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1. Theoretical Properties_of Oblique Waves Generated by
Serpent-type Wavemakers

Tomotsuka TAKAYAMA#*

Synopsis

Real sea waves are well known to have a property of directional random-
ness. Reproduction of waves with such property in laboratories is much desired
for the studies of wave transformations, wave and structure interactions, and
others. Though the generation of the directional random waves makes use of
oblique wave system as component waves, there has been no theory which
can predict the properties of the oblique waves.

The present paper investigates the properties of the oblique waves theo-
retically. First, the formula of waves generated by a single wave paddle is
obtained theoretically. The properties of the wave height and propagating angle
are analysed in detail by the computation of the formula. The distributions of
the wave height show concentric features in the case of a small relative width
of the paddle, while they become more complex as the width become larger.
On the other hand, the contour lines of the wave propagating angle show
radiative features in the case of a small relative width. The variations of the
wave height and propagating angle show wavy features on the line parallel
to the wave paddle. The wavy variations do not disappear, even if the paddle
is widened. The validity of the formulation is confirmed by the comparison of
the computed wave heights to the experimental ones.

Second, the formula of the oblique waves is obtained as the linear super-
position of the above formula by controlling the phase difference between the
motions of adjacent wavemakers. The formula predicts that the oblique waves
generated by serpent-type wavemakers vary in their heights and propagating
directions on the lines parallel to the wave paddles. The variation consists of
ripple and undulation pattern, and cannot be made to disappear, even if the
width of each paddle is reduced to infinitesimal value.

Finally, the effect of wave reflection from the side walls is analysed by
applying the mirror image method, and some numerical results are presented.

*

Chief of the Wave Laboratory, Marine Hydrodynamics Division

— 3 —



EBEREHETRE
#/2E H2H5 (192. 6)

L BEBITL->TRET IROEORMEITONT

AL om w

= 1

ERDOBOENFMARYZ b 2FT5FHAETH B LR EILHOR TV, T
DX R FE T2 RAE 2 EBRKMENICERL, ER0oHORKICEVWEETHED
ERW L BENOTHOMBEEHET 5 2 LR CEER T L Th b,

BPIRE, FRARS VA RBET5RRAE 2 REI RS LW TEERFDED
B OWTHERET 2T b0 TH 5, 7, —HBLCHREIhAHSL OEK
BoS bo—E3MEBIT 5 L XICRETHHOBRM A kD, T OBRBOZY M
FERIZX o THERR Lt —HDERIKOERC X - TRETHHOBEEREDLESLZ
ET X 5T, HDEOHERBERDI, TOFRELTITR VT, ZiSEROEDD
BMEEZERL TS, ZOREAVT, flHEOKRELE LS X CETHROZELLH
Rico JIRIT, RABEEZETIXKMENTOMNDEOREIZOWTD, BEREKEEAVT
BB L 7o

AMETHONEFELBERILUTOLE Y TH %,

1) EEROB/MRIEER 2 KE L Tkdi, —HOBHIRTE X 5 OmEmRZE,
BRERERE I —FHL w5,

2) EWEIROE b LEELE O bIL 3 0.5 LT TR, SEEHZFROERCRD,
SR ERIRAHRIC R Bo L L, BL BREL BB E, BERICEANHE biT
JEH BT B,

3) HEFEWOEFHOMAELERL T, HDEOBE LROBOEREDLE L LTK
Dico TOWMERCEBIT T, SDEOWEER XCEmI—Ricik ST, BRI
EHTHZ LBdbhr ok TZOEEMIL, BEEROEBLZIEFTHELLTHHETZER
TERWZ EAHIA LA,

* WEKER BIRMIREER



CONTENTS

S mOPSIS ...
1 Imtroduction ........... .ottt

2. Formulation of Waves Generated by a Single Wavemaker.....................

2.1 Assumptions and Boundary Conditions. ............coouueeeennnnnnnnnn.
2.2 Form of Velocity Potential .............ooiiiiniene ..
2.3 Cosine Transformationona Half Line ............oovvenneeernnnnnnn..
2.4 Solution of Velocity Potential .............oiiineeinninnnnnnninn.

3. Properties of Waves Generated by a Single Wavemaker ......................

3.1 Stationary Wave Term and Dimensionless Wave Height ................
3.2 Definition of Wave Propagating Angle ................coovuineeennn...
3.3 Characteristics of Wave Height and Propagating Angle .................

4. Evaluation of Theoretical Formula by Experiments ..........................

4.1 Wave Tank and Equipments for Wave Measurement ...................
4.2 Experimental Conditions ................oiiiiiiiiiiiiiii
4.3 Comparison of Theoretical Values to Experimental Ones ................

5. Theoretical Properties of Oblique Waves Generated by Serpent-type
Wavemakers ...... .. ... i e

5.1 Theoretical Formula of Oblique Waves...........c..oviteinninnrennnn...

5.2 Characteristics of Wave Height and Propagating Angle .................

5.3 Variations of Wave Height and Propagating Angle against Relative
Width of a Unit Wave Paddle ...................c.iiiiiiiiininnnnn.

6. DESCUSSIONS . ...ttt ettt e e e e e

6.1 Problems of a Temporarily Used Wave Channel Built in a Wave
Basin ... e

7. ComClUSIONS .. ........ooutintitttiit ittt e e
Acknowledgement . ....... ... ... ...

References .......ooiiiiiiii i e



Theoretical Properties of Oblique Waves Generated by Serpent-type Wavemakers

1. Introduction

An aerial photograph of sea surface exhibits the features of short crested waves,
which are quite different from the waves generated by a wavemaker in a laboratory
tank. The short crested waves are thought to appear as a result of the superposition of
an infinite number of component waves which come from various directions. Thus,
real sea waves have a property of directional randomness. The property of the direc-
tional randomness has been investigated through the analysis of field data by many
researchers in the world. Consequently, several forms of the angular spreading func-
tion, which shows the wave energy distribution to wave directions, have been proposed
as a standard form. The functions of Mitsuyasu® or Cote et al® are most popularly
known as the functional form.

These functions are employed in many engineering applications such as estimating
wave trnsformations like refraction and diffraction of random waves.?>»* However,
the methods of the estimation have hardly been evaluated by field observations or
experiments. The reasons why the evaluation has not been carried out are as follows:
1) For the evaluation by field data, it is necessary to obtain directional spectra in

deep sea and shallow area. But it is very difficult to observe them simultaneously.
2) Laboratory experiments are the best ways to evaluate the accuracy of estimation

methods, because the conditions can be easily simplified. Wave generators which
can generate directional random waves have been invented in England, but they
are available for limited number of researchers only, presently.

It is of great importance to reproduce the directional random waves in a wave
tank and to use them for the experiments on interactions between waves and marine
structures as well as on the above transformations.

In the Hydraulic Research Station in England, multi-directional random waves
are generated by a group of ten wavemakers arranged in a crescent.” In this method,
the directional random waves are well defined in the center area of two meters squares
where uni-directional random waves are concentrated. Therefore, they are available in
the experiments only for an offshore structure installed at the center, but they are not
usefull in the experiments on the wave transformations, because the wave spectrum
must be uniform in much broader area.

The report® of Edinburgh University describes that wavemakers of mixed frequ-
ency serpent-type have been built for generation of directional random waves. The
principle of the wave generation is based on the linear superposition of oblique waves
produced by controlling the phase difference between the signals sent to adjacent
wavemakers. This is an analogy with Huygens principle in optics. The characteristics of
wave directional spectrum generated by the wavemakers have not been reported in
technical journals yet.

The Norwegian Hydrodynamic Laboratories have just built wavemakers for
uniform generation of directional spectral waves. The principle of the wave genera-
tion are based on the natural wave diffraction.” Each wavemaker is operated in
independent phase of motion to the adjacent one. Consequently, the principle is similar
to that in the Hydraulic Research Station, but the Norwegian Hydrodynamic Labor-
atories expect that uniform directional spectrum can be generated in a whole basin by
applying wave reflection from the basin walls.

Thus, the various techniques are employed in generation of d1rect10nal random
waves, but no theoretical analysis in exact sence has been presented for the wave

7 —
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generation by a group of wavemakers.

In this report, a formula of waves generated by a single wave maker is derived
theoretically, and the properties of the generated waves are investigated numerically.
The validity of the formula is evaluated by the experiments. The formula of oblique
waves is obtained as the linear superposition of the above formula by taking into
consideration the phase difference between the motions of adjacent wavemakers. The
variations of heights and propagating angles of the oblique waves are investigated.
In an ordinary wave tank, waves are reflected from side walls of the tank. Then, the
formula of oblique waves in the tank is derived by applying the mirror image method,
and the characteristics of the waves are studied numerically.

2. Formulation of Waves Generated by a Single Wavemaker

2.1 Assumptions and Boundary Conditions

Before the theoretical formulation, fluid, fluid motion and boundary conditions
are assumed as follows:
1) The fluid is non-viscous and incompressible.
2) The fluid motion is irrotational.
) The water depth is uniform.

) The displacement of a wave paddle is sufficiently small, compared to the water
depth and the wave length. Consequently, the waves generated by the motion of
a paddle can be regarded as small amplitude waves.

5) The bottom and the wave paddle are impermeable.

3
4

Under the above assumptions, the fluid motion can be expressed by a velocity
potential @, which satisfies the following Laplace equation:

0o *0  0*D
dx? + dy? + 02°

where the coordinates of x and y are horizontal axes on a still water surface and the
coordinate of z is a vertical axis, possitive upwards. They are shown in Figs. 1 and 2.
The condition on water surface is given by the assumption of the small amplitude
wave, as follows:

P oD ‘ _
[ atz +g_52—]z=0—0 ! (2)

where ¢ and g denote time and acceleration of gravity, respectively. The bottom
condition is expressed as

i
0z
where % is the water depth.
It is assumed that a single wave paddle of b wide moves periodically to and fro in
a constant amplitude and that two motionless boards are extended semi-infinitely in
both sides along the line of the wave paddle, as shown in Fig. 1. The motion of the
paddle is presumed to consist of a parallel movement and a rotational one, as shown in
Fig. 2. The former and the latter correspond to the motions of a piston-type wave-
maker and a flap-type one, respectively. The movement yo of the paddle at z can be
expressed as the sum of them in the following form:

=0, (1)

=0, (3)

z2=—h

— 8 —
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Fig. 2 Motion of a wave paddle

h+z
Yo=Yt vr—— , (4)
where ¥p and ¥y are the displacements of the parallel motion and the rotational one,

respectively, at the still water surface, as shown in Fig. 2. The boundary conditions
on the wave paddle and the motionless boards are formulated as follows:

{U(Yp—i- Y;%)cos ot (lx1<b/2)
0

2
dy

(5)
v=0 (lx1>8/2) ,

where Ypand Yy are amplitudes of the motions corresponding to ¥» and ¥y, respectively.

Since the waves generated by the single paddle of a finite width must propagate in
radiative directions and diminish their own amplitudes, they satisfy the following
radiation condition® at a point sufficiently distant from a center of the paddle:

. 0® k 0D
11_{3/7<7+;7)—0 , (6)
where 7(=+~/Z*+y?) is a distance from the origin, and k(=2n/L) and o(=2n/T) are

a wave number and an angular frequency, respectively. Furthermore, L and T denote
wave length and period, respectively.
2.2 Form of Velocity Potential

The velocity potential, which satisfies the bottom condition of Eq. (3), is expressed
in the following form:

@ ={¢°(x, y) cos ot+¢*(x, ¥) sin ot} cosh k(h+2) . (7)
By substituting Eq. (7) into Eq. (2), the following dispersion relation of waves is derived:
o*=gktanh kh .

(8)
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The solution of £ in Eq. (8) has a real value and infinite number of imaginary values.
When the real solution and the imaginary one are represented by % and v, respec-
tively, £ is a real solution of Eq. (8) and v is real solution of the following equation:

ot=—gvtanvh . (9)

The functions of cosh k&(%-+42) and cos v(h-+z) are orthogonal, as shown in the follow-
ing formulas:

0 h sinh 2%
2 —_— —_—
S-nCOSh k(h+2)dz= 5 [1+ oFh ] )
0
S cosh k(k+z) cos v(h+2) dz=0 ,
-n (10)
0 g[ +%2hyhj| (V1=V2=V)
S cos vi(h+2) cos ve(h+2) dz= v
— : 0 (vizews)

By using the above orthogonality, the velocity potential of Eq. (7) can be re-
written as

o= [q},:(x, y) cosh k(h+2) + 21 ¢.°(, ¥) cos _v(k+z)] cos ot
+ [¢,,’(:L‘, y) cosh k(h+2) + > ¢, (x,y) cos v(h-}-z):l sin ot . (1)
When Eq. (11)- is substituted into Eq. (1) and the above orthogonality between

cosh k(h-+z) and cos v(k-+2) is applied, ¢:* and ¢,* safisty the following Helmholz
equations individually:

az kc.c az c,8 ot

aﬁz + az: +R¢ =0, (12)
62 :,a 02 ,f" s

aﬁz + aia —vir=0. (13)

By substituting Eq. (11) into the boundary condition of Eq. (5), the orthogonality
between cos of and sin g¢ derives the following two formulas with respect to ¢{* and

oo

ag s
37 | ymo cosh k(h+2) + 5»3 39 | yo cos v(h+2)
a(Yp+ﬁ Y,) (121<8/2)
- " (14
0 (lxl>8/2) ,
g 0%, ‘ -
77 ,,:oCOSh k(h+2) + ; 97 |ymo cosy(h+2)=0 . (15)

By applying the orthogonality of Eq. (10) to Egs. (14) and (15), the four boundary
conditions with respect to ¢ and ¢ are derived as follows:

— 10 —
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20(Y 25+ Yrt)

96| _] sinhkh (16)

9 lv=0 (g (21>8/2) ,

20(Yyfr+Y.
0. | _] % sin vk gl (Iz1<b/2) -
Y ly=0 0 (le>b/2) |

(lx1<5/2)

=0, | (18)

=0, (19)

where

o sinh®Rh
»= T Sinh 2%k
k| 1450 ]

(20)
o= sin® vh

©~ T sin 2vh

Vh_l + 2vh ]

[smh kh— (cosh kh—1)[kh] sinh kh

sinh 2kh
kh[l + ]

[sin vh+(cos vh—1)/vA] sin vk

sin 2vh
h[l+. o ]

(21)

fr=

2.3 Cosine Transformation on a Half Line

Since the boundary conditions shown in Fig. 2 are symmetrical to ¥-axis, each
functional forms of ¢:° and ¢@;° must become odd functions with respect to .
Therefore, the following cosine transformation on a half line® of possitive x is perform-
ed to ¢5° and ¢,.°:

pit= Sm¢:'“ cos Az dz |
° (22)

o
:'“=S P cos Axdr .
0

If the functions of @7 and ¢;° are obtained, ¢¢° and ¢ are given by the inverse
transformation as

Pit=— 2 S 5t cos Az dA ,
(23)

c,a__g 7 €8
@ == So S?cos AT dA .

When cos Az is multiplied to both sides of Egs. (12) and (13) and the two equa-
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tions are integrated with respect to x from 0 to possitive infinity, they are trans-
formed as follows:

az&:,s

D+ (B 2)2=0 (24)
2.7 ¢,8
T aher=0 (25)

Furthermore, the integration in same manner as the above for the boundary equations
of Eqgs. (16) to (19) derives the following equations:

3| 20(Ypar+Ysas) sin (AB)2)

Y ly=0 sinh kA A ’ (26)
aévc — 20’( Ypﬂp+ Yjﬂf) Sin (Ab/2) (27)
oY |y=0 sinh vA A ’

g

59 |,.=0 (28)
s

0y ly=0 0 )

The solution of Eq. (24) is given in the following form:
} A% exp [—yvA2—Fk?]+ B exp [y A—k*] (A>k) (30)
= .
Co* cos [y~ B —A% ]+ D%* sin [y~ B — %] ALk,

where A4%3%, B%%, C%* and D%® are unknown functions of A which are determined
later by the boundary conditions and the radiation condition.

The substitution of ¢ of Eq. (30) into the boundary condition of Eq. (26) derives
the following relations among the unknown functions:

20(Y sap+ Ysay) sin (bA/2) 1

A=B——— T X TR .
Do 20(Ypap+ Yyay) sin (A5/2) 1 (31)
=T sinh A\ X JE—T

The function of ¢ must be finite even at infinitely large value of ¥, as implied in
the radiation condition of Eq. (60). Then,

Be=0. ' (32)
Consequently, the form of ¢¢ is given as follows:

(Ypap+Yyety) sin (Ab[2) exp [—yv/ A—F%]

o= —2 sinh k4 A AI—EE (A>k)
o Yottot Yyas) sin (AB[2) sin [y /F—x&
20'< Si;’lh k}: -f) (/\ / ) E/kz_,\z ]+C°COS [kaz_Az] (/\Sk) .

(33)
In the same manner, the functions of ¢, ¢/, and ¢, are obtained as

— 12 —
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-:=_20_(Y,,,Bp+Y;ﬂ;) sin (Abf2) exp [—Y/ATf 1)

¢ sin vh A N LERT ' (34)

- 0 (A>R)

= _ (35)
C?cos [VEE—A Y] (ALk) ,

$:=0. (36)

Since Egs. (33) and (35) include unknown functions of C° and C?, it is necessary to
determine the forms of them. The velocity potential @ must satisfy the radiation
condition of Eq. (6), which means that the generated waves become progressive at
sufficiently large value of ». The transformed velocity potencial is also necessary to
satisfy the following transformed radiation condition at a sufficiently large value of ¥:

0B VE= 0 _

3y p T =0. (37)

The transformed velocity potential is given as

b= [:ﬁ; cosh k(h+2) + >3 8. cos v(h-l—z)] cos ot
+¢: cosh k(h+2) sin of . (38)

However, the second term in [ ] of the right hand side of Eq. (38) is unnecessary
in the relation of Eq. (37), because it inverse-exponentially decreases in its value as
y becomes large, and vanishes at large value of y. By substituting @ of Eq. (38) into
Eq. (37) without the second term, the unknown functions of C° and C*® in Egs. (33)
and (35) are obtained as

C=0,

o= _gp (YrartYsay) sin (A5/2) 1 (39)

¢ sinh &k A JE=AE T

Consequently, ¢¢ and ¢ is determined completely and given as

_2U(Ypap+ Yyroy) sin (AD]2) exp [— Y/ AP—FK2]

b= sinh k& A T—F (A> &) 0
) gy (Y520t Yray) sin (R6/2) sin [y/F=X7] A<k
sinh k4 A JE=)® SR),
. io (A>E)
o' = . —s
~po{t ) S (O o BEER) gy . W

2.4 Solution of Velocity Potential

Since the cosine transformed functions of ¢, ¢, ¢ and $’ have been deter-
mined, the velocity potential can be derived by the inverse transformation shown in
Eq. (23). In the inverse transformation, the following relation is useful when F(z) and
G(x) are odd functions:

— 13 —
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SmF(x){G(x—p)+G(x+p)}dp=%8:2ﬁ(/\)é(7t) cos Az dA , (42)

0
where
Fy = S“F(x) cos Az dz |
° (43)
G(A):S G(@) cos Az dz .
0
The cosine transforms of various functions are tabulated in the reference 10).

The transforms necessary in the analysis are picked up from the table and written
down in the below.

2 (= sin (Ab/2) (1 (0<z<hf2)

;So —x cos AT dA= {0 (@>b/2) ,

;S: ﬁf—}/g{—z—] cos Az dA = Jolk/ TFF ) »

2 ((* sin [y/E—=A%] exp [— y«/—TJ (44)

2 {So SN cos 2 dd— Sk Y cos Az d)\}
=No(kv/ZF7°) >

2 (= exp [~ Y~/ A+1¥] _2 s

- So TN cos AL dA= Ko(v 2+ yt) ,

where Jo(x), No(x) and Ko(z) are Bessel, Neumann and modified Bessel functions with
index zero, respectively. : ,

By applying the relation of Eq. (42) to the inverse transformation of Eq: (40),
the function of ¢, is given as follows:

¢bc__(_st’l":il_4;;:f°‘f_)S {No(k/ T=p)*F97) + No(k/ FF P+ )} dD . (45)

By replacement of p by g/k and arrangement of Eq. (45), the above equation is re-

written as follows:

kb/2 N
¢~°=%&§$ZTMS No(/rz—q+ Fu)y)dg - (46)

—kb/2

In the same manner, ¢,7, ¢/, and @, are given as

Yp » Y vb/2 ——— 3

Yp » Y kb/2 o
¢;=—%(“%§u;—’“’)g-km T EE=gFF ) da (48)
$:=0 . )

By substitution of ¢, ¢, ¢¢ and ¢ into Eq. (11), the velocity potential is
given as

— 14 —
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kb/2
&= [%(Ypa,-l- Yras) cosh k(h+z) S

Smh kb ) _sops N oW (RT—)F (Ry)*) dg
vb/2
—2%(Y”ﬂ’+y’ﬂ’)%}%z)_g_w %K"( z—g) + (v¥)?) dq]
X c0s crt-—%(Y,,a,-;- Y,a,)% sin ot
kb/3
x S_km Jo(V/ (kz—q)*+ (Ry)*) dg - (50)

3. Properties of Waves Generated by a Single Wavemaker

3.1 Stationary Wave Term and Dimensionless of Wave Height

The water surface displacement 7 is given by the Bernoulli equation for small
amplitude waves as

__19o
= g ot

(51)
2=0
By substituting the velocity potential of Eq. (50) into Eq. (51) and by using the disper-
sion relations of Egs. (8) and (9), Eq. (51) is rewritten as

kb/2

1=| (s v |7 vt/ = ) d

+ ; (Yofo+Ysf5) Sv_b::n %Ko(«/(u:l:—q)2 + (vy)) dq] sin ot
+(Ypap+ def) cos ot S’ibk/:/z ]o( (kx_q)z + (ky)z) dq . (52)

In order to clarify the properties of 7, the expression of # may well be reformed
as follows:

n=A(x, y) cos {{(x, y)—ot}

+ S(YoBot Yps) sinot S_”:/z 2 R T ) (53)
where
kb/2 2
A(Z, 1) =(Ysap+ Yyas) [{ S_m No/ (FZ=g)"F (50)) dq}
s e
and

&b/3

Iz, y) =a:ctanl S_km No(v/kx—q)*+ (ky)®) dg
Y e ot (53)

The first term in the right hand side of Eq. (53) represents a progressive wave

— 15 —
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which propagates outerwards, decreasing in its height gradually. On the other hand,
the second term in the same side represents a stationary wave which is not progressive
and deminishes its own height inverse-exponentially as its location becomes distant
from the origin. Consequently, it can be guessed that the second term becomes negligi-
ble at a point a little distant from the paddle.

In order to investigate the degree of the influence of the stationary wave term
to the water surface displacement, the comparison between the dimensionless wave
heights with and without the term is made for the piston-type wavemaker, for which
Y,;=0. The dimensionless wave height is expressed as the ratio to the stroke of the wave
paddle in the following formula:

Eﬁ_f[{a,g“’” No(/ F—=g)"+ (F)") 44

—kb/2

" {“”SIZ:,Z Jolv/ k=g + (R9)) dqm - (56)

where H denotes the wave height which is twice amplitude of 7.

The above comparison is shown in Figs. 3 and 4, in which the solid line and
broken one represent the dimensionless wave height with and without the term,
respectively. Figures 3 and 4 are for a narrow paddle width of 1 m and a broad
one of 20 m, respectively. In these figures, it is clarified that the stationary term
becomes less influential as a point becomes more distant from the center of the paddle,
but that its influence spreads in wider region as the width of the paddle becomes
larger. In any way, the term becomes neglegible at the point of y/L more than 1.0.
The waves near the wave paddle are not important in the report. Therefore, it is no
problem to ignore the stationary term. Hereafter, the analysis is carried out in the
ignorance of the stationary term. By ignoring the term, the dimensionless wave height
Rz is defined as follows:

e el e

~kb/2

kb/2 27 1/2
{7 wvErrEnal ] (57)
3 L b=1.0m, h=1.Om, T=lls
H/2Ye N Stationary term
2 RN N with
\\\\ without —=-—-—
! y
_|==L_
0 [bs2 |br2 | x/L=0
|
H/2Ye
o x/L=2
o 05 1.0 1.5
. y/L

Fig. 3 Comparison between wave heights with and without
the stationary wave term for b of 1 m
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Fig. 4 Comparison between wave heights with and without
the stationary wave term for b of 20 m

In the above definition of the dimensionless wave height, Rz becomes a func-
tion of b/L, x/L, and y/L and independent from A[L, Y, and Y. If the value of Rx
is given, the wave height is obtained in the case of the piston-type wave generator
as follows:

H=2YpapRE 5 (58)
and in the case of the flap-type one as follows:
H=2YjafR3 . (59)

Therefore, the definition of Rz by Eq. (57) is very convenient in the calculation of
waves. The variations of ap and ay to relative depth A/L are shown in Fig. 5 for con-
venience to the calculation of wave height. Both values of &y and ay converge to 1.0
as h/L becomes large, but ay>ay. They indicate efficiency of the wave generation
by a single wave paddle and coincide with those given by Biesel et al.:* for two-di-
mensional wave channel.

3.2 Definition of Wave Propagating Angle

In order to investigate the properties of waves generated by a single wavemaker,
the propagating direction of the waves must be known at each point. There will be two
methods in definition of the wave direction: one is to define it as a direction normal
to a wave front line, and the other is to do as a direction of maximum fluid velocity.
Since it is difficult in the former definition to draw wave front lines, the latter one is
adopted.

— 17 —
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The fluid velocities are given by the definition of the velocity potential as follows:

0P oD
oy e (60}
where % and v denote the fluid velocities in the directions of x- and y-axis, respectively.
By ignoring the stationary wave term in Eq. (50) and by substituting Eq. (50)
into Eq. (60), the fluid velocities of # and v are expressed as follows: :

cosh k(h+2) [ ;
sinhzh | 7

x Nk TR ) —Nelh E=E2 )

u= U(Yﬁd})"‘ Yjaf)

—sin at{ Jolk/ @027 + v7) — Jo(k/ (—b5]2)°+F y)” , (61)

cosh k(h+2z)
A sinh kA
. y kb/2 ky . d
. T N2 2
x [smo‘ S_km (BT (ky)zjl(J(kx 9)*+ (ky)?) dq
kb/2 ky
—kb/2 a/(kl'—q)z"' (ky)

where Ji(x) and N,(x) are Bessel and Neumann functions with index one, respectively.
In Eq. (61), #=0 at x=0 and #,,,=—#,. The velocity of # is an even func-
tion with respect to z.
The orbital curve of the composed velocity V in a wave period is shown in Fig. 6,
where V=+/4*+v?. A phase difference between # and v appears as shown in the
figure. Therefore, when » become maximum, v is not at maximum. Thus, it is diffi-

v=0(Ypap+Yroy)

NWEE— T @] (6

—cos ot S
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cult to determine the wave direction, because the direction of ¥ depends upon time.
The wave propagating direction is defined as a directional angle y at the maximum
Vomex of V as shown in Fig. 6.

v=m/2—arctan {(t)mox/(v)maz} » (63)

where (#)mix and (v)m.: denote the components of V., in z- and y-direction respec-
tively, and (v)m.: has a possitive value. The definition defines the wave direction as
that of outward progressive waves.

3.3 Characteristics of Wave Height and Propagating Angle

The dimensionless wave height Rz and the wave propagating angle ¥ depend on
the relative width b/L and the relative location of (x/L, y¥/L), as shown in Egs. (57)
and (63). Then, the distributions of Rr and vy in the front area of the wave paddle
are computed for various values of b/L.

The distributions of Rz and 7y are shown in Figs. 7 to 11, where they are drafted
in the area of positive z-axis, because they are symmetrical to y-axis. In Fig.7 for b/L
of 0.05, each contour line of Rz shows a feature of a curve similar to an arc of a con-
centric circle, which means that Rg has equal value at a point of same distance from
the center of the paddle. The values of Rg are 0.1, 0.07, 0.06 and 0.05 near 1, 2, 3 and
4 of 7/L, respectively, where 7 is the distance from the origin of the coordinates. The
tendency of the decrease shows that the value of Rz is inversely proportional to the
root of . On the other hand, the contour lines of y are emitted in all directions from

y/L

— -t
e o Lo

i b/L=0.05

w
(&)

x/L

Fig. 7 Distributions of dimensionless wave height and propagating angle
(6/L=0.05)
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Fig. 8 Distributions of dimensionless wave height and propagating angle
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the center of the paddle. The values of y agree quite well with the angle y, calculated
by the following equation:

yp=arctan (y/x) . (64)

The contour lines of y cross almost perpendicularly to those of Rz. From this fact,
it is concluded that the waves generated by a paddle of a very small relative width
propagate in the radial directions, decreasing in their heights in the inverse proportion
to7.

In Fig. 8 for b/L of 0.5, the contour lines of Rz show a feature of an oval arc differ-
ent from the concentric arc in Fig. 6. The values of Rz become larger because the
relative width of b/L has increased to 0.5. The oval arc of Rz is caused by the concent-
ration of the wave energy just in front of the paddle. Consequently, the value of Rz
does not decrease in inverse proportion to +/7 inside the area of Fig. 8. However,
the value of Rz is expected to decrease in inverse proportion to +/7 in the area broader
than that of Fig. 8, judging from the distribution of Rz in Fig. 7. On the other hand,
the contour lines of y show radiative figures same as those in Fig. 7 except the vicinity
of the paddle. The value of y agrees well with the angle y, calculated by Eq. (64),
except the vicinity. In the vicinity, the lines of y are curved toward a tip of the wave
paddle. The lines of y do not cross perpendicularly to those of Rz. This implies that the
wave heights along concentric arc are not uniform, though the wave fronts draw the
arc except the vicinity.
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Fig. 9 Distributions of dimensionless wave height and propagating angle
(b/L=1.0)

In Fig. 9, the relative width of 5/L is 1. The wave energy becomes more concentrated
in the front area of the paddle than in Fig. 8, and the value of Rz becomes larger than
that of Fig. 8 because of the increase of /L. In Fig.9, the contour lines of Rz more
than 0.7 draw the curves similar to the arcs of slender ellipsises, but the lines of Rz
less than 0.5 show radiative tendency. The tendency of the radiation is due to the nar-
rowness of the area shown in Fig. 9, and if we compute the distribution of Rz in much
broader area, each contour line will draw oval curve in the area distant from the pad-
dle. This can be predicted by Eq. (57). The lines of y in Fig. 9 except the vicinity of the
paddle show radiative feature as well as those in Figs. 7 and 8. In the vicinity, the lines
turn towards the tip of the paddle and concentrate at it. The lines of y cross those
of Rr with sharp angles and the line of 30° is almost parallel to that of 0.2 in the region
of z/L more than 3. The value of vy a little bit differs from the angle y, calculated by
Eq. (64), but in the portion of straight line except the vicinity of the paddle, the slope
angle of the line agrees well with the value of y. It is drawn that though the waves
propagate along the lines of y except the vicinity, the wave height along the wave
front line shows a greater variation.

In Fig. 10 for /L of 1.5, the value of Rz shows quite different distribution from
the previous ones in Figs. 7 to 9. In the previous figures, the value of Rx gradually
decreases on the line paralle]l to z-axis, as x/L becomes large. In Fig. 10, however,
the value of Rx shows a wavy feature on the line. For example, on the line of ¥/L of
2, Ra gradually decreases in its value as z/L increase, and has minimum value of about
0.19 at x/L of 2. It begins to increase from the point and has maximum of about 0.3
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Fig. 10 Distributions of dimensionless wave height and propagating angle
(b/L=1.5)

at x/L of 3.5. It again decreases as x/L becomes larger. This wavy pattern makes the
distribution of Rz very complex. In the distribution of v, two lines of 60° and 80°
especially show very complicate pattern, but the other lines show radiative feature.
In the neighborhood of the paddle, the contour line of 100° appears. The waves in
the area surrounded by the line of 100° propagate in the direction of negative x-axis.
The wave propagating angle v in the figure is fairly different from the angle 5 calculat-
ed by Eq. (64), but the slope angles of the lines other than those of 60° and 80° show
good agreement with the values of y. For example, the angle y, at a point of (4, 3.4) on
the line of 45° is calculated by Eq. (64) as follows:

yp=arctan (3.4/4)=40.4 .

The difference becomes 4.6° between v and 7y, but the slope angle of the line is as
same as 45°. Therefore, the wave propagating angle can be calculated no longer by
Eq. (64), but the waves propagate along the lines of v other than 80° and 60°.

In Fig. 11 for b/L of 2, the feature of the distribution of Rz is almost similar to
that in Fig. 10, though an insular line of 2.5 appears in Fig. 11. The values of Rz be-
come larger than those in Fig. 10 because of larger value of /L. The wavy feature
of Rg on the line parallel to x-axis becomes more distinguishable than that in Fig. 10.
In the distribution of 7, the area of y more than 80° becomes broader. .The slope
angles of the lines agree well with the values of y except the lines of y more than 80°.
This means that waves propagate along the lines of vy less than 80°.

By the previous investigation of Figs.7 to 11, it has been clarified that wave height
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Fig. 11 Distributions of dimensionless wave height and propagating angle
(b/L=2.0)

on the line parallel to x-axis draws a wavy variation for the value of /L larger than
1.5. The variation of the dimensionless wave height Rz on the lines of various values
of y/L is shown in Fig. 12. In the figure, the values of y/L are 4, 8 and 16, and /L
is 12.8. A end line of the paddle is represented by a dash-dot line.

5 T I 7 100

2
e Seee l

4 i Wave angle

Wave angle 7 (deq)

x/ L

Fig. 12 Variations of wave height and wave propagating angle on the lines
parallel to z-axis
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As shown in the figure, both Rr and y draw wavy variations. In the portion of
z|L less than 4, the variation of Rz tends to become larger as y/L increases. On the
other hand, the variation of ¥ becomes smaller in the portion, as the line of y/L be-
comes more distant from the paddle. However, the average values of Rz and y are
2.0 and 90° in the portion, respectively. They are almost same as the values in two-
dimensional wave channel. Showing a wavy variation, the value of Rz gradually
decreases as x/L becomes larger than 4.3 on y/L of 4, 4.2 on y/L of 6, and 3.3 on y/L
of 16. Thus, the portion of the decrease of Ra shifts inwards as the line of /L become
more distant. The inward shift is caused by outerward flow of wave energy. The outward
flow increases the value of Rz in the right side of the dash-dot line, as ¥ /L becomes lar-
ger. Showing a great wavy variation, the line of the wave propagating angle y also
shifts upwards as the line of y/L moves farther. In the figure, the variations of Rz
and y show wavy features inspite of large value of b/L like 12.8. It is predicted that
their wavy variations come to disappear, and Rz and y become uniform in large
values of b/L.

The change of the variations of Rz and 7y is investigated by the computation
for various values of b/L. The results of the computation for y/L of 5 are shown in
Fig. 13.

In the case of b/L of 3.2, the value of Rx represented in the solid line gradually
goes down as x/L becomes larger. Showing a great variation, the wave propagating
angle y also goes down in the portion of x/L larger than 1.6. The decrease of Rz and
vy is due to the small value of /L. On the dash lines for 5/L of 16, the decrease men-
tioned for b/L of 3.2 does not appear in the computed portion. Rz and y of the dash
lines show wavy features and the wavy variations grow larger as x/L approaches the
end of the paddle. The mean values of Rz and y are 2.0 and 90°, respectively. Even
in the large value of b/L of 64, the wavy features of Rz and y are held, but the ampli-
tudes of the wavy variation for 5/L of 64 become smaller than those for /L of 16.
Therefore, it can be predicted that the wavy variations of Rz and 7y become uni-
form, as b/L approaches infinitely large value.
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Fig. 13 Variations of wave height and wave propagating
angle against b/L
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4. Evaluation of Theoretical Formula by Experiments

4.1 Wave Tank and Equipments for Wave Measurement

Experiments have been carried out to evaluate the theoretical formula obtained
in the previous chapter of 3. A wave tank used for the experiments is shown in Fig. 14.
The tank is 25 m long, 15 m wide, and 1 m high. Rubble mound and wave absorbers are
placed along the tank walls to prevent waves from being reflected from the walls.
The slope of the rubble mound is 1 to 5 and the wave absorbers are made of wire gauze
in multiple layers.

Three wave generators of piston-type are installed in the end of the tank. Each
of them has a wave paddle of 5 m wide, and can be operated simultaneously or in-
dependently. In the experiments, a central wave generator only has been operated

15m

Rubble Mound-

. >
£ £
g g
Lg. _2-
o63m g | T ©
o | > 3
N § =
<\
N - L
5m L Sm L S5Sm
| ]
— N VAN
I I | I I I
Wave Wave Wave
generator generator generator

e e'n'S

! Rubble Mound

Fig. 14 Wave tank used in the experiments
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Photo. 2 Displacement gauge

Photo. 1 Wave gauge

and the others are kept at rest. o

The waves produced by the single generator are measured by two wave gauges
of capacitance type, shown in Photo.1. The motion of the wave paddle is measured by
a displacement gauge, which is fastened on the motionless adjacent paddle by magnet,
as shown in Photo.2. A pen recorder of 8 channels is used for recording wave profiles
at two points and the motion of the wave paddle.

4.2 Experimental Conditions

Since the theoretical formula is
derived under the assumption of /\l
small amplitude, the amplitude of Wove measuring point
the wave paddle motion must be
held small, compared to the water
depth and wave length. Therefore,
the amplitude is determined to be
kept about +2 cm. The wave pad-
dle is moved periodically. The peri-
ods of the motion are 1 and 1.4 s.

The water depth is kept 0.63 m
in the experiments. The wave
lengths corresponding to 1 and 1.4s
become 1.54 and 2.73 m, respective-
ly. The relative widths of /L of
the wave paddle are 3.2 and 1.83 for
wave periods of 1 and 1.4 s, respec-
tively.

The waves are measured at ‘
about 140 points in the front area, I\I

as shown in Fig. 15. The points Fig. 15 Alignment of the wave measuring
except on the center line of the points

CUnit:em)

100@4=400 100@4 =400
50[02=(100

200@ 3:=600

100@ 2200

50@3+150
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paddle are symmetrical to the center line. According to the theory, the wave heights
at two points symmetrical to the line must have equal value each other. Then, aver-
age value at the two points symmetrical each other is taken as a wave height.

4.3 Comparison of Theoretical Values to Experimental Ones
Wave heights are computed as dimensionless value of H/2Y, in Eq. (56) which

3 ! ! [x=Om
DN 2 I e
° 0
H/2Y, \/ °
! b=5m, h=063, T=1s
Calculation
Experiment o
3 [x=05m
2 - o ° 2 —
H/ZYp ° °
|
y ! X
0 tb/2+b/24
3 lx=l.5m
2 -\o\_/—\
o
H/z\r,,I 3° \o.o 1 -
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g ! [x:25m
N T~ o
H/2Y, | ° °° ° e
0
| i ! I | x=35m
i I M |
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| j i i i [x=45m
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< i
H/ZYp . . o‘ Py ? 'T
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0 ° o © ! s |
(0] | 2 3 4 S5 [3) 7
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Fig. 16 Comparison of wave heights between computation and
experiment on the lines pararallel to y-axis (I=1.05s)
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includes the stationary term, because the wave generator used in the experiments
is of piston-type and wave height at the points of 0.5 m far from the wave paddle are
affected by the stationary term. The comparison of the dimensionless wave heights
H|2Y, between the computation and the experiment is shown in Figs. 16 to 19.
The experimental value is expressed as an average at two point symmetrical to y-
axis. Figs. 16 and 17 are for the period of 1.0s. On the other hand, Figs. 18 and 19
are for the period of 1.4 s.

Figure 16 shows the comparison on the lines parallel to y-axis. The computed
variations of H/2Y to /L draw wavy curves. On the line of z of 0 m which is a center
line of the paddle, the computed value decreases down to 1.4 at y/L of 1 from 2.5 at
0 and begins to increase from the value. Then, it reaches maximum of 2.5 at y/L of
3.5, and gradually goes down as y/L becomes larger. The experimental values follow

3
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Fig. 17 Comparison of wave heights between computation and
experiment on the lines parallel to x-axis (T'=1.0s)
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the above variation quite well. However, they are plotted under the computed curve.
The difference is about 0.2 in the value of H/2Y,. The variations of the computed curves
show quite different patterns for different lines of x. However, the experimental values
show good agreement with the computed ones in the variational pattern, though
they are a little bit smaller than the computed values.

In Fig. 17, where the comparison of H[2Y, between the computation and the
experiment are made on the lines parallel to x-axis, the experimental values are a
little smaller in the comparison to the computed ones, but their variations show good
agreement with the patterns of the computed curves.

Figure 18 shows the comparison of H/2Y, for the period of 1.4 s on the lines parallel
to y-axis. The wavy feature of the computed curves becomes weak in comparison to
that of Fig. 16, because b/L decreases to 1.83 due to a long period. In the computed
value on the wave paddle where y¥/L=0 and x/L<2.5, H[2Y, shows the value larger
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Fig. 18 Comparison of wave heights between computation and
experiment on the lines parallel to y-axis (T=1.4s)
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than 2.0 in Fig. 16, but it becomes smaller than 2.0 in Fig.18. On the line of £ of 0 m
the computed curve of Hj2Y 5 goes up from 1.7 at /L of 0, and after it reaches maximum
of 1.8 at y/L of 0.8, it gradually goes down as y/L becomes larger. The experimental
values quite well follow the above typical pattern, though they are plotted a little
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Fig. 19 Comparison of wave heights between computation and
experiment on the lines parallel to z-axis (T=1.4s)
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under the computed curve. On the other lines of x, the experimental values are kept
a little smaller than the computed ones, but their variations show good agreement
with those of the computed curves.

Figure 19 shows the comparison on the lines parallel to z-axis. On the line of y
of 0.5 m, variation of H/2Y, shows typical feature that the value of H [2Yp is small
near the central line of y/L of 0, and highest at y/L of 0.6. In the portion of y/L larger
than 0.6, the computed value goes down gradually. On the other lines, the values of
H(2Yp indicate maximum at y/L of 0, and decline gradually as x/L becomes larger.
The variation of experimental values follows that of the computed curve quite well,
as mentioned above. However, the experimental values show the tendency that they
are a little smaller than the computed ones.

In the comparison between the computation and the experiment shown in Figs.
16 to 19, the computed curve of H/2Y, shows good agreement with the variation of
the experimental values, though the computed values themselve are a little larger
than the experimental ones. Thus, the validity of the theoretical formula could be
confirmed by the experiments.

As the causes of the difference between the computed value and the experimental
one, the followings are picked up:

1) The wave paddle has not been built as it can slide on the tank floor. Therefore,
the paddle has a clearance of about 4 cm between its lower end and the floor. Con-
sequently, it happens that the wave energy leaks through the clearance, and that
the waves are not generated by the paddle height equal to the water depth. By con-
sidering the clearance in wave generation'”, wave heights are reduced to 979, and
959, for the periods of 1.0 and 2.4 s, respectively.

2) The motion of the wave paddle creates aberration to the adjacent paddles. The
aberration may disturb the waves and make them loss their energy.

It could not be estimated precisely how much the above causes affect wave
height.

5. Theoretical Properties of Oblique Waves Generated by
Serpent-type Wavemakers

5.1 Theoretical Formula of Oblique Waves

The velocity potential of waves generated by a single wave maker is expressed
by Eq.(50). The velocity potential of oblique waves generated by a number of unit
wavemakers can be obtained. by linearly superposing Eq. (50). However, a phase
difference between the motions of adjacent wavemakers must be considered in the
superposition.

It is assumed that oblique waves can be generated successfully by a number of
unit wave paddles of finite width b, as shown in Fig. 10. The wave has same phase
on a line parallel to a crest line. Therefore, the following equation for the wave phase
must be satisfied at two points on the line:
2m 2m b

- ——(y—ta—ne—)—((ft-i-e) , (65)

where b denotes a distance in z-axis between two points of ¢ and (¢4 1) and corresponds
to the width of a unit wave paddle, and Ly and & are a wavelength in the direction
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i itl
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Fig. 20 Phase difference between the motions of adjacent wave
paddles

of y-axis and a target angle of the propagation of the oblique waves, respectively. e
is a phase difference of the wave on line (¢+1) to that on line <.

Since Ly is given by
Ly=L/sin6 , (66)
¢ is obtained as
€= —gfﬂb cos @=—Fkbcos @ . (67)

By using the phase difference € given by Eq. (67) between the motions of the adjacent
wave paddles, the velocity potential ®o of the oblique wave is expressed in the follow-
ing formula:

v h k(h+2) (2
D= 3 H%(a,,y,,wfyf)%nh(wﬁ S_m No(/ Tz —kb—q) T (k9)") 44

i==-N_
cosv(h+z) (02 2 .
cos D) ™ 2Rl T ) dq}

—

=S (Bo Yot BrY)

X cos (gt—1kb cos )
T cosh k(h+2) S"”/z

k

(@pYp+asYy) Jolv/ (Rx=1kb—q)*+(ky)*) 44

sinh kh

—kbJ2
X sin (ot—1tkb cos 0)] , (68)
where N, and N_ denote the numbers of wave paddles in possitive portion and negative

one of x-axis, respectively, as shown in Fig. 21. Then, total number of the paddles
is (N4++N_+1). Equation (68) can be rewritten in the following form:
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Fig. 21 Alignment of wave makers

N (i+1/2)kd
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V TEbr—a\2 4 (B)2
sioh 7 Ve oV (RE—0)+ (RY)7) dg

cos v(h+2) S(ﬂwm 2 }

— DAY VNG A BE= g ) 4

-1/ T

x cos (oft—1kb cos 0)

(i+1/2)kd
—%(a,Yp-%—a;Yf) cosh k(h+2) i S

sinh kh Jo(v/ Rz —q)*+ (ky)®) dq}

G-1/2)kb

X sin (ot—1kb cos 0)] . (69)

By applying the Bernoulli equation (51) and by ignoring the stationary wave
term, the dimensionless wave height Rg is given as follows:

R H
2= 20y Yot asYy)
Ny b 0 (E+1/2)kd ]\, d
_ . JEZ=0)F v}
[{i=§‘,v_[cos (¢kb cos )S(i_mm o[/ (kx—q)*+ (ky)?) dq
. - g E+1/2)kd i 2
+sin (2kb cos )S(i_mm]o(«/(kx—q) + (ky)?) ‘ZJ}
Ny ) (i+1/2)kb
+{ 5% [cos (ikb cos e)S Jolv/ TEz—q)+ (Ev))) dq
i==m- G-1/nkd
(i+1/2)kd /2
—sin (ikbcosé))g( /)hNo(./——(kx—q)2+(ky)2)dq]}] . (70)
i—-1/2)k

The wave propagating angle y of the oblique wave is determined in same manner as
previously mentioned in 3.2.

Judging from the distributions of wave height and direction shown in Figs. 16
to 19, the oblique waves can be expected to become more uniform as b/L becomes
smaller. As b/L becomes infinitesimal, the summational form of Eq. (69) can be trans-
formed to an integral form as follows:

o cosh k(h+2z) %8+ TN
Dos =E(apyp+ arYy) sinh 2k S_“’_ {N"(“/(kx_q)z—'- (ky)g)

X cos (ot—gq cos 6)

— Jo(~/(Rx—q)*+ (ky)?) sin (0t —q cos 0)} dq , (71)
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where B- and B, are equal to (N-+1/2)b and (V. +1/2)b, respectively, and the station-
By applying the Bernoulli equation to Eq.

ary wave term is ignored in Eq. (71).
(71), ths dimensionless wave height Rz defined by Eq. (70) can be obtained as follows:

Re=|{{7" (Vv Ta—grF ) cos (g cos )

+Jo(v/(kx—q)*+ (Ry)?) sin (g cos 6)] dq}2
(72)

w;- [Jo(«/ (Rx —=¢)*+ (ky)?) cos (g cos 6)

—No(/ =g F (koY) sin (geos O da] | .

The wave propagating angle y of the oblique wave for the infinitesimal width can be

]
also determined by using the fluid velocity in the manner same as mentioned in 3.2,

5.2 Characteristics of Wave Height and Propagating Angle
Wave profiles and propagating directions on the lines in a target direction have
been computed under the conditions that total width B=20m, a single paddle width
b=0.5m, a water depth A=1m and a period T of the paddle motion=1s., The re-

sults computed for piston-type wavemakers are shown in Figs. 22 and 23. Figures 22
(a) and (b), respectively, show the wave profiles and the wave propagating direction

for the target wave angle § of 80°. As shown in Fig. 22 (a), the distance between
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successive wave crests coincides with the wave length L calculated by Eq. (8), but
the elevations of wave crests or wave troughs are not uniform and depend on their
locations.

Figure 22 (b) shows the wave propagating direction at each point on the lines.
The direction is represented by short arrows. The wave direction differes a little
at each point. The wave propagates as if a snake crawled. Consequently, the wave
direction does not completely agree with the target one, and varies around the target
direction. However, the wave propagates in the target direction on the average.

Figures 23 (a) and (b), respectively, show wave profiles and directions for the
target angle of 60°. The distance between successive wave crests coincides with the
wave length, which satisfies the dispersion relation of Eq. (8). The elevations of wave
crests or wave troughs are not uniform and depend on their locations. The tendency
of the non-uniformity in Fig. 23 (a) is same as that in Fig. 22 (a).

The wave direction shown in Fig. 23 (b) does not coincide with the target wave
direction, though the mean direction agrees with the target direction. The waves also
propagate as if a snake crawled, as described above about Fig. 22 (b).

By the above discussion of Figs. 22 and 23, it is clarified that the values of the
wave height and propagating direction are not uniform, and depend on the location.
Moreover, it is also clarified that on the average the wave propagates in the target
direction of 6. In order to investigate the properties of the wave height and propagat-
ing angle in detail, they are computed for the target angles of 90°, 80°, 60° and 45° on the
line parallel to z-axis. B and b in conditions of computation are same as those in Figs.
22 and 23, but they are represented in the dimensionless forms in the figures.

2 3 9
° ! x/L

(a) Wave profile (b) Wave propagating direction
Fig. 23 'Wave profile and propagating direction of the oblique wave
propagating on the line of the target angle 6 of 60°
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In Fig. 24 (a) for wave direction, on the line of ¥ /L of 4, the wave propagating angle
varies at a position, but the average angle is almost equal to the target angle of 6. In
0 of 60°, y approaches to 60°, showing wavy variation, and in x/L more than —3, the
average of y agrees with 60°. In 6 of 45°, y gradually approaches to 45°, showing
wavy variation, and in x/L more than 1, the average of y becomes 45°. The shift of
the point where the mean value of y agrees with a target angle 6 depends on the value
of 8. As 6 becomes smaller, the point moves toward right side in the figure. Peak-
to-peak distance of the wavy variation becomes shorter as @ is smaller. For example,
the peak-to-peak distance relative to L is about 1.3 for 90° and 0.6 for 45°. In the
cases that §=60° and 45°, undulation pattern appears clearly in the variation of y
besides ripple pattern.

The variations of wave height and propagating angle on the line of y/L of 4 are
shown in Fig. 24 (b) where the computation is performed under the conditions same as
those in Fig. 24 (a). The wave height in the figure is represented by the dimensionless
value of Ra defined by Eq. (70). The wave height shows wavy pattern even in the
portion where the mean wave angle becomes almost uniform in Fig.24 (a). The wavy
pattern consists of undulations and ripples. The undulating variation becomes more
distinguishable as 6 changes from 90° to 45°. In the portion of uniform mean value
of v, the value of Rz varies from 1.7 to 2.3 for 90°, from 1.7 to 2.4 for 80°, from 1.9 to
2.6 for 60° and from 2.0 to 3.1 for 45°. Thus, the variation of Rz grows greater in the
portion, as 6 becomes smaller.

Figures 25 (a) and (b) show the variations of wave angle y and wave height Rr
on the line of 8 in y/L, respectively. The line is twice as distant from the paddle as
that in Fig. 24. In 6 of 60° and 45°, the wave angle y slowly approaches to the target
angle of 4, and the portion of the mean uniform angle shifts more rightward in Fig. 25
(a) than in Fig.24 (a). The wave propagating angle draws wavy pattern and the peak-
to-peak distance in the wavy pattern decreases as ¢ becomes smaller. The varia-
tions of the wave height in Fig. 25 (b) also show wavy patterns. The wavy pattern
consists of undulations and ripples. The undulating variation is predominant and
the ripple one is secondary, as 6 is small like 60° and 45°.

The followings are drawn by the above discussion on the variations of the wave
angle and wave height shown in Figs. 24 and 25:

1) Both wave angle and height show wavy feature and their values are not uniform
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Fig. 24 Variations of dimensionless wave height Rz and wave propagating
angle y to the target angle @ for y/L of 4
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Fig. 25 Variation of dimensionless wave height Rg and wave propagating
angle y to the target angle § for y/L of 8

on the line of computation. The wave propagating angle y agrees with the target
angle @ on the average.

2) The wavy pattern of wave angle and height consist of the undulations and the
ripples. The undulating variation is predominant and the ripple one is secondary,
as the target angle ¢ is small like 60° and 45°.

5.3 Variations of Wave Height and Propergating Angle against Relative Width of
a Unit Wave Paddle

It is clarified in the previous section of 5.2 that it is difficult to generate uniform
oblique waves, even if the phase of the motions between the adjacent wave paddles
is controlled. The variations of the wave propagating angle and the wave height
depend on the relative width b/L of the paddle. Then, the dependency of their variations
against the relative width is investigated numerically.

Figure 26 shows the theoretical variations of the wave propagating angle v and
the dimensionless wave height Rg for 6 of 80° against various widths of 6. The condition
of the calculation is shown in the figure. The condition that =0 m means that the
width of the paddle is infinitesimal. The wave angle ¥ and the dimensionless wave
height Rz show wavy features without regard to the value of b, but the features be-
come weaker as the width b is smaller. In the figure, the variations of y and Rx are
much small different between O m and 1 m of 8. For b of 2 m, however, y and R=r
vary from 60° to 90° and from 1 to 2.7, respectively. Thus, the variations are very
large, compared to the variations in b of 0 m or 1 m.

In Fig. 27 for 6 of 60°, the value of y for b other than 2.0 m varies around the
target angle of 60°, but for 2.0 m varies from 90° to 145°. In the case that 5=2.0 m, the
value of Rz varies between 0.5 and 2.7. Thus, the variation of Rz is very large for b
of 2m. The width of 2.0 m is quite useless for the period of 1.0 s to generate uniform
oblique waves. It is better to let & smaller in order to make the wave propagating
angle y closer to the target angle of 60°. In the wave height, Rz varies more slowly as b
becomes smaller, but the variation shows little difference among the values of & less
than or equal to 1 m, though the variation becomes more undulating in the smaller
value of b. Our interest is attracted in the theoretical fact that the mean value of Rx
becomes larger in the portion of y close to the target angle, as the value of b is smaller.

In Fig. 28 for @ of 45°, the width b of 2.0 m is found inadequate in generation of
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oblique waves, because the value of y is far from the target angle of 45°. Even in b
of 1 m, a great difference from & of 45° appears in the portion of x/L less than 0. For
x/L more than 0, however, the wave angle y shows the tendency of gradual conver-
gence to the target angle of 45°, oscillating around the line of 45°. The amplitude of
the oscillation is large, compared to that of 0 m, or 0.5 m. The difference of between
the widths of 0 m and 0.5 m is negligibly small. The variation of y becomes smaller as b
approaches to small value, but even if b is made infinitesimal, the wavy pattern can-
not be made to disappear. On the other hand, the wave height shows variational fea-
ture of undulation as b becomes smaller. The curve for b of 1 m shows largest variation
with short peak-to-peak distance. The undulating variation appears more distinguish-

180

B=20m, h=Im

" T=1s , §-=45°

160 (r‘\ q ” \ '-b==l~::m. y/L=4
‘l\ \’I i 0.5m --—----
a0l -illl i Im
4 U U’ \ \ 2m —o—o—

ea) o \ I
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-4 -2 o 2 4

Fig. 28 Variations of wave propagating angle and wave height for
various values of b (§=45°)
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able, as b approaches to a small value. In b of 0 m, the value of Rx varies slowly
from 2.3 to 3.3.
The above discussion on Figs. 26 to 28 draws the following conclusions:

1) In order to make the wave propagating angle uniform and close to the target
angle, it is necessary to let the width of the paddle shorter as the target angle
becomes smaller.

2) The variations of ¥ and Rz always show wavy features regardless of the value of
b. Even if the width of b is made infinitesimal, it is impossible to remove
their wavy patterns. The variation of y, however, become smaller, as b becomes
more shortened.

3) The undulating variation of Rz grows more distinguishable, as b becomes smaller.

5.4 Oblique Waves in a Wave Tank with Reflective Side Walls

In the previous section, the oblique waves in a wave tank of infinite width and
length or in no reflection tank from side walls are discussed. In an ordinary wave
tank, waves are reflected from the side walls.

In this section, the waves in a tank with reflective side walls are theoretically
investigated by using mirror image method. It is assumed that both side walls reflect
the waves completely. In the mirror image method, an infinite number of wave tanks
symmetrical to the basin walls are imaged in both sides of the tank, as shown in Fig.
29, and in each imaginary tank, oblique waves are generated in the direction sym-
metrical each other to the walls. The waves in the real tank can be expressed as the
superposition of these imaginary waves. This is formulated as follows:

Dre =Dop+ 2 (Qt'l' ¢R) ’ (73)

where @, and @ denote the velocity potentials in the real tank with the walls and
in the imaging tank without the walls, respectively, and @z and @= are the velocity
potentials of the imaginary tank without the walls in the left side and the right
one, respectively. By using Eq. (69), Eq. (73) can be rewritten as follows:
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Fig. 29 Schematic figure of mirror image method for estimating waves
in a wave tank
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cosh k(h+2)

o N o
Drs = D) ENz(apr-l'aij) <nh B

j=—w i=—

{No(/ Rz —q)*F (ky)¢) cos [ot—(—1)7kb cos 6]
—Jo(v/(kx—q)*+ (ky)*) sin [ot—(—1)’kb cos O]} dg , (74)

S(i+l/2)kb+jk8

(i-1/2)kb+jkB

where the stationary wave term are ignored and the origin of the coordinates (z, ¥)
is placed at the center of the tank width. When b is infinitesimal, Eq. (71) is used
instead of Eq. (69). The computation is carried out on the three lines parallel to the
wave paddles. The distances of the lines from the wave paddles are shown in Fig.
30. The waves on the line of 8 m nearest to the paddles will not be much influenced
by the reflected waves, and on the middie line of 17 m, the influence of the reflected
waves is supposed to reach the central part of the line. On the most distant line of
34 m, the reflected waves will give influence in a whole width. The influential portion
of the reflected waves is determined in the optical reflection.

According to the mirror image method, an infinite number of imaginary wave
tanks must be considered, but in the computation, a wave tank is imagined in each
side to save computing time. Figures 31 to 33 show the variations of ¥ and Rz on the
nearest line, the middle one and the most distant one, respectively. In each figure,
a dash-circle line represents the variations of v and Rz without the side walls.

On the nearest line of Fig. 31, typical standing waves appear in the vicinity of
the right side wall, where the wave propagating angle y shows a feature of radical
change. The peaks of Rz appear in every wave length L distant, which coincides with
the distance calculated. In comparison between the curves for 4 of 0 m and 1 m, the
dash line of 1 m varies slowly, while the solid one of 0 m does finely. In the value of
Rz the solid line wholly gives larger value than the dash one. In the central part of
the tank, the wave propagating angle of solid line and dash one are close to the target
angle of 60° on the average, though they show ripple features.

In Fig. 32, the line of computation is 17 m distant from the paddles. The influ-
ential portion of reflected waves by the optical reflection is in right side from the
center of the tank, but the influence of the reflected waves spreads over the whole
width, judging from the variation of the wave height in Fig. 32 computed by the theo-
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retical formula. The degree of the influence decreases towards the left side wall. It
is found that the distinguished standing waves appear in the portion of /L more than
—3 and the peaks of their heights appear in every wave length L of 1.56 m. On the
line there is no portion of almost uniform angle of the wave propagation.

On the line of 34 m, the appearance of the reflected waves only is estimated by the
optical reflection. The wave propagating angle vy varies small around 120° except the
neighborhood of the right side wall as shown in Fig. 33. Consequently, it is clarified
that the waves on the line propagate in the reflective direction and that they are re-
flected waves from the right side wall. The dimensionless wave height Ra shows
a wavy feature and varies between 2 and 3. On this line, additional one pair of
imaginary tanks seems to be necessary in order to estimate the wave height and
propagating angle more precisely.

As mentioned in the above discussion of Figs. 31 to 33, in a wave tank with the
reflective side walls, the standing waves are produced by the reflection from side walls,
and the wave height and propagating angle vary largely. It is impossible to generate
oblique waves uniform in height and propagating angle, even if the separation of inci-
dent waves and reflected is done.
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6. Discussions

6.1 Problems of a Temporarily Used Wave Channel Built in a Wave Basin

As mentioned in the previous chapter of 3, it has been clarified that waves gen-
erated by a single wavemaker show the wavy feature and the snakelike propagation on
the line parallel to the paddle, even if the width of the wave paddle is fairly wide. We
often build a temporary wave channel inside a wave basin, as shown in Fig. 34. All
wave paddles in the basin are not operated, but one or few paddles among them in
front of the channel are operated for saving energy. If the tips of the side walls of
the channel are distant from the paddles, the wavy feature and the snakelike propaga-
tion of the generated waves are unavoidable in front of the paddles. When the waves
with the feature enter the channel, they propagate in it, being reflected from the side
walls. In the consequence, the wave height in the channel does not become uniform
widthwide, but the variation of the wave height appears. To prevent the non-uni-
formity of the wave height, the tips of the wall should be made to approach to the
wave paddle as far as possible. .

Figure 35'® shows the variation of wave height in front of two wave paddle,
each of which is 5m wide. The wave heights were measured for estimation of the
height of incident wave which passes through the opening between the breakwaters,
whose alignment is represented by dash lines in the figure. The waves used in the
experiments are unidirectional irregular waves and the distribution of the wave height
is drawn as the ratio to the mean significant wave height in the measured area with
uniform depth. The wave height varies at point to point. The variation seems to be
caused by the wavy feature described above. At the time of the experiments, we had
no consideration of the wavy feature caused by the finite width of the paddle, but we
expected that waves had uniform height in the central narrow area without receiving
the influence the end of the paddles. When we make experiments in the alignment of
the wave paddles like the above, we must take care of the appearance of the wavy
feature and elaborate to prevent it.

N Wave absorber . MIMHINMMN

Side wall
Wave channel

Wave paddle
[ ]

Fig. 34 Temporary wave channel built inside the wave basin
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Fig. 35 Distribution of irregular wave height in front of wave paddles

6.2 Generation of Directional Random Waves

It has seemed the best way to use oblique waves as component wave in the uni-
form generation of the directional random waves. In the theoretical analysis of the
oblique waves, it is clarified that the oblique waves generated by serpent-type wave-
makers do not show uniform heights and propagating directions, but vary, depend-
ing on their locations. In especial, the variation of the wave heights become larger,
as the target angle of the wave propagation becomes smaller.

Consequently, it cannot be expected that uniform directional random waves
are produced by the generation of the oblique wave as a component one. We must
allow the variation of the directional spectrum as far as serpent-type wavemakers
are used. The detail discussion on the variation of directional spectrum will be carried
on in a future paper.

7. Conclusions

The following conclusions can be drawn from the present study on the oblique
waves generated by serpent-type wavemakers:

1) The velocity potential of waves generated by a single wavemaker is theoretically
derived under the assumption of small motion in the wave paddle, as given by
Eq. (50).

2) In the result of the computation of wave height, the stationary wave term includ-
ed in Eq. (50) is neglegible except the vicinity of the wave paddle.

3) For the ratio of paddle width to wavelength or 5/L smaller than 0.5, the contour
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lines of the height and the propagating angle of the waves generated by a single
wavemaker show the concentric feature and radiative one, respectively. They
cross orthogonally each other. However, the contour lines of the wave height
become of more complex pattern and cross slantly to those of the wave angle, as
the value of b/L become larger.

- Even if b/L is as large as 12.8, the wave height shows wavy feature, and varies

from point to point. The variation becomes gradually smaller as the value of /L
becomes larger, but it remains even for /L of 64.

The theoretical values of wave heights agree well with the experimental ones.
Consequently, the theoretical formula has been confirmed to be valid for the
estimation of wave height.

The theoretical formula for oblique waves is obtained as the superposition of the
velocity potential in Eq. (50) by considering the phase difference of the motions
between adjacent wave paddles.

The oblique waves generated by serpent-type wavemakers show wavy feature
in their height and propagating angle, which depend on the value of b/L, target
wave angle 6, and the location of interest.

The wavy variation of the height and propagating angle of oblique waves con-
sist of ripple and undulation patterns. The undulation pattern becomes more
predominant in the variation, as the target angle 6 becomes smaller.

The wavy variation of the height and the propagating angle of the oblique waves
is impossible to make disappear, even if the width of the unit wave paddle is
made infinitesimal.

The oblique waves in a wave tank with reflective side walls are computed with
the consideration of the reflected waves from the side walls. In the computed
results, the standing waves appear in the vicinity of the wall on the line in paral-
lel to and near the paddle, and the portion of the standing waves spreads more
broadly as the line becomes more distant from the paddles. On the line suffi-
ciently distant, the reflected waves only appear and they propagate in the direc-
tion of the reflection from the side wall. The height and propagating angle always
show wavy features.
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List of Symbols
A° an unknown coefficient of ¢ in Eq. (30)
As an unknown coefficient of ¢, in Eq. (30)
B total width of wave paddles
B, total width in possitive x
B_ total width in negative x
Be an unknown coefficient of ¢ in Eq. (30)
Bt an unknown coefficient of ¢, in Eq. (30)
b width of a wave paddle
ce an unknown coefficient of ¢, in Eq. (30)
Cs an unknown coefficient of 4.’ in Eq. (30)
De an unknown coefficient of ¢, in Eq. (30)
D : an unknown coefficient of ¢, in Eq. (30)
E(x) : an odd function
F(A) : cosine transform of F(x)
G(x) : an odd function
G(A) : cosine transform of G(x)
g : acceleration of gravity
H wave height
h : water depth
Jo(x) : Bessel function with index zero
Ji(z) : Bessel function with index one
Ko(z) : modified Bessel function with index zero
k wave number, 2=2n[L
L wavelength
L, Ly=L[sin@
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number of wave paddle in possitive x
number of wave paddle in negative x
Neumann function with index zero
Neumaan function with index one
dimensionless wave height

distance from the origin, r=+/2*+y*
period of the paddle motion

time

fluid velocity in z-direction

component of Vi, in z-direction
V=su*+0v?

maximum of V

fluid velocity in y-direction

component of V.. in y-direction
horizontal axis parallel to the wave paddle
amplitude of ¥p

amplitude of y;

horizontal axis normal to the wave paddle
displacement of the wave paddle at the still water surface
parallel displacement of the paddle
rotational displacement of the paddle at the still water surface
vertical axis, possitive upwards

i1 sinh 2kh]}
ap=sinh kh/{khl:l+———2kh

oy =sinh b [sinh kh— (cosh kh—1)/kk] / {kh[l +

. sin 2vh
Pr=sin® Vh/ivh[l + oWk ]}

Br=sin vk [sin vh+(cos vh—l)/vh]/{yh[l +

wave propagating angle

yp=arctan (y/x)

phase difference between adjacent wave paddles
displacement of water surface

target wave angle

a parameter in cosine transformation

real solution of Eq. (9)

angular frequency of the paddle motion, o=27/T
velocity potencial of waves generated by a single wavemaker
velocity potential of oblique waves

velocity potential of oblique waves in a tank with reflective side walls
a function concerned to cos ot

a function concerned to sin o¢

an unknown function concerned to cos ot and cosh k(h+-2)
cosine transform of ¢

an unknown function concerned to sin o¢ and cosh k(k+4-2)
cosine transform of ¢

an unknown function concerned to cos of and cos (% -2)
cosine transform of ¢,

an unknown function concerned to sin of and cos v(k+-z)
cosine transform of ¢,

sinh 2kh] }
2kh

sin 2vh]‘
2vh j






