properties more than 4 elements (which is called multi-clement measurement here-
after) are employed in the directional wave analysis, the iteration failed to yield the
values of unknown Lagrange’s multipliers.

By improving the scheme of the iteration computation to solve nonlinear equa-
tions, it may be expected that the MEP successfully yields the values of the unknown
coefficients even for the latter case. The authors suspect that the failure of the
method results not from merely the scheme of the computation but from the inherent
demerits of the basic principle of the method.

The formulation of the MEP method is based on the hypothesis that the maximum
eniropy estimate existe and that it exactly satisfies the restriction condition. There-
fore, if the mathematical relationship between the directional spectrum and the
cross-power spectra is destroyed in the multi-element measurement by errors con-
tained in the estimates of the cross-power speetra, the method fails fo find the
maximum entropy estimate. Hence, depending on the layout of the probe array and
the errors contained in the cross-power spectra, the solution of the maximum entropy
estimate may not exist. TUnless the contradiction between the cross-power spectra
is removed, the MEP can not be employed to analyze multi-element measurement.
(4) Discussion on entropy

ALaiket® 1) pointed out that there had been the misunderstanding of the entropy
defined by Eq. (18), whech is known as Shanmnon’s entropy, and gave an explanation
to the esgsential form of the eniropy proposed by Boltzmann. He formulated the
Entropy B(p:q) as Eq. (18),

B(p: =~ Sp(:t:) In p(adde—+ S p(x) In gladdw (18)

According to Akailke, the function p(x) in the right hand side of Eq. (18)
corresponds to the true probability density function of a phenomenon (which is
called the true distribution hereafter), and the function g(x) corresponds to the
probability density function which is introduced to describe the statistical charac-
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teristics of the phenomenon (which iz ecalled the model distribution hereafter),
Thus, Boltzmann’s entropy B(p:q) interpreted as the logarithm of the probability
that the true distribution p(wx) is obtained from the model distribution ¢(z) when
the true distribution belongs to the family of the model distribution ¢(x). Hence,
he commented that B(p:g) is quite a reasonable criterion to indicate the degree
of the approximation of the true distribution p(x) by the model distribution ¢(z).
Boltzmenn’s entropy has such characteristies as given by Eq. (19).

(i} B(p:g<0: plad+q(ez) } (19)

@) B(p:@=0: pled=g(x)
Equation (19) shows that the Bollzmann’s entropy B(p:q) takes maximum value 0
when the model distribution g(a) is identical to the true distribution p(x).

When a uniform probability density function iz employed as the model dis-
tribution g(@) in Eq. (18), the Boltzmann’s entropy is formally identical to the
Shannon’s entropy, which is utilized by the MEP as a criterion to indicate the
degree of fitness. Therefore, it can be-said that the MEP chooses a directional
spreading funetion which is the closest to the umiform distribution among various
candidates for the function. This seems to be another advantage of the MEP, be-
cause the uniform distribution is the simplest energy distribution and the energy
distribution observed in many natural phenomena is expected to be a simple one.
Because of the tendency of the MEP to choose the simplest distribution, it estimates
the directional spreading function on the hasis of only the essential information
provided by the eross-power spectra without being affected by other inesgsential ones,

However, from the viewpoint of the entropy, the MEP does not manipulate the
model distribution, but manipulate the true distribution in order that the true dis-
tribution becomes closer to the uniform distribution. This approach is reverse way
of the essential approach of the maximum entropy principle.

(B) TUnderlying problems of the existing estimation methods

From the review of the three kinds of existing methods for the estimation of
the directional spectrum, especially from the viewpoint of the problems inherent to
each method, it is found that all the three methods formulate their own models of
approximating functions which arve characterized by some unknown parameters, and
that they set up the same number of eguations as the number of the unknown
parameters of their respective models. Though the principles and the methods of
deriving the models are different, all of these methods try to fit their respective
parametric models to the relation with the given cross-power spectra. The advan-
tage and the disadvantage of these methods therefore results from the characteristics
of the models utilized by each method.

Directional wave analysis has the problem of estimating the various characteristics
of the directional wave from only a limited amount of the information and there
are many unknown elements which cannot determined by the given information.
The presently available methods make much use of the mathematical approach and
successfully estimate the directional spectrum with the help of the models characterized
by as many parameters as can be determined by the information.

However, as far as we rely on the formal mathematieal approach, we may end
up with results far from the real phenomena. In fact, there are hidden pitfalis in
the existing methods, as iHustrated in the earlier part of this section. It should be

— (8 —
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noted that the realized wave data are samples of the population, and that the all
the existing methods try to estimate the directional spectrum on the basis of only
realized data.

Thus, it is inevitable for existing metheds to utilize formal mathematical
manipulaticn and that such models be characterized by few parameters. These
mathematical models are able to approximate the real directional spectrum only if
the real spectrum is suitable to fit the model.

Therefore, for the discussion on the real directional spectrum, considering the
inherent nature of the phenomenon of interest, we have to set up flexible models
that have a higher degree of freedom and that have the underlying nature of ocean
random waves inherent.

3. Estimation of Directional Spectrum from
the Bayesian Approach

2.1 Basic principle of the Bayesian approach?1}.1

In this section, the prineiple of the Bayesian approach in the field of statisties,
is reviewed briefly.

One of the basie theorems related io probability is Bayes' theorem, which ex-
presses the relationship between the jeint probability density function and the
conditional probability density funetion.

K, )=l ywply)=py 2Dz 20)

Equation (20) is rewritten in the following form.

_ Kl "
Pyl 95)‘“——15(—5—)‘“— (¢1))]

The above equation is a useful relationship for estimating the random variable
o on the bases of given sample data . If « and ¥ are regarded as the sample data
and the parameter of the conditional probability density function p(x|y) respec-
tively, p(x |¥) is called the model distribution, and p(y) and p(y | %) are called the
prior distribution and the posterior distribution respectively. The prior distribution
p{y) reflects the statistical nature of a phenomenon which we assume a priori and
without the information given by the data, and the posterior distribution p(y|=x)
reflects both of the a priori eondition p(y) and the statistical characteristics of the
model distribution (e | y¥)™®.

When the sample data & are known and the model distribution p(x}y) iz con-
sidered as a function of the parameter y, »(x|¥)} is called the likelihood function
L(y | z) expressing the likelihood of y. Equation (21) implies the following relation-
ship with respect to y for the given realized sample data .

PCylmd o Ly lawdple) &)}
ie.,

(Posterior distribution) o« (likelihood) X (Prior distribution) 23

This relationship gives the essential relation which iz the base of the Bayesian
approach in the estimation of the parameter of the model distribution.
Tor the practical application of Eq. (22) to the estimation of the paramefer ¥

— G0 —
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under the given model distribution p(x |y}, it is necessary to give the prior dis-
tribution p(y). Sinee the prior distribution is not given uniquely in general, the
Bayesian approach had not been employed in the statistical analysis for many years.

Incidentally, the maximum likelihood method, which iz commonly employed at
present, iz the method on the basiz of the likelihood function only with the as-
sumption that the prior distribution to be uniform distribution i.e. p(y)=1/I in
Eq. (22)11),

3.2 Bayesian approach for regression analysist4)-19

The Bayesian approach is originally introduced by Akaike® as a tool to deal
with a regression analysis problem where the number of the parameters to be
estimated is large compared with the sample size. The following is the brief review
of the Bayesian approach to estimate regression coefficients given by Ishiguro end
Sakamotots),

Assume that the variable ¥ is expressed by a linear regression of a vector of
independent variable x as given by Eq. (24).

y=z'ate 20

where & is the vector of unknown coefficients and ¢ is a random variable of which
occurrence follows the normal distribution having a mean 0 and a variance o%.

For a given set of sample data (v, x:), (¢=1,..... , 1), the maximum likelihood
estimate is the one which minimize the value of Eq. (25).

Ps

P l—zifa|i=|y— Xal® (25)

i

where y=(’£f1, ----- syn.)t, Xz(xln ----- sx'n)t-

When the regression model is chosen from a family which are characterized by
a relatively low order of unknown coefficient vector, 7.e. not greater than 2v/n, a
suitable model can be selected with the use of the MAICE (Minimum AIC Estima-
tion) methodi® on the basis of the AIC (Akaike’s Information Criterion)2o,

However, when the number of data n is less than the order of unknown coefficient
vector @, the model becomes unstable or the coefficients sometimes cannot be deter-
mined by Eq. (25).

For this case, taking info account the balance of the suitability of the model
and the smoothness of the model, and assuming that ¢ is close to known value
or, for a certain matrix D, | D (a—ap)|? i3 small enough, the estimate of unknown
coefficients are determined as the wvector which minimizes Eq. (26).

| — X |2+ | Dla—aqg) |? (26

The estimate which minimizes Eq. (26) varies depending on the values of the
parameter %, and thus, how to give the value % ig the next problem.

Akaike solved this problem by considering that to minimize BEq. (26) is to
maximize BEq. (27),

exp{—z—];g—ly—Xa["’}exp {—zi:g-fD(a—an)I”} @n

The first term of Eq. (27) is proportional to the likelihood L(e, ¢°ly) of @ and o2
for the given data set (¥ ), (i=1,..... ,n}, and the second term is the prior
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distribution p(a|u?, o) of . Therefore, the posterior distribution of & 18 propor-
tional to the product of the likelihood of the model and the prior distribution (see
Eq. (22)), and hence the estimate given as the vector minimizing Eg. (26) should
be the mode of the posterior distribution. In addition, %* in Bq. (27) is a sort of
the weighting constant (which is called the Hyperparameter) characterizing a prior
distribution of @. So, the choice of  is interpreted as that of a parameter of
prior distribution of «. Form these eonsiderations, Akaike proposed the use of the
marginal likelihood given by

SL(a, a?tydple|ud, o®)de (@)

as a criterion for the choice of »° and o2 Those values are to be chosen so that
Eq. (28) is maximized. Considering the relation to the statistic AIC, Akaike
defined the statistic ABIC (Akaike’s Bayesian Information Criterion) by

ABIC=—2 InSL(a, o2l ydp(alud, o¥)de (29)
The value of 2 and o? is to be chosen so that it minimizes ABIC.

3.3 TFormulation of the directional spectral estimation from the Bayesian Appreach

To simplify the nomenclature of the terms in the equations, Eq. (3) is rewritten
in the following form using the upper triangular components of the hermitian
matrix @(s).

s =3 HCAOGGI A8 =1, N (30
where,
N=Mx(M+1)/2; M:Number of the wave probes 30
H{ F, 0= f, 0) Hu( f; 6) Teos (@ mn €08 8+ Y sin )
i gin [5Cmn €08 O+ Ymn Sin O} 1/ &/ Brnl F I Prn ) (32)
3¢ = Prnl £/ LSV G P £} (33)
G| =81 8/8(f) (34

The directional spreading function takes values greater than or equal to zero,
but in this section, the function is treated as a function which always takes positive
values only.

Firstly, it is sssumed that the directional spreading funetion is expressed as
a piecewise-constant function over the directional range from 0 to 2z (Kd9=27).
This assumption is commonly employed in the numerical computation of random
WAVES.

Since G(8if)>0, and let

In GOt =), (k=1 KD (35)

the directional spreading function is approximated by the following equation,
X
GCoL )= exp Ll NITO) (36)
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where,

1 (e—1)A0<58<kde
Ikca>={ a7
0 : otherwise, (=1, KD

Substituting Eq. (86) into Eq. (30), the following equation is obtained.

2:
(1]

¢l f)= g}lexp {2} S " Hi( £ OLL8Xds (38

When the value K is large enough, the integral of the right hand side of Egq. (38) is

Turther approximated by Eq. (39).
2% kdp
§, BAOLDD=" B OIS HC S, 00 d0=aul 1) 39

For the convenience of the expression of the eguations, the complex numbers ¢,
and e, are written in the following forms,

d=Real{g:( )}
gw+e=Imag {¢:( O}
m,k=ReaI {m,x(f)}
an+ue=Imag {es,:( )}
so that ¢; and ayp (i=1,..... , 2N) are real numbers. In Eq. (40), though the left

hand sides are the functions of the frequency #, f is omitted to simplify the expression.
Eqguation (38) is then expressed as Eq. (41).

4m

o= gm,kexpcma (=1, e, 2N (41)

When the relation (Eq. (41)) is applied to the observed data, the error contained in
the data must be taken info account and so Eq. (41) is modified to BEq. (42) in
consideration of the existence of the errors.

K
¢4=k_§ o, €Xp (2p) o (=1, L2ND (42)

where &; (1=1,..... , 2N) are independeni from each other, and the probability of
their occurrence is expressed by the normal distribution having the mean 0 and
the variance o2

For the given ¢; (i=1,..... , 2N}, the likelihood function of wuy; (=1, ..... » K)
and o¢*® is given by Eq. (43).

L(ﬁh, """ » Tx 0‘2>=‘.—(—2_?—r‘];2—)—f exp [_%ZM g {gﬁ"— élai’k €Xp (mk)}z] (43)

In the derivation of the equations mentioned above, the directional spreading
funetion G(O0|f} is expressed by a piecewise constant function. However, so far,
the correlation between the wave energy falling on each segment of ¢ has not yet
taken into acecount. Since the directional wave analysis is based on the linear wave
theory, it can be assumed that the energy falls on each segment of the wave direction
is independent from each other, but it is not real to assume that the energy distribution
over the wave directions is not continuous. In general, the directional spreading
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function ean be supposed to be a continuous and smooth funection.

Therefore, the additional condition that the variation of a; (k=1,..... , K)
should be locally well-approximated by a linear function, which is the mathematical
expression of the continuity and the smoothness of the dirvectional spreading func-
tion. Introducing this condition, the second derivative of In G(0 | f) 4.e. the differences
of the second order of {a} is characterized by the following eguation,

:E,e—'zﬂ}k—z“}“ﬂ)k—z$0 . (44)
This leads to the condition that

K
}:E_l {r—20-1+ Tr—2}? (By=2xr, B-1=Tx-1) (45

becomes smaller as the estimate of the directional spreading function G(¢|f) be-
comes smoother.
Therefore, it is supposed that the estimate of the directional spreading function
is the one which maximizes the likelihood (®q. (423)) and which minimizes Eq. (45)
at the same time. The procedure to find the estimate is formulated as follows.
The most suitable estimate of the directional spreading fumetion is given as a
set of m;, which maximizes Eqg. (46) for a given hyperparamefer u®

u &
E (:’83“—‘2&23-14" :Ux-.—z)z (46)

In L, oy @3 0D~ 59 24

The maximization of Eg. (46) is achieved by maximizing the exponential func-
tion having the power expressed by Eq. (46). This leads to the maximization of
Eq. (47).

2 X
Llas, s mx; 0 exp|—fr 21 Y 4
Incidentally, Eq. (47) corresponds o the right hand side of Eq. (22), provided
that the prior distribution of a={ay,.....,2x) is given by Eq. (48).
plale? 02)=( B )xe {——ﬁi—ﬁ(' — 2wyt )2} (48)
s 1/27:0. Xp Dot £ g &lp—17T Bimz

For a given set of observed data, the posterior distribution pp.si(x|#? o) is
proportional to the likelihood L(x, 62) and the prior distribution p(x | w3 ¢2), that is

Prost{x |22, 0%) o< Lz, e |16, o) 49

Thug, the estimate of x obtained by maximizing Eq. (49) is regarded as the mode
of the posterior distribution of py.e (| 22 6%).

If the value of = is given, the value of x which maximizes Eq. (49) are deter-
mined by minimizing Eq. (50), regardless of the values of o2

2y

TR OO T
P Gi— AR (ﬂ:x)} +o {g(ﬂak_Zfbk—l'{‘fbk—z) } (500

The most suitable values of the hyperparameter %® and the variance o are
determined so that the ABIC is minimum.

ABIC=—2In|L(z, oDp(a e, il (51
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3.4 Numerical computation of the directional spectrum

In order to estimate the directional spectrum by means of the Bayesian approach,
the minimization of BEq. (50) and the infegration and the minimization of Eg. (51)
must be performed. The following is the procedure of the computation utilized by
Ishiguro 1% and Sakamoto'®.

With the use of matrix expression, Eq. (50) is written in the form of Ea. (52),

Jad=|AF(z)—B|*+u?| Dz |? (52)
where,
@y, 1O, K
a=| i (53)
- a.fzw,;, "-'-, 2N, K™
B=(gy, oo 2 pan )t (54)
F(z)={exp (z1), oo+ »exp (zx)}’ (55)
- 1 0 0 ...... 0 1 — 2 -
—92 1 g rerees 0 1
1 -2 1 s 0 0
I R T (56)

-0 0 Oeeeens 1 —2 'i._

The first term of the right hand side of Eq. (52) is nonlinear with respect to x,
and it is linearized by utilizing the Taylor expansion of F(x) about x, which is a
value close to the estimate of =z,

Fla)= F(zo)+ Elz)(z—x0) (57
where,
~exp(@1) 0 e 0 -
0 explaa)eees 0
E(z)=| ! (58)
-0 (:)"----"----'-:exp(::cx)—

Substituting Eq. (87) into Eq. (52), we obtain the following equation after some
rearrangement of the equation,

J(2)=t| Az— B|?4-4® | Dz |? (59
where,
A= AE(zy) (60D
— —
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B=B— AF(zo)+ AE(2:)z0 (81}

Thus, for a certain initial value x, the values of x, are compufed by means of
the least square method utilizing Eq. (69) through Eg. (61). Substitufing these x,
for the initial value z, in Eg. (68) to Eq. (61), and repeating the same process, we
obtain the another set of x,. Iterating these process until the values of x converges to
&, the estimate of x is obtained for the given value of %2 In the praectical computation
of the least square method, the Householder method'®, is employed. The procedure
is as follows.

Equation (59) is rewritfen as

f(m)=|(fb)x"(i )r (62)

Therefore, letting

jf—K—|—1—|
i B |eN
P — — = (63)
uD | O K
)

the Houscholder transformation (the transformation of an arbitrary matrix to
upper triangular matrix by repeating the mirror image transformation) can be
performed. The matrix computation of mirror image transformation is expressed
by the following eguations.

U=r-2wuw' (64)
=11 @

where I denotes the unit matrix, e is an arbitrary vector, and b is the vector obtained
by the mirror image transformation of vector a.
If the matrix

~ Syt Suga -

Uz= .SK+1,K+1 (66)
- O !

is obtained by the Householder transformation, then Eq. (62) is rewritten as

- " Si,pereee S,z o3 S,z 4+ z
A B | AR T T
oo )

S],l sevens Sl_,x 2 Sl,.!t-*—l
:( 0 '-'-. : )( : )_< : ) +Sx+,e0 (67D
Sx,x!/ Vg Sk, x+1

Since the second ferm of the right hand side of Eq. (67) is independent from x, the




Noriaki HasHIMO0TO - Koji KOBUNE » Yultaka KaMEYAMA

least square estimate of x which minimizes Eq. (59) or (62) is obtained by solving

Eq. (68).
Sl, """ S1 1,8 | SI,I_{+1
Sx,x Yz Sx,xﬂ

The variance of the residual is calculated by

S22/ (CN) G

Sinece the estimates of x are compuied through the above mentioned procedure,
the next step is to caleulate the ARIC (Eg. (51)) and the Variance % in Eg. (43).
The method of computation is as follows.

During the process of the computation of x, the coefficient matrix 4 and B are
renewed at each iteration. Let 4 and B are the coefficient matrix which are computed
for the least square estimate . Then, the posterior distribution is proportional fo
Eg. (70).

L(;p, gz)p(£|i42, )
':(ﬁgg_)ﬁexp{ = | Ax—B|? }('\/Eﬁ- )I‘ exp{

=l }

{

2( 2;;2 )N(J%a )K EXP{_z_if (sz k }
(70>
Therefore, the integration of Eg. (70) is given as
{ "L DpCalet, oDaz
- ~ 2
~(52r) (i) e | (p) s~ (6 )1}
Xglexp{ (sz)(x &)L }da: (71

From the integration formula, the second term of the right hand side of Tq. (71) is
written in the form of Eg. (72).

(241) )<$ *e)‘ }dx (W 2z {det CALA+2DP D} V2 (72)

« 1
S_m €Xp {_W
Thus, Eq. (71) is rewritten as follows.

S:L(‘""” aDplzld?, vPddz

= (?102——)3?14" exp[ -

and the ABIC is given by Eq. (74),

ziﬂ.ﬁlz}]{det(ﬁ‘ﬁ+u21)ﬂp)}—1/z 73)
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ABIC=-2 InSg_o Lie, aDp(z|d?, utddz

=2N1n Cae®) —KlIn (u2)+w§2—{ | A2— B2+ | D2|?) +1n {det(A A+ 42D D)}
(74>

The estimate of the variance which minimizes the ABIC is obtained by solving
Eq. (75),

Mm—)=%}v_—%{lﬁ£—ﬁiz+u2ll)ﬁlz}"—"0 (75)

The solution of Egq. (75) is
"2=_1__ A6 P2 2 "] 2 -
F =57 {|Ag— B[22 D]?) (76)
Finally the ARIC is calculated by the following equation.

ABIC=2NIn (2z)+2N+2Nn (60— K In () +In{det (4 A+2D'D)} (77

Incidentally, the variance given by Eq. (78) is identical to the variance of the
residual given by Eg. (69).

In the computation of the ABIC, it is necessary to perform the caleulation of
the determinant of the matrix in the last term of Xq. (77). A direct caleulation of
determinant by means of usual methods such as the Gouss’ sweeping out method
often fails to yield the solution, because of the under flow of the digital computation.
Hence, the computation herein is performed by wutilizing the following relationship
(Kg. (78))1%9 between the determinant in Egq. (77) and the coefficient matrix obiained
in the process of the computation of the estimate 2.

~ n Ee
det (AfA+eut D D)= 1:].31 Szi,i {78

where, S;,; denotes the diagonal element of the coefficient matrix (Eq. (66)). Since
the direct computation of Eq. (78) alse failed in practice, the computation was
achieved by handling the legarithm of Eg. (78), f.c

- om K
In{det (A A+t D' D)} = ﬁiln Sty (79

The computation of the estimates of the direciional spreading function which
is expressed as a piecewise-constant function and the ABIC from the estimates are
performed from the given hyperparameter #2 The hyperparamcter which minimizes
the ABIC is found by the method of trial and errcr. The value of the hyperpa-
rameter is given by utilizing Eqg. (80) with the value of m changing in a seguential
manner.

u=gh"  (m=1,2, h) (80

The whole procedure mentioned in this section is summarized as follows.

1) For a value of the hyperparameier u given hy Eq. (80), compute the estimate of
3 with proper initial value x,.

2y Compute the ABIC by Bq. (77) for the estimate of & obtained above.

—_ T
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8) Changing the value of u, repeat the process of 1) and 2).

4y From various estimates of % obtained through the process 1) through 3), choose
the values %2 and 8 as well as the estimate £ which yields the minimum ABIC
as the final estimate of x as the estimate of the directional spreading function.

4. Examination of the estimation method by numerical simulation

4,1 Procedure of numerical simulation
The directional spectrum. is expressed as a product of the directional spreading
funection and the frequency spectrum and is eomputed frequency by frequency. Hence,
in this section, a directional spreading function for an arbitrarily chosen frequency
is examined. The practical procedure of the numerical simulation is as follows.
1) The directional spreading functions to be employed in the examination are
Mitsuyasu type ones?®.2t) which are given by Eq. (81).

6(8) =S s cos?s: (L) @D

where a; is the proportionality coefficient and is given so that Eq. (81) satisfies

Eq. (5). For the simulation of a uni-directional sea, the directional spreading

funection is given by Bg. (81) with ¢=1 only. On the other hand, for a bi-direetional

sea, two different wave groups having different values of @y Si 6: (i=1,2) are
superimposed.

2) The cross-power spectra are computed for the directional spreading function
given by process 1) ufilizing BEq. (3). When the estimation errors of the cross-
power spectra are taken into account, normal random values having the mean 0
and the standard deviation op (for the real pari of the cross-power spectra) or
g; (for the imaginary part of the cross-power spectra) added to fthe cross-power
spectra caleulated above. The values of the standard deviation ¢, and o; are
given by multiplying the absolute value of the real the imaginary part of the
cross-power spectrum by some factors (0.0025, 0.01,..... , 0.16).

3) On the basis of the cross-power spectra obtained above, the directional spreading
function is estimated by means of the methods mentioned in the previous section.
The estimate of the directional spreading function is compared with the input
directional spreading function, i.e. the one given by Eg.(81). In addition, the
directional spreading functions are also estimated by the EMLM for the com-
parison of those given by the Bayesian approach.

The process of the analysis of the directional spectrum congists of two steps.
The first step is to estimate the eross-power spectra for the given time series records
of wave properties. The second step is to compute the estimate of the directional
gpreading function from these estimated cross-power spectra. Thus, there are two
possible stages where errors occur. This section discusses how the errors in the
second stage differ for different estimation metheds. This is done for the convenience
of comparison between the input and the output directional spreading function, and
the numerieal simulation in this section is performed for the second step and the
cross-power speetra are caleulated direct numerical integration of Eq. (1), and
therefore the ecross-power spectra to be utilized herein as the input data do not
contain any errors unless they are intentionally added.
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42 Conditions emploved in the simulation and the directional spectrum

Seven types of the arrays of wave probes shown in Fig. 2 are examined. The
wave conditions », . and x, in the figure denote the wave probes which detect
water surface elevation, the slope of the water surface in the direction x and the
water surface slope in the direction g, respectively.

The pavameter § in Table 2 is the power of the directional function (see
Eq. (81)), and S=10 represents the wind generated waves, while §=100 represents
Jong traveled swell. The parameter 4¢ denotes the angle between the mean wave
directions of the two differeni wave groups.

In the computation of the estimates of the directional spreading funetion by
the Bayesian approach, the initial values of x, (Jogarithm of the directional spreading
function) are given uniformly (a.=In (1/27)). The iteration of Eq. (59) in the
estimation of the directional spreading funection is terminated when the standard
deviation of the difference between the values of x, of n-th step and that of the
previous step is smaller than or equal to 1073, i.e.

o 1072 (82>

Finally, the values x. obtained in n-th step are considered as the estimate of x.
When the iteration does not converge within the condition Eq. (82), the following
treatment were done.
1) When the standard deviation of the difference between x,, and x, once shows its
minimum value and then fluctuates, the iteration is continued for a few more

TYPE-1 TYPE~2 TYPE-3

)

X

(nyag o ny} ‘ tni

x
T o
® t }
LILEN
- X (nynz.my) o

TYPE-4 TYPE-5 TYPE-6 TYPE~T

(fynx,ny)

Fig. 2 Types of wave probe array examined by numerial simulation
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steps. The values of x, which give minimum o., among the whole steps are
considered as the estimates.

2) When the standard deviation ..., for (n+1)th step iteration is ten times greater
than that of the n-th step ¢c,, the iteration is terminated immediately and the
set of values of x which yield a minimum among the previous steps are chosen
as the estimates.

3) When the iteration does not make a standard deviation smaller than the con-
version condition even after 100 steps, the computation is terminated, and the
values x, which give the smallest 5., are printed out for reference.

The values of the hyperparameter % are given by Eq. (80), and the coefficients a,

b, and m in Eq. (80) are given the following values on the bases of a trial com-
putation.

@=0.2, 5=0.5 m=1,-,20, (83)
(for the cases that no errors are added to Cross-power spectra)

a=51.2, 5=0.5, m=1, -, 20. (8

{for the cases that errors are added to the cross-power spectra)

Though the value of m is changed from 1 6 20, as shown in the above equations,
the computation is terminated at any value of » if the ABIC shows minimum value
and then increases for succeeding values of .

4.3 Examination of the estimation methods

(1) Effect of types of probe array

The results of the simulations are shown in Fig, 3 for the 7 types of arrays
of wave probes (see Fig. 2). The same wave condition is employed for all the arrays:
wind waves characterized by S=10 coming in the direction 3,=0° and a swell
characterized by S=100 coming in the direction 8,=100° coexist, and the ratio of
the peak spectral density of the two wave groups is /. =0.5,

In addition, the distance between the wave probes D is given as D/L=0.2 (L is
the wave length of the component wave to be examined} for all the arrays. The
golid lines denoted by TRUR in Fig. 3 show the input directional spreading funetion,
and the lines noted by BDM shows the estimate of the directional spreading funetion
given by the Bayesian directional spectrum estimation method (which is called BDM
hereafter}. The ordinate of Fig. 3 is normalized utilizing the peak value of ihe
input directional spreading funetion for respective cases as reference value.

Comparing the estimates of the directional spreading functions result from
Type-1 through Type-3 in Fig. 8, as the number of wave probes increases, the
direetional resolution shown by the BDM and the EMLM is improved. In paticular,
the estimates given by BDM for Type-2 and Type-3 are almost the same as the
input directional spreading fumetion. The estimates given by the EMLM are im-
proved for Type-3 in eomparison with those for Type-2 and Type-1. Though, for
Type-1 layout, the estimate given by the EMLM seems to be closer o the frue
directional spreading function than that given by BDM, for Type-2 layout, the
EMLM yields an erroneous peak inbetween the fwo peaks exhibited by the true
directional spreading function. The estimate given by EMLM is considerably improved
for Type-8 in comparison with the estimate for Type-2, but the resolution is inferior
to that of the BDM.
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For the wave prove arrays consisting more than or equal to 4 probes, it is
seen that the BDM shows a better directional resolution than that of the EMILIM.

From the comparison of the results for Type-4 through Type-7 in PFig. 8, it is
said that as the more wave probes are employed, the higher directional resolution
is exhibited by both of the BDM and the EMLM. Obviously, the BDM shows the
better resolution than the EMLM for Type-5 through Type-7. Especially for Type-8
and Type-7, only minor discrepaney is observed between the estimated and the input
directional spreading function. However it should be noted that, for Type-4, the BDM
¥ields an estimate guite different from the input dirvectional spreading fumetion.

For Type-1 and Type-4, only three wave probes are utilized to measure the
directional seas. The BDM does not find a suitable statistical model to explain
bi-directional sea. In other words, as stated in section 2, three independent wave
properties are the minimum data to analyze the directional spectrum, and so it is
impossible to estimate the errors contained in the estimation of the Cross-power
spectra from three-element measurement. Hence the reason why the BDM fails to
give a proper estimate is supposed to be the fact that the method eannot distinguish
between two different wave groups due to the iniroduction of the errors 4.

On the other hand, the Maximum Enftropy Prineciple Method (MEP) does not
consider the errors associated with the cross-power spectra, and the models handled
by the method are not statistical ones but parametric ones. Therefore, the MEP
suceessfully distinguishes two different wave groups for the cases A46>90°%.

From the comparison between the resnlts of the estimation shown in Fig. 3, it
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T T T T T
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2.8
b an 159 ~182
8 {dua2 8 Cdogd 4 Cdagl
DIRECTION DIRECTIGH DIRECTION
ABIC = .35.281
¥

ABIC = -316.30 i ABIC = -203.88
T T T T

u = 3.2 ¢ = 0,05 u = 0.00076125

o. L .
1] 120 -1 -30 o 50 180 -180 -20 ] 20 139
8 Csend B Cdaz> B Céend

QI1RECTION DIRECTICGH DI1RECTION

ARIG = 19,708 ABIC «+ -89,011 4 ABIC - -173.71
T . T T T T T

uw12.8B u = 0.2 u = 0,003125

Gcas 1 GLEX|

- . L Lommomnemo o0 - %o 3
-lE8 - a0 180 -180 50 LED -280 ~30 o £a (LL
8 Cdagy 8 tdugd g tdaed

BIRECTLOH DIRECTION DIRECTIGH

Fig. 4 Estimates of directional spreading functions and the values of ABIC for different
values of the hyperparameter # (Type-2 Star array)
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ean be said that the BDM shows a better resolution than other methods when wave
records consisting four or more elements are available, though the method has a
shortcoming when the wave records consisting of three elements only are available.

The comparison between the results for Type-2 and that for Type-6 implies that
the precision of the estimation varies depending on the fypes of the wave probe
array. Even though the BDM is less sensitive to the layout of the sensor array
than the EMLM and the Direct Fourier Transformation Method, careful examination
of the layout of the sensor array is recommended before the wave observation is
conducted.

(2) Relation between the hyperparameter and the directional resolution

For the wave probe array of Type-2 having the distance between probes D/L=
0.2, the relationship between the hyperparameter %, and the directional resolution
of the estimates and the values of the ABIC (see Eq. (87)) are examined. Figure 4
shows how the estimated directional spreading function varies as the hyperparameter
% decreases from 12.8 to 0.00019531. The hyperparameter is a sort of weighting
coefficient for the smoothness of the directional spreading function against the
restriction econdition which is the mathematical relationship between the eross-power
spectra and the directional spectrum. Thus, for a large value of the hyperparameter
4, the resulting estimate shows quite a mild shape. As the value of the hyperpa-
rameter decreases, the directional spreading funetion becomes sharper, and the
value of the ABIC associated with the resulting estimates decreases, which implies
that the estimate is more suitable. In fact, the estimate became closer to the true
directional spreading function as the ABIC decreases.

For the cases where % is less than 0.00019531, the iteration does not converge
within the condition Eq. (82), and the estimate obtained for minimum ABIC
(ABIC=-234.30, u=0.00019531) is chosen as the final estimate for the sea state.
It is seen the BDM yields quite a reasonable estimate.

(8) Estimation for various gea states
(a) uni-divectional sea

Figure 5 shows the estimates given by the BDM for uni-directional seas having
various directional spreading characteristics. The estimates given by the EMLM
for the seas where the wave energy is wide-spread show an ill-conditioned shape,
while those given by the BDM are quite smooth even for the exireme case S=1
where the wave energy is spread over a wide range of direction.

{(b) Bi-directional seas

Figures 6 to 10 show the results for various bi-directional seas. For all these
figures, the wave probe array employed iz Type-2 shown in Fig. 2. Figure 6 shows
sea states consisting of wind generated waves having §=10 and a swell having S=
100 and the same peak spectral density as the wind generated waves., Figure 7
shows the resulis for sea states where there are wind generated waves, and a swell
for which the peak spectral density is a half of that of the wind generated wave
coexist. Iigure 8 is drawn for sea states where the peak spectral density of ewells
is twice as much as that of the wind generated waves. On the other hand, Fig. 9
shows the results for sea states where two different swells having the same magnitude
of the peak spectral density coexist, while Fig. 10 shows the results for the cases
the magnitude of one swell is half of the other.

The computation is done for various magnitudes of the differences between the
mean wave direction of the two wave groups. These figures show that the estimate

— 83 —
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Estimates of directional spreading functions for uni-directional sea (Type-2 Star

Table 2 Wave conditions employed in the numerical simulation

Case-1~9 Case-10~18 Case-19~-27 Case—28~36 Case-37~45 | Case-46~54
uni-directional bi-directional sea
S1=10 S1=10 S1=10 S1=100 S:=100
S:=100 S:=100 S:=100 S:=100 Se=100
er/or=1.0 a1fes=2,0 o1/ e=20,5 o1/ae=1.0 a1/ ee=2.0
S=1 49=20°
5=2 da=40°
8 =5 A9=60°
S=10 A49=280°
5=20 A46=100°
S=40 48=120°
5=60 A6=140°
S =80 46=160°
S =100 4a=180°
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Fig, 10 Estimates of directional spreading functions [for bi-directional sea (Type-2 Star
array, Case 46~Case 54 in Table 2)

of the directional spreading function yielded by the BDM are very close to the frue
ones. On the other hand, those obtained by the EMLM show smaller peak values
for all the cases than those of the true ones, while some leakage of the wave energy
is observed where the true directional spreading functions are zero. In addition,
the EMLM cannot detect two different peaks when the difference of the directions
of the two wave group is small (48=20°), while this difference is obvious for the
BDM.

Hence, it can be expected that when the wave probe array of Type-2 is employed,
the estimates given by the BDM are very accurate for any kinds of bi-directional
[eas.

Incidentally, the upper right figure of Fig. 10 marked with * is the case that
the iteration computation (Fq. (59)) does not converge within the condition Eq. (82),
and the results when computation is terminated are plotted for referemce, but the
estimate is quite close to the true directional spreading funection.

(4) Effect of errors contained in the cross-power spectral estimates

The effect of the errors contained in the cross-power specira is examined in
Fig. 11. The prove array employed is Type-2. The estimates for different magnitudes
of the errors are shown in the figure. The ratio of the error added to the cross-
power spectra is denoted by = in the figure, and the value of r is changed from 0.0
to (0.4)% with the interval of (0.05)=

The values of + in the figure show the magnitudes of the error contained in
the eross-power spectra, which are expressed as the ratio of the error and the root
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Fig. 11 Effect of noise in cross-power spectra on the estimates of directional spreading
functions (Type-2 Star array)

mean square of the absolute values of the real part and the imaginary part of each
cross-power spectrum. The magnitude of the errors is expressed in a quadratic form,
becanse the cross-power spectra are proportional to the amplitudes of the time series
variation of wave properties. By the use of this expression, the rate of the error
over the magnitude of the true variation of wave properties is easily understood.
In the computation, the same magnitude of the error is multiplied to all the four
wave properties, for each case.

It is noted that as the magnitude of errors increases, the infcrmation about
the directional spectrum carried by the cross-power speetra becomes more biased
one. In fact, as seen in Fig. 11, the estimates given by the BDM became flatter as
the magnitude of error inecreases. It ig also seen that the BDM yields quite accurate
estimates even if the time series records contain 5% errors. When the cross-power
spectra contain larger errors, the EMLM estimates erroneous peaks and sometimes
fails to yield smooth and continuous estimates of the directional spreading function.
On the other hand, the BDM detects the direction of the peaks properly, although
it underestimates the peak values. Thus, the BDM seems to be very sound and
stable against errors.

{6) Effect of the dimengion of probe array

For Type-2 wave probe array, the directional spreading functions are estimated
for various dimensions of the array. Figure 12 shows how the estimates vary
depending on the ratio of minimum distance of the wave probes and the wave length
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Fig, 12 Effect of the dimension of the probe array (Type-2 Star array)

L. The wave condition employed is a uni-directional sea characterized by S=30.
It is obviously seen that the estimates given by the EMLM show an erroneous side
lobe when D/L is larger than 0.5. On the other hand, the estimates given by the
BDM are fairly close to the true directional spreading function even the ratio D/L
is 2.0, though the iteration did not converge within the condition Eq. (82) for the
cases D/L=15 and 2.0, which are marked with * in Fig. 12.

Estimates having side lobes which are given by the EMLM are also considered
as one of the solutions which satisfies the relationship expressed by Eq. (3), while
the BDM chooses the simplest one on the basis of the balance between the likelihood
and the smoothness of the directional function.

As Goda® rvecommended the wave probe array should be arranged so that the
minimum distance between the probes is less than 0.5 times the smallest wave length
among the waves fto be measured. However, when the BDM is employed for the
analysis, this restriction can be eased. This is very advantageous, because the real
ocean waves consist of many component waves having various frequencies and a
small dimension of the wave probe array results in lower directional resolution for
longer and shorier period waves.

(8) Effect of the number of segments of directional spreading function

In the computation stated above, the estimate of the directional spreading
funection is given by piecewise constant function which consists of 180 segments.
The computation takes time in the matrix calculation of Eg. (59). Therefore, how
the results are affected by the number of the partitions of the directional spreading
function is examined. Figure 13 shows the estimates for various numbers of parti-
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Fig. 13 Effect of the number of partitions of directional spreading function (Type-2 Star
array)

tions of the funetion. It is seem that when the number of partition is small, say K=
40, the estimated directional spreading functions are very close to the true ones.

5. Field data analysis

5.1 Facilities of directional wave measurement

The new method for the estimation of the directional spectrum on the bases of
the Bayesian approach mentioned above ig applied to the analysis of the wave records
acquired at an offshore oil rig 42 km off the Iwaki coast (Northeastern coast of the
main island of Japan, see Fig. 14). The Onchama Port Construction Office (OPCO),
the Second Port Consiruction Bureau, Ministry of Transport, is conducting a multi-
element measurement of ocean waves at this location. Figure 15 shows the oil rig
where four step type wave gauges and a two-axis directional current meter with a
pressure sengor are installed on its legs as shown in Fig. 16. The location of the
rig i 37°1749”N and 141°27477E, in a water depth of 155 m below C.D.L.

The simultaneous measurement of 7 elements is performed for 20 minutes at a
time interval of two hours. The wave records as well as the wind records are
irnmediately transmitted by a radic telemefering system to a nearby coastal relay
gtation for landline transmission to the OPCO.

The time series wave data are recorded on a digital magnetic fape. Data are
also analyzed immediately following each observation using a mini-computer of the
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OPCO for real time information such as significant wave height, wave period and
mean wave direction. The EMLM is employed for the real time directional analysis
at the office. The directional wave analysis presented herein is performed at the
Port and Harbour Research Institute using the wave data recorded on the magnetic
tapes.

5.2 Estimates of directional speetrum

{1) Wave data to be analyzed

The time series wave records analyzed here were obtained during the passage
of Typhoon No. 17 from September 29 to 30 in 1986. The typhoon passed by the
rig from the south fo the northeast. At 12:00 on September 80, the maximum
significant wave height (H,,=6.20m) and period (1%,,=12.5s) was recorded at
the rig. Figure 17 is the weather maps of these two days. Typhoon No. 17 was one
of the strongest fo hit Japan in 1986.

The cross-power spectra which are utilized in the estimation of the directional
spectrum are computed by Eq. (85).

Dy )= Coy( F—iQu(f) = S:}”}j(t‘) exp (~i2xfe)dr (85)

where C;; and @; are the co-spectrum and the quadrature-spectrum respectively, and
¥i(r) is the covariance function between the two properties & and ;. The covariance
function are computed by Eq. (86).

Uyl =&:(Be,(t+7) (86)

29 Sept. 1968, 9:00

Fig. 17 Weather maps of Typhoon No. 17 (29-30 Sept, 1986)
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(2) Estimates of the directional spectra

Figure 18 shows the time variation of the directional spectrum estimated on
the basis of the T-element wave records by the BDM for every two hours from
18:00 on Sept. 29 to 16:00 on Sepi. 30. Up te 4:00 on Sept. 30, bi-directional seas
are obgserved: swells come from the south and the wind generated waves come from
the east-southeast at the same time. After 6:00 on the 30th, the directional speetra
are uni-directional. During the passage of Typhoon No. 17, the significant wave
height shows two maxima. One was observed at 2:00 on the 80th, when the spectral
density of the swell reaches. its maximum. 'The other peak significant wave height
was observed at 12:00 on the 30th and it was the highest during these two days.
It shouid be noted that the directional spreading funection of the directional spectra
observed ‘at 12:00 and later are constricted at the peak frequency, i.e., the con-
centration of the spectral density is the highest at the peak frequency and becomes
lower as the frequency deviates from the peak freguency. This is the same charac-
teristics shown in the directional spreading funmction proposed by Mitsuyasu®).

Examples of the directional spectra estimated by the BDM and EMLM for
uni-directional seas are compared in Fig. 19. The upper figures are the schematic
showing of the spectra and lower figures are the plane showing of respective spectra
with contour lines. The major difference befween the two estimation methods is
that the EMLM is more dffuse and does not show a constriction near the peak
frequency clearly depicted in the BDM estimated by the BDM. It is also clear that
the peak spectral density given by the EMLM is much lower than that given by
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Fig. 19 Uni-directional spectrum observed at 14: 00, 30 Sept. 1986 {7-element measurement)

the BDM.

Tor the same sea as shown by Fig. 19, the directional spectrum is estimated
from three-element wave record only, 7.e. the wave record obtained by the two-axis
directional eurrent meter and the pressure sensor. Figure 20 shows the comparison
of the directional spectra estimated by the EMLM and the MEP. Neither of the
two methods can detect the constriction shown by the estimate given by the BDM
for the T-element measurement (see Fig. 19). The estimate given by the MEP
shows higher peak spectral density than that given by the EMLM, and the peak
spectral density given by the MEP is almost the same as that given by the BDM
for the 7-element measurement. _

Figure 21 is drawn in the same way to show examples of the estimates on the
basis of the T-element measurement for a bi-directional sea observed at 22:00 on
Sept. 29. It is seen in Fig. 21 that, again, the estimate given by the BDM shows
higher speciral peaks than those shown by the estimates given by the EMLM,
especially the spectral peaks of the wind generated waves.

Figure 22 shows the bi-directional spectra estimated from the three-element
measurement. Compared with Fig. 21, it is seen that EMLM yields almost the
same shape of the spectral estimate for the 7-element measurement. Figure 22 also
shows that the MEP yields more concentrated estimate with higher peak density for
the swell than the estimate by the BDM shown in Fig. 2L o

On the basis of these results, we conclude that the estimates of the directional
spectra show different shapes depending on the method for the estimation and the
aumber of the elements of the wave properties utilized. In addition, though a three-
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element measurement detects the directions in which the spectral peaks appear, in
uni-directional and bi-directional seas, many wave properties must be measured for
a detailed analysis of the directional spectrum.

6. Conclusions

The following major conclusions sum up the study:

1. The proposed Bayesian Directional Spectral Estimation Method (BDM) can be
applied to the directional wave analysis on the basis of an arbifrary number of
wave probes. However, the method needs wave records consisting of at least four
elements of wave properties. When only three elements are measured, the
Extended Maximum Likelihood Method (EMLM) and the Maximum Enfropy
Principle Method (MEP) are recommended.

2. When four or more wave probes are employed in the observation, the BDM is
the preferred analytical approach. The directional resolution exhibited by the BDIM
in this circumstance is greater than those shown by either the EMLM or the
Direct Fourier Transformation Method (DEFT).

3. The BDM is fairly sound against the noises contained in' the estimates of the
crogs-power spectra. When the rate of the noise over the frue cross-power
speetra is less than 0.05%, the BDM yields reliable estimates of the directional
spectrum. As the rate increases, the estimate given by the BDM becomes flatter
than true directional spectrum. This BDM tendency emerges as the method
tends to rely on the a priori condition (smooth and continuous), whenever the
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given information (cross-power spectra) is not reliable enough. If the rate of
noise exceeds 0.052, the EMLM fails to yield reasonable estimates while the
BDM can distinguish these directions where the true directional spectrum shows
its peak density.

When the BDM is employed for directional wave measurement utilizing four
wave gauges In a star array (Type-2 in Fig. 2), it provides a very accurate
estimate for the true directional spreading function without showing any side
lobes, even though the distance between the wave gauges is twice the wave
length. This accuracy iz very advantageous for the observing random ocean
waves having various component waves with wide ranges of frequency.
Estimates of the directional spectrum vary widely depending on the method
employed for the directional wave analysis, number of elements of wave properties
to be analyzed and the layout of the probes. Though the directions where the
directional spectrum shows its peak density can be detected from the directional
wave analysis on the basis of three or four element measurement, it is necessary
to measure directional waves with many probes to detail the shape of the
directional spectrum. For field observation, especially in deep sea, simultaneous
measurements of many wave properties are very difficult for technical and financial
reasons. However the BDM is a very powerful method for the directional wave
analysis in laboratories.

In the present paper, as an a priori condition, the simplest condition is introduced
to characterize the inherent nature of the directional spectrum. This is necessary,
as the BDM relies heavily on the a priori condition when the given information
is insufficient, to delineate the directional spectrum. However, when research
reveals more detail in the structure of ocean directional waves, the method can
be improved by adopting the newly attained knowledge as the a priori condition.
Thus, the BDM is more adaptable to reformulation of estimation equations as
the study of structures of directional wave spectrum progresses.

{Received on November 18, 1987)
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List of Symbols

+ Akaike’s Information Criterion

ABIC 1 Aloike's Bayesian Information Criterion

B(p,g) : Boltzmann's entropy

Water depth
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D : The minimum separation distance between a pair of wave gauges
D : A certain operation matrix

Dk o) : Vector composed of transfer function

Ele) : Matrix composed of unknown vector x

I ¢ Frequency

Flax) 1 Vector composed of unknown vector x

d 1 Gravitational acceleration

(_E(ﬁl fJ ¢ Directional spreading function for specific frequency f

G fY : Estimate of directional spreading function

B f) : Transfer function for several quantities related to wave motions
H : Shannow’s entropy

His :  Significant wave height

B f,8 : Transfer funetion for several quantities related to wave motions
Hn(k,¢) : Transfer function for several quantities related to wave motions
I : Unit matrix

L ¢ A kind of & function

k : Wave number

k : Wave number vector

K : Number of segments of directional spreading function

L : Wave length

L :  Likelihood function

P02, ¢C+) + Probability density function

Pl : Conditional probability density function

(-, - :  Joint probability density funetion

7 : Ratio of the error added to the cross-power spectra

S :  Concentration parameter of directional spreading function

SCr) 1 Frequency spectrum

Sk e) @ Wave number freguency spectrum

S(f,8" : Directional spectrum

T : Significant wave period.

% :  Hyperparameter

wlk kD) : Window function

g : Error

7 : Water surface elevation

Iz : Water surface slope (z-direction)

By 1 Water surface slope (y-direction)

8 : Wave propagation direction

a :  Angular frequency or standard deviation

¥ : Variance

Prnl =) : Cross-power spectrum between the m-th and the n-th wave properties
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