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1. Theory of Transient Fluid Waves in a Vibrated Storage Tank

Tomotsuka TAkKAYAMA*

Synopsis

Presently, many undersea storage tanks are under construction or being planned, but seismic
forces are not being considered as a design force, because its computation method has not
been established yet.

As an approach to the analysis of the seismic forces this paper deals with the problem
of transient fluid waves which are going to develop inside a tank. In the paper, theoretical
formulas for internal waves and dynamic fluid pressures in the transient state have been derived
under the assumption that the tank is completely filled with two different fluids and forced to
move vertically and horizontally at the same time.  For the case without vertical movement,
the complete analytical solution can be readily obtained; but in the case of concurrence of
horizontal and vertical movements, resonant conditions are investigated by an approximate
solution. Consequently, it is made clear that the vertical movement plays as important a
role in the resonance phenomenon as the horizontal movement. If the natural frequencies of
the fluid inside the tank are low and the tank is forced to move with high frequency, the
resonance phenomena may even appear under the condition of w,=|r—2|, where o, is the
n-th natural angular frequency, and 7 and @ are the angular frequencies of the vertical and
the horizontal tank oscillations, respectively.

The theory is applicable to the same problem of a ground storage tank. The validity of
the theory is confirmed by experiments on rectangular and circular ground tanks which were
vibrated in the horizontal direction only. The experiments also confirm that the solution for
a rectangular tank is applicable to the computation of the propagation of waves generated by
a piston type wave paddle.

¢ Chief of the Storm Surge and Tsunami Laboratory, Hydraulic Engineering Division
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Theory of Transient Fluid Waves in a Vibrated Storage Tank

1. Introduction

In Japan, an oil storage law was established in 1975 in order to provide sufficient oil
supply to fundamental industry and to prevent the people from being disturbed by a goods
scarcity due to a temporary oil crisis. The law obliges oil companies to reserve a sufficient
quantity of petroleum which assures 90 days’ oil supply. In order to accomplish the obliga-
tion by 1981, a very large area of nearly 50 square kilometers is needed for the construction
of new oil storage tanks”. Given our small country, it is impossible to provide the wide space
even if the storage is necessary at nearly any cost for our national economy. Therefore, the
utilization of the sea may become necessary for the purpose of long time petroleum storage.

The development of oil resources in the sea has compelled many other coutries to construct
temporary offshore oil storage tanks used as oil transport station. In consequence, many off-
shore structures are being planned or already under construction in area like the North Sea,
the Arabian Gulf, off the Java and so on '»%%%,

The discovery of large oil fields in the North Sea has particularly promoted the construc-
tion technique of sea tanks. However, the application of the present engineering technique to
Japan is dangerous, because of the different environmental conditions encountered there.

The problem of earthquakes is especially important among those differences. Other coun-
tries which have a plan of sea tanks have rarely been attacked by large earthquakes, while
Japan has frequently suffered from them. Consequently in those other countries, seismic forces
are almost never considered in the practical design of sea tanks, and the external design forces
are generally determined by wave forces in the heaviest storm, (though the importance of
earthquakes is described in some engineering rules or recommendations concerning the sea
tank). Another reason for neglect of seismic forces in design is that the computation method
of those forces has not been established at present. Therefore, the development of the
computation method is a pressing need for the construction of oil storage tanks in seismic area.

Since an undersea storage tank is surrounded by sea water and completely filled with
water and oil, two types of dynamic fluid pressures are developed by the tank oscillations and
act upon the structure; one is a fluid pressure by surrounding water and the other is wave
pressure produced inside the tank by the waves excited on the boundary surface between
the oil and the water. The former may be estimated by the solution of the steady state condi-
tions, but in the latter, the analysis of the transient state is required, because the duration of
an earthquake is not long enough for the phenomena inside the tank to reach a steady state.

As an approach to the analysis of the latter problem this paper deals with the theoretical
analysis of transient fluid waves in a tank. The theory derived in the paper is applicable to
the transient phenomena inside a ground and an undersea storage tank. The application of
the theory is restricted only to a rectangular or a circular tank. The theory is verified by
some experiments for the model ground tanks.

2. Literature Survey

Since the dynamic fluid pressures excited by earthquakes are important in the design of
structures such as dams, ground tanks, and sea tanks, many analytical methods have been
developed to analyze them. Most, however, deal with dams or ground tanks, and estimate the
magnitude of the dynamic fluid pressures in a steady state condition. The papers which deal
with the transient phenomena inside a tank are rare.

First, Westergaard®’, taking water as a compressible fluid, obtained a formula which gives
the fluid pressure on a rectangular dam in a steady state condition. Then, Jacobson® solved
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Tomotsuka TAkAYAMA

the corresponding problem for a circular tank which partially contained water. He assumed
that the tank was shaken in a horizontal direction only, ignored the convective terms of the
acceleration in Euler’s equation and therefore kept the fluid surface still. His solution of the
dynamic fluid pressure p, at a point (r, ) is expressed as

pi=—pFi(®) cos 6 i‘, ApnoiJy iC2n—1kr] cos (2n—1) kz, (1)

s’

where p denotes the density of the fluid, fx(#) is the horizontal acceleration, @ is the angle
measured from the acting direction of the earthquake, z is the vertical coordinate positive up-
wards, J,(ink,r) is a Bessel function of the first kind and k=x/2h, where % is the water depth.
The coefficient A, is determined from the boundary conditions (rigid tank wall, r=r,)
thus:

1/(2n—1)?
Joli@n—1)kr,] — Tzn——lﬁr_o*’* (2n—1)kro].

. 4
A =(— D"

(2)

Taking his assumptions into account, Eq. (1) is applicable only for short initial time. He also
solved the dynamic fluid pressure for the case of a circular tank surrounded by water.

Since then, many analytical methods have been developed. They, however, were all
carried out in the same fashion, which requires finding the solution of Laplace’s equation that
satisfies the boundary conditions.

Housner™ derived satisfactory solutions by an approximate method which avoids partial
differential equations and infinite series. First, he divided the dynamic fluid pressures into
impulsive pressures and convective pressures, and then obtained the solution for each case.
The formula of impulsive pressure p, is given as follows:

— 1 2| . - .
p‘={4/3 oh {z/h+?(z/h) }u,,tanh(«/3l/h). lz] <1.5L (s

plao . |zl>1-5L,

where p is the density of the fluid, #, is the tank acceleration, and 4, Z, L and 2, which are
shown in Fig. 1, are, respectively, the fluid depth, the half length of the sliced section, the
half length of the tank, and the vertical coordinate positive upwards. In the case of a rectan-
gular tank with the length of 2L and fluid depth of A, the impulsive pressure p; is obtained
by substituting of L into / in Eq. (3):
= 1 | L
pt={“/ B oh{elh+1CIm?) i tanh(v/347) : 12| <1.5L

oL, : |z >1.5L.

(4)

In the case of a circular tank with a radius of 7, and a fluid depth of %, the impulsive
pressure at a point (7,, ) is also obtained by inserting of 7,cosf instead of /:

Y 1 2| . -0 .
P‘={,\/3ph {z/h+-2—(z/h) }uo tanh (¢3 2 cos o) 2| <1.5r, (5

07 4l COS O : 2| >1.57,.

In the case of free oscillations of the fluid in the fundamental mode, which is produced by
the movement of the tank wall, he obtained the convective pressure 2. in the fluid by

—8 —
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Fig. 1 Tank in Housner’s Theory

=P¢og—lé—{ § Q = Jr+-Z- 22 Ig; Q} sin wt, (6a)

cosh\/- h

where  Q={" zbdz,b'=dbldz, o*=gv/T]K tanhy/ 221,

I,=L:c’dA, K=2g:%-<§;bxdx>2(1+ l’g")d;,

A is the horizontal area of the tank, ¢, is the surface slope of the liquid, and z, ¥, 2, and &
are shown in Fig. 1. In the case of a rectangular tank with a length of 2L, the convective
pressure p. is given as

(6b)

po=S ppar{E_L(ZY) : \/i{: P @)
where w’=\/—-—g— \/ o h (7b)

In the case of a circular tank with a radius of 7, the pressure p. is given as follows:

p,=%p¢ogro{i-——§—(%)x _i.ri(_) ] — © 70 sinwt, @Ba)

7o
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_.]27 9 27k
where 0)2—\/ B tanh e @b)

7o

Though many papers are published on the corresponding problems, the general earthquake
proof design is founded on Housner’s analysis. For example, the T.I.D. Report of U.S. AEC
recommends the application of Housner’s analysis to the design of tanks®.

The sloshing phenomena where the fluid surface displacement resonates with a periodical
external force of a period close to the natural frequency of the liquid, are very important in the
design of tanks. Since the fluid surface displacement becomes so large during the sloshing
that the linear analysis is no more valid. Therefore, nonlinear effects must be taken into
account in the analysis of the sloshing phenomena. Chester® studied the shallow water case
when the depth was very small, and showed that bores were formed in a model rectangular
container. Faltinsen'® dealt with the case of the water depth not being small when compared
to the breadth of the rectangular tank. .

With respect to the transient phenomena inside tanks, Sogabe and Shibata''>!*»'* studied
them for circular structures, assuming an ideal fluid. For the transient state condition, they
obtained the following velocity potential @ at a point (r, )

_ & 2J,kx) cosh k,(h+2) r
O=ry [E(ki 71— 157, Ckro) cosh ki —“ﬂ]“’s 0, (9

where 7, 6 and z are cylindrical coordinates, 7, is the radius of the tank, %, is the i~th solu-
tion of Ji(kr)=0, Ji(k7) is a Bessel function of the first kind, u, is the tank velocity,
v, is a solution of the following equation :

Uy +28,0,0, + 0iv, =i+ 28,0,1,, ) . (10)

where w{=gk, tanh k.2, and ¢, is a damping coefficient. From their experiments, they drew the
conclusion that the value of {; was very small and negligible. Using Eq. (9), they investigated
the process of the growth of the fluid surface movements in resonance with the first mode fre-
quency. As a result they presented a figure for the computation of the response magnification.

No other papers on the transient behabior of imcompressible fluids inside tanks could be
found, although a few'®:'* dealt with the same problems for a compressible fluid.

In the case of a sea tank, two different fluids that completely fill thé structure are usually
oil and water. When such a tank is vibrated by an earthquake, internal waves are developed
on the boundary surface between the liquids. Studies on those excited internal waves inside
a sea tank are rare.

In the case of a circular tank, Ishikawa and Shiigai'®’ studied them in a steady state con-
dition. They concentrated their attention to the resonant internal waves of which period was
close to the lowest natural frequency of the fluids, and obtained the solution for the internal
waves of finite amplitude by perturbation method. They also carried out experiments, and
concluded that the first approximate solution, which implies a linear solution, accurately repre-
sented the phenomena and that the true natural frequency was a little bit larger than the
theoretical one. It is very interesting to notice that in their experiments, they observed cross
waves traveling along the wall of the tank.

Sawamoto and Kato'” analyzed the corresponding problem for a rectangular tank. The
analytical method was quite the same as that of Shiigai and Ishikawa. In their experiments,
they also observed cross waves: the causes of the wave development have not been made clear.

Although the above mentioned papers have dealt with the phenomena inside a tank
vibrated by an earthquake, no papers have investigated the transient phenomena inside an
undersea storage tank completely filled with two different liquids like oil and water. The
results of field measurements of earthquake accelerations have clearly shown that an earthquake

— 10 —
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has two components of accelerations: one is horizontal and the other is vertical. Therefore,
tanks must be shaken by an earthquake not only horizontally but also vertically. No papers,
however, have discussed the effect of the vertical oscillation on the phenomena inside the tanks
(either land or sea structures). The evaluation of the above two unsolved problems is impor-
tant in order to estimate the proper seismic force to be used in the design of sea tanks.

3. Formulation of Dynamic Equations

It is assumed that a tank is completely filled with two fluids which have different densities
o1 and py and that the two liquids have a clean smooth boundary surface between them and
do not dissolve in each other. Furthermore, it is assumed that the liquids are imcompressible
and are under no shear stress. Consequently, the liquids are taken as the ideal fluids.

If the liquid of density p; in the upper layer is heavier than that of density pop in the
lower layer, the boundary surface becomes unstable and is gradually deformed by the sole
action of a gravitational force. Finaly, the lighter fluid of density pn occupies the upper layer.
Therefore, it is natural to initially assume that the liquid of density p; is lighter than that
of density pg.

As shown in Fig. 2, the origin of the coordinates (x, ¥, 2) is fixed at the wall of the
tank, and moves with it. Euler’s dynamic equations of each liquid can be written as the
vector expression :

a

——g; +(01V)01=——;I Vp1—F, an
a 1

—avtn + gV vg= “or Vpi—F, 12

where v and F represent the velocity vector of fluid particle and the external force vector
exerted upon a fluid particle, respectively. They have components as follows:

vi=(uy, vy, wi), Ur=(um, vn, wi), 13
F=(fz@cosa, fz@®sina, g+fv). 4)

The fluid pressure is represented by p, and the suffixes I and II stand for the quantities related
to the fluids of density p; and pr. In Eqs. (13) and (14), %, v and w, respectively, denote
the velocity components to the axes of x, ¥ and z. The functions fz(#) and f,(z) represent
the horizontal displacement at an angle @ to z-axis, and the vertical displacement. The grav-
itational acceleration is denoted by g. The symbol V is vector operator:

0 ., 0

A (15)
where i, j and k are the unit vectors of the z, ¥ and =z axes, respectively.

We need other equations to solve Eqs. (11) and (12). They are the equation of mass
continuity in each fluid, and are

Vv =0, 16)
Vor=0. an

Since boundary and initial conditions are necessary to obtain a unique solution, these con-
ditions must be determined. On the boundary surface between the two liquids, two conditions
must be satisfied: one is that the pressure in the upper layer must equal that in the lower
layer, and the other is that the boundary surface displacement calculated in the upper layer
must be equal to that calculated in the lower layer. The former condition is expressed in the

2 .
V=El+

— 11 —
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Fig. 2 Schematic Drawing of a Sea Tank

\

following equation :

Pili=c=pul.-0 a®)
where { is the displacement of the boundary surface from its still position. The latter
condition can be obtained as follows:

o

ac o
S =01 e —ur |==:%—’”I R

oy
a
0y’

a»

0
=wlI]z=(_uI[ |z=45§r—‘vn lz=:

On the rigid boundaries like side walls, bottom and ceiling of the tank, the velocity must
satisfy the condition that its normal component to the boundary vanishes on the moving
coordinates. This condition can be expressed as follows :

nwi=0 , n-vg=0, 20)
where n is the unit vector along the normal to the rigid boundary.

In addition to the above conditions, the initial conditions given by the following equations
are necessary :

L Itso=0: (21)
v]IIzso=0- (22>
When r represents the displacement vector of a fluid particle, it can be expressed as
(]
ro=|vde, (23)
]
t
rn=j vydt. @2
[

— 12 —




‘o .

Theory of Transient Fluid Waves in a Vibrated Storage Tank

Equations (23) and (24) mean that a fluid particle keeps its still position until the tank starts
to oscillate.

We can obtain the unique solution if we solve Eqs. (11), (12), (16) and (17) under the
boundary conditions given by Egs. (18) to (20) and the initial conditions of Egs. (21) to (24).

4. Linearization of Equations

Some of the equations of motion, of continuity equations of fluid mass, and of boundary
and initial conditions, which are given in 3, include nonlinear terms. Since it is very difficult
to solve these equations under these conditions, the linearization of the equations will be inves-
tigated in this chapter.

In problems such as forced oscillation, the most influential quantities are the amplitude and
the period of the tank movement, the size of the tank, the thickness of the lower and upper
layers, and the densities of the two liquids. The following quantities are used in order to
make all of the quantities nondimensionalized.

For the tank displacement, the mean amplitude By and the mean period 7y of the horizon-
tal displcement are used. With respect to the size of the tank, the lengthes of I, and Z,
are used. As for the thickness of the layers, each thickness in the still state is used and re-
presented by A1 or hy. The densities p; and pg are used.

By using these representative quantities, all quantities in question are nondimensionalized
as follows:

h1Z (in upper layer)

hxZ (in lower layer),
ur=2Byiiy|Ty, v1=Bs01/Tu, wi1=Bgwi1/Tu,
un=DBylin/Ty, vy=BuO1/Ty, wi1=DBgwn/Ty, (25)
Sfu@)=Buf ulT%, f¥(®O=BafvITz,
p1=p1h1Bup1lTi,  pu=pnhuBupul/Ti,
(=B, t=Tul, 9=Bug/Ti,

=17, y=13, z= {

where the swung bar refers to nondimensional quantities.
Substituting Eq. (25) into Egs. (11) and (12), which include nonlinear terms, gives
the following nondimensional equations:

ouy By _. 0uy , By 5 oty , By @ oty _ _ hy 9P:1 _ 2

ot 7L Moz T V1% T Pl s I, oz Jucosa

01}1 BH.. 3'111 B” 5 a'UI BH ® 2'UI ___h__I aﬁl _Frr

e VL Yoz YL Vi TR @l ez T L, ey ) rsina (26)
0w w1 B,, 5 0wy BH D awl aPI

at +1_,”“‘ai Z, Iay+hl 5z — 7 —g-f7.

When the suffix I in Eq. (26) is changed to II, Eq. (26) becomes the nondimensional
dynamic fluid equations of the lower layer. To linearize each equation of Eq. (26), the
effect of the nonlinear terms (the second to fourth terms in the left hand side) must be small
enough in comparison with that of the linear terms to be omitted. Therefore, the following
conditions are inferred:

By

Bug, Bug, Bug, Ba
Il <1, I, <1, hi <1,

hog T<1. @n

— 13 —
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From Eq. (27), it is seen that the amplitude of the tank displacement must be much smaller
than the size of the tank and the thickness of each fluid layer.

By substituting Eq. (25) into Eq. (19), the following nondimensional equation of the
boundary surface displacement can be obtained :

g _ . By o _Ba o
PF - WI|s=satim1 — l”u; =2 e l:'UI 5=f—1”€_6_37. (28

If 2=B,L/h; is small, each term of the right hand side can be developed around £=0 by

Taylor’s expansion as such:
y.

ac -~ BH a'li') I

?__wl +h_1 9% i=°+ .........
_Bay | 88 _ Bigoar| o€ ...
1, ‘oz Lh1> 0% |=00%
_Bu. | 8 _ Bi ;09 ’ & ’
I, “Mi=oag ~ Lhy >~ 0% |=009 : 29

Applying of the linearization conditions of Eq. (27), Eq. (29) is easily linearized as follows:
o _ .

F - W1

(30)

With repect to the liquid of density pr, a similar equation to Eq. (30) is derived as follows:
g _ .

o v

i=0 D
By combining Egs. (30) and (81), the following relation can be obtained:
Wi |see=wx | :=0. 32

If we accept the linearization condition of Eq. (27), we can derive the pressure p; on the
fluid boundary surface from the third equation of Eq. (26) as

P1|smng =PIy =

rrxf oWy g B,, s

0

%&ﬂ’. (33)
i
Considering the quantity of Bzl/h1 to be small, Eq. (33) is reduced to

p1

_ Busf., 7o, 0W]
R L As e (34)

In the same way, we can derive the pressure py as

PII s:;ﬁia _ﬁn' 3=

—_Bx awn
=3 c( +F+

o) (35)

]

Since prl;-¢ is equal to p1|.-; on the boundary surface from Eq. (18),

p1hi
prhn

Pu|, pmy =" 7 -P1|, (36)

and from Egs. (34), (35) and (36) we gét

= | _e1h:
P|s™ prhr

p1

+Brg(ge i 22n V-0 Bur(py a2 )

=0

— 14 —




Theory of Transient Fluid Waves in a Vibrated Storage Tank
In the relation of Eq. (32), Eq. (37) is more simplified as folloyvs:
., 0 :
2L) (g+7v+228] ). (38)

b2,

ot (14

a‘wn

|/|g+fy|<<1 ‘ (39)

then Eq. (38) becomes linear, and is written as

pil, =2 5| e Be(gps) _en), “

When Eq. (39) is rewritten in dimensional form, it becomes

dwrg _ | 0wn ”

at =0 - at . << g+f7(t) 'A (41)
By the relation of Eq. (31), it is reduced to

2| <lorrio]. (42)

Since the other equations like those of the continuity of mass, and of the boundry and the
initial conditions, do not include nonlinear terms, it is not necessary to carry out their nondi-
mensional analysis in order to obtain the condition for the linearlization. After all, the
conditions of the linearlization are given by Egs. (27) and (39).

Since the amplitudes of tank displacements due to an earthquake is very small compared
with the size of a tank, the conditions of Eq. (27) are supposed to be satisfied. The
condition of Eq. (39), however, will have to be verified by field observation of vertical
acceleration of earthquakes and measurements of the fluid boundary surface displacements.

5. Derivation of Basic Differential Equations

5.1 Rectangular Tanks
By nondimensional analysis, all equations can be linearized if Eqs. (27) and (39) are
satisfied.
The origin of the coordinates (x, ¥, z) is fixed at a corner of the tank, as shown in
Fig. 3. The linearized dynamic equations are written for each fluid as follows:

_agtL= ——p%—fg(t) cos a,

%: —%y——f},’(t) sina, (43)
Tt= g fi®,

a;—f: - :fa];: —fu(t) cos a,

t";/_tn= - Zfa];/ —fu@)sina, (49
O
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Fig. 3 Rectangular Tank

The continuity equations of fluid mass of Eqs. (16) and (17) is rewritten in the expressions
with the velocity components as

auI avI awl _
Py + P + oz =0, (45)
aun avn a'wn _
oz Toy "oz O (46)

From Egs. (30), (31) and (40), the conditions of the boundary surface between the two liquids
can be written in the following linearized forms:

aC ’
'é? z2=0y (47)

Pule=o=p1 =0t (on—p1) C(g+S¥ (D). (48)

The boundary conditions for the rigid boundary are universally expressed in Eq. (20), but
in the case of a rectangular tank with a longitudinal length I, and a width Z,, it is more
convenient to divide them into each condition, like on side walls at £=0 or Z,, and ¥y=0 or
l,, on the bottom at z=—hy, or on the ceilling at 2=h; thus:

FWI |z=0 =WI

%1 | 2m0,0.=0, %1]s=0,.=0, 49
Vi |v=o, l,,=0’ v |1/=0, ,=0, . (50)
wi Ia=h1 =0, wrn l.=-nn=0- (51)

The initial conditions are written as follows:

%1 | 120=0, #nlico=0,
v1lce=0, vI Jt<0=0, (52)

wi l120=0, wilico=0.

S




Theory of Transient Fluid Waves in a Vibrated Storage Tank

The displacement (X, Y, Z) of a fluid particle in the z, ¥ and =2-directions are expressed
with respect to each layer as follows:

X1=§:u1dt , X]I=5:u]1dt,
¢ ¢

Y1=50'111dt , Yn=50‘0ndt, (53)
¢ ¢

Zv=(rwide, Zy={wnar.

Since a fluid particle on the side wall moves with the tank displacement, there occur no

relative displacements along the normal to the wall. Therefore, the boundary conditions of

the fluid particle displacement on the rigid boundary are reduced to
X1 |:=0,1,=0,
Xu |:=o,x, =0,
YI |v=o,1, =0,
Yul v=0,1, =0,
ZI Iz:h[ =0,
Zili=can=0.

64

Referring to Eq. (54), X1, X5, Y1 and Yy may be represented as follows:

nr
T,

L.

Xy =3} An.(®) Br, (2) sin 2%z,

Y1=3C1a(8) Dr. (2) sin 22y,
n= v

Yr=3Cn.() Du, () sin 2y,
n= v N
where A1,(2), Ap.(2), C1.(#) and Cyp.(¢) are functions of ¢ only, and Bi.(2), Bp.(2),
D;.(2) and Dy.(2) are functions of z only.
From Eq. (63), %1, g, v1 and vy can be easily derived as

X1=33 A1.(8) Br. () sin

) (55)

uy =§=':°A'xu (&) B1.(2) sin 7;” z,
un=:2=°A'nn (¢) Byp.(2) sin 7;'7 z,
- ) (56)
VI =20C'n. () D;.(2) sin ’7 v,
= v
'UI[__-inclﬂn (¢) Dy.(2) sin 77: y.
n= v

The velocities 1, #n, v1 and vy in Eq. (56) obviously satisfy the boundary conditions of Egs.
(49) and (50). By substituting Eq. (56) into Eqs. (45) and (46) and integrating with repect
to z under the condition of Eq. (51), w; and wy can be obtained as follows:

wi =—§ﬂA'm () cos 2% xj‘ B, (2)d=z
n=0 l, l, Ahl

—§‘_. 2T Cio (®) cos Py S‘ D;.(2)dz, (G
o [, L, a1

n=/

— 17 —
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wr=—51E 4, 22z Bu()dz
-5 - Cia cos—yj Dr.(2)dz. (58)

From Eq. (47), ¢ and the relations between A1,(¢#) and Ap.(¢) and between Ci,(z) and
Cu.(2) can now be derived as follows:

t=—3 2 An @) cos 2z [’ Bru()d
ZE-Cua(®) cos IF

nol,,

=y |, Dun(ddz (59

AL@=An®| Brdz/| Bi.dz (
60)
C1u®=Cr.®|’, Drdz/ | iz

Furthermore, p1 and py can be given by substituting Egs. (57) and (58) into the third equa-
tions of Eqs. (43) and (44), respectively, and integrating them with respect to 2. They then
become

pP1=pi1le=0— mgz—mfv(t)z+912[— i (D cos

L
<[\ [} Br@®agan+ZECi cos By [ [ Dr. @ dtan), 61)
and
pr=pulsm0— Pngz—.ﬂnfv(t)z-l'm[z[ AL (8) cos 1T
(" Bu®dean +25.Cii () cos ’;—”yj | _an,.(e)dEdr;], 62)

where p1.-0 and pr|.-, are integral constants.
If w; and vi in Eq. (66) and p1 in Eq. (61) are substituted into the first and the second
equations of Eq. (43), they yield

33414 () Bra() sin IF

~- g gl B a0 in e, mcodea]
—fu(®) cos a, (63)
Cix (0 Dra(@) sin 7y
=—-L il B(22Ver 0 sin %y [ [) Dioddtan)
—fu(®) sin «. (64)

Differentiation of Eqs. (63) and (64) by 2 gives

S Ai @ Bir

=5 (2= )4t @ sin %z || Bu dx, (65)

— 18 —

<



Theory of Tranmsient Fluid Waves in a Vibrated Storage Tank

SCi. (DD

_2<

n=p

® )i @ sin 45y [, Diu()ds. 6

V

Multipliying Egs. (65) and (66) by sin(azz/l,) and sin(nzy/l,) and then integrating them with
respect to x and ¥ from O to /., and [, respectively, we can obtain

Bin =(22) Brdz,

L 67
. N (nm 20
Di. (”)"(T) | Dua.
The solutions of Eq. (67) can easily be obtained as follows:
B1.(2)=cosh 2X-(z—h1),
(68)
Dy, (z)=cosh 7;” —hp).
v

The respective substitution of By,(2) and Dy,(2) in Eq. (68) into Egs. (63) and (64) gives

3% Ain () cos 7%y sin 2T x—%l_;u— £ cos a, 69)
$3Ciu @ cos in 7%y —af,‘;—;—f () sin a. 70)

Substituting Eq. (62) and zp and vy of Eq. (56) into the first and the second equations of
Eq. (44) gives

é Al 7;#
a;;:[l{l;xo +3[ (5F) 4 @ sin 7 ([ Bu.(®dean), an
2 Ci,
=— 8P§;;° +nz_‘,o[( ) Cra () sm—y j'fihnDn”(g)dgdy], 72)

If Eqs. (71) and (72) are differentiated by 2, equations of the same form as Eq. (67) are
obtained as follows:

, _{nnm 2( s
B (2)=(%) [ Bradz
nr \*(* @3
Din@=(3E) [, Dr.(dd=.
The solutions of Eq. (73) are given by
Br.(z) =cosh ’;”
: 74

Dy.(z)=cosh 2%
L,

— 19 —
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The substitution of Eq. (74) into Egs. (71) and (72) yields the following equations of forced
oscillations :

iAnn T o=— 1 apnl’ o —fu(t) cos a, (75)
=0 l.: plI

L | a?ll|z=o L

L y= T -fu(t) sin a. 76)

The substitution of Eq. (48) into Eqs. (75) and (76) gives

nr

o1 At z
n=0 lz
2p1l.- o )
B Palx! ~=(en—p1) (g+f"(t))a—c—:0nfu(t) cos a,
T
@n
anClIn 7;7r y
v

a 2=0 " . .
- Paly|——(Pn—PI) @+ 5= oufi @ sin a.

Since 9 ;;““ and 9 ;I"" can be obtained from Egs. (69) and (70), an& L is given by

Eq. (59), Eq. (77) can be rewritten, by using the relation in Eq. (60), as

L. " an
1+ ——= S AL
o1 tanh—’}—”h 1

iMs

0

Hu- 2 ) @i S - sinh by

=— (1——%)f§(t) cos a, . | : 73

1+ l

o1 tanhZ

Ms

C]In (2) cosh —hn smT—

n=0

% hy

Ly
+H1-EL) e B

(1_ o1 )fH(t) sin a. o @79

By multiplying Eqs. (78) and (79) by sin(nzz/l.) and sin (nzy/l,) respectively and integ-
rating them within their corresponding lengths of the tank, the summation symbol is elimi-

nated, and thus

(1—%) 77 tanh 77 hi
Lot £ g+ (D} Ara(D

A (O +
P1 tanhrz—zhn

1+
o1 tanhl;-r-h I

— 20 —
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nrw
P1 tanh—l‘—hn nm

cosh 7 hy, (80)

__(1__(’1.) 20=C(=D" £my cos a/ 1+

A Pu nr P tanhlll-ﬂ—h I

(1—”—‘)ﬂtanh ne

. I l .
Crn(+—E e — g+ £7 (D} Cra®)
P[ tanhT—hH
14—
o1 tanh 7;” h1
v
n 01 tanh 2% hy
=—(1 0 >‘2[1(—D]-fu(t) sin a/ 1+ ——*% — >cosh 7;'1 hy. (8D
I pr tanh lﬂ. hy v
v

The initial conditions of An,(#) and Cr,(¢) which satisfy Eqs. (52) and (53) are expressed
as

A;In (tSO)=O s AHn(tSO)=0y } (82)

Ct'lu (t£0)=0 > C]In(tgo):()-

If Eqs. (80) and (81) are solved for given functions of fz(¢) and f7(2), the displacement
of the boundary surface between the two liquids is easily obtained by substituting the solutions

into Eq. (59).

™ T
L= = 7 hn

z

(83
v
The values of pr{.-o and prl.-o are needed in order to obtain the formulas of the fluid
pressures. The pressure pil.,-, is given by the combination of the integrated results of Eq.
(69) with respect to x and Eq. (70) with respect to ¥ as

[
pll,=o—p1§o[m

. (t)(cos ”l’: x—cos—nzir—) cosh 'Zr hy
]

L )sin a} £ @+ 1p1 il 1ote o @0

(t)( l cos % )cosh nx

2
—p1 {(.1:— l2’ )cos a+(

where [p1].=0] el yolr is an intgral constant and may be a function of ¢ only.
Combining Eqs. (75) and (76) gives

PH|'=°=PH§°[,$; I (t)( nT cos—)coshm' I

l, 2 I,
nz nx
Cnn (t)( l 2 )COShT’ln
- _L b
pn{(x &) cos at (y—-2-)sin af £ O+ (puliedd s s, (85)
where [pr].=0) N is also an integral constant.

— 21 —
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Since Eq. (48) relates p1|,=0 to pxl.-o, the substitution of Egqs. (84) and (85) into Eq.
(48) gives the following relation:

[PI |z o] z=— 1/=‘L— [PlIIz o] z=7‘- v=—2—- (86)
Since at time =0, there exists a static fluid pressure distribution of

[PI I:¢0] z—— y=—— lv "Po'l‘PI ghI s (87)

where p, is a preliminary weighted pressure of the fluids, which may be a function ¢.

By the relation in Eq. (86) and substitution of Eq. (87) into Egs. (84) and (85), the
integral constants of p1l.-o and prl.-o are determined. Finally, we can obtain the fluid
pressures from Egs. (61) and (62), thus:

p1=potp19(h1—2)—p1fr (D=
—pr[(x— lz )cos a+<y— 12 >sm a}f,,(t)

+P12 [— A7 () {cosh (z—h1) cos l—x-cosh I hi cos —ng—}
" (t){ 7Z«T (z—hl)cos—’%y—cosh 7, h1 cos—zﬂ—}], (88)
pu=potg(prh1 —prz)—prfv(2)
-—pu{<x—- 123 ) cos a+< 12" ) sin a}f}}(t)
+pn§‘,o[;l;—A&’,. @® { '}” ’}” - ’;” o }
l Cu,. (t){ nn- l cosh hn cos 12”—}] . (89

If we take p, and p; as zero, these equations are applicable to the corresponding problems
encountered inside a rectangular ground storage tank.
5.2 Circular Tanks

When the dynamic equations of Eqs. (43) and (44) and the equation of continuity of fluid
mass of Egs. (45) and (46) are transformed into the cylindrical coordinates (7, 6, 2), under
the condition that the horizontal tank displacement occurs along the line of 8=0, they are
expressed as follows:

%‘£_I= —-‘,l;—-aﬁp’ﬁi—f}}(t) cos @,

Yot L Fising, ) (90)
oy =—71I_%1’z—1—g—f§»’(t),

a_’;;L%—_KTl; aain —fu(t) cos @,

%1; “,,17 igg —fi®) sin 6, (91)
oL PL—g—f3 @,

o
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Ou,1 w1 Oupr 4 0wy _
or + + 790 + 9z 0, (92)
Ou,n , %y, Ousr 4 Own _
or T Tree oz O %)

where u,, 1, and w are the velocities of a fluid particle in the directions of , @ and =,
respectively. A schematic circular tank is shown in Fig. 4.

The conditions on the boundary surface between the two liquids are given by the same
equations as Eqs. (47) and (48):

& ot ecs=wrlimo 99
Pulezo=p1 =0t (e —p{g+f7(D}L. (95)
The boundary conditions on the rigid wall of the circular tank are represented as follows:
%12 =0, %xlrr, =0, (96)
w1 |oent =0 , wile=—ar=0, €H))

where 7, is the inner radius of the tank, and 2; and hy are the thicknesses of the upper and
the lower layers, respectively, as shown in Fig. 4.
The initial conditions are given in the same form as Eq. (52):

#,1]e0=0 , #,1}e<o=0,
s leco=0 , %sn}ice=0, 98)
wi ltso=0 s 'wllltso=0-

The displacement (X,, X;, Z) of a fluid particle in the r, 6 and z directions is given in the
same form as Eq. (53):

¢ ¢

X1 =S°u,1dt, X,]I=Lu,]1dt,

Xo1 =S:ualdty Xa!I=S:ualld3y 99
t (3

Zi={widt, Zu={ wrds.

The forms of u,1 and u,; which satisfy the boundary conditions of Eq. (96) are expressed
as follows:

u, 1 =§GEM (&) H1(2) Jw (ko) cos nf, }
u, = Z‘G;m () Hyoi(2) J 7 (ko) cos 78,

(100)

where k,, is the i-th solution of Ju.(k.7.)=0 and J,(k.7) is a Bessel function of the first kind,
which astisfies the following equation:

TiCker) + g Jilhuir) + {1 =} JuChur) =0 (o)

(k.u )’

The first equations of Eqs. (90) and (91) are integrated with respect to r, yielding
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4f(h)

[

Fig. 4 Circular Tank

pi1=p1 |'=o—pIS: agt'l dr—rfu(t) cos 6,
(102)

pPu=p1 |,=o—ﬂnso—%g-dr—rf}}(t) cos 6,

and then the substitution of p; and py of Eq. (102) into the second equations of Eqgs. (90)
and (91) gives

dusy __ 1 il , 8 X du,
at oL 730 a8 Jo o O y
(103)
dur _ 1 9pnl.=o L0 g du,1_ g,
ot oy 790 790 Jo ot :
When 7 approaches zero in Eq. (103), we get the following expressions :
. ou, . 1 aPI |v=o 62u
lim 2L =lim {—— } + 221
P t 7 6l 000t |,-o’
0 0 PI , 7 [ 2 0 ) (104)
. Ouey —1 {_L Jai 1=o} 0°u,
lm =Umi— =5 ) T 260 |,

Since both 9u,1/0¢t and 9u,y/d¢t have finite values at the center of the tank, each first term of
the right hand sides of Eq. (104) must vanish. Then, Eq. (103) is rewritten as

— 24 —
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0usy =LS' %u, 1 dr
0

ot r agar 10
duo =LS' Teen ;. (105)
ot r Jo 9ot T

Substituting Eq. (100) into Eq. (105) and then integrating Eq. (105) with respect to ¢ under
the initial conditions of Eq. (98), we have

uﬂl = —”2‘ knr G;ni (t) HI ni(z)Jﬂ(knir)’
it Kag (106>

Ugn = — 2 kn G;lnt (t) H]In‘(z) Jn(knir)«
a,8 Ko7

The substitution of Eqs. (100) and (106) into Egs. (92) and (93) and their integration with
respect to z under the boundary conditions of Eq. (97), give the following equations for w;
and wy:

wi =,,2, koiGlae () Ju(kair) cos no‘g; H:.(2)dz,
’ . Qon

wy =n2‘k,,‘G},., @) I (kair) cos n0S “Hnni(z)dz.

By combining Eqs. (94) and (107), the following relation between Gy..(z) and Gp.(#) is
derived :
0 0
Gra® =G| | Huu( dz /[ Hru( dz. (108)

Furthermore, the boundary surface displacement of { is given by s'ubstituting Eq. (107) into
Eq. (94):
(= DkuGra(®) JuChair) cosn0| | Hiu(2) d. (109
) « -
From the substitution of Eq. (107) into the third equations of Eqs. (90) and (91), and their
integration with respect to 2, the following fluid pressures of p; and pn are obtained:

D1 =01 12— 01 Sk Gias © Ju Chuird cos 8 " Hrai(@ded
—ei{g+f7(®}=, 110)

1=l sms— PxShus Gins () Ja Chaird cos 6 ||| Huwu@agan
—puig+fr (D)= 111

The substitution of p; of Eq. (110) and «,; of the first equation of Eq. (100) into the first
equation of Eq. (90) gives

E‘Gi'm (®H1.(2) Ju (kur) cos nb

=L 2l 4 Sy, 61, (0 T2 Chr) cos | [ Hra®dtan
P1 or ot oJal

—fu(t) cos 8. (112)
The differentiation of Eq. (112) by =z gives the following equation with respect to Hyq(2):

Hiw =K Hiu(2) dz. (113)
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The solution of Eq. (113) can be easily obtained as
Hiu(2)=cosh ky(z—h1). (114)
By using Eq. (114), Eq. (112) can be rewritten as
n%]Gﬁu (®) cosh &k, h1 J5 (ko) cos nd

=—p—1lip—1'—'—°—fﬂ(t) cos 0. (115)
Similarly to Hi.:(2), Hy.(2) is derived as
Hiyn(2)=cosh k. (z+hyp). (116)

Consequently, the following equation is obtained:

Ethf,u (® cosh k,hy Ju(k,r) cos nb

__plT a—P%Jf—:o—f}Q(t) cos 4. Qa1

By using the relation between pi1l.-, and py|.-o in Eq. (95), Eq. (117) can be rewritten as
EtG]']/nt (@) cosh kuhy J o Ckar) cos né

—ﬁ%_(l ‘:I ){g"'f" (t)}_—fn(t) cos 6. (118)

Since { has already been obtained in Eq. (109), the combination of Eqs. (115) and (118) gives
E{Glll'ni (®) J 7 (ko) cosh k, by cos nd

=%IH— ZEG 1t (&) J 7 (knir) cosh kb1 cos n@
(1—— O1 ){g+fy(t)}2km Grne(8) Jo(kagr) sinh kyihy cos n6
- (1__1) Fid) cos 0. (119)
on

The relation between GI,;,(t) and Gr,,(¢) found in Eq. (108), can now be rewritten, by using
Eqgs. (114) and (116), as

G1a(t)=—Grn(t) sinh &, Ay /sinh kb1, (120)
The substitution of Eq. (120) into Eq. (119) gives

%‘,{H%} Girne (&) JaCko) cosh kyihy cos n0

+ (1_9_1) {g+f7 (t)}Z}k,“Gn,,i(t) Ju(kayr) sinh k, by cos n6
=— (1—- )fg () cos 8. (121)

By multiplying Eq. (121) by cos 76 and integrating it with respect to 8 from 0 to 2z, we have
the following equations:
if n=1:

— 2% —
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;{ +_z_111t2_{11]/?_:h£1.} G () J1 (k1) cosh k by

+ (1—- ZI ){g+fv(t)}2kan,,(z) J; (k) sinh &, by

= — —__I__ p
(1 = ) Fi@. (122)
if nx1:
P tanh k,,,- hy z .
;{H——pn ! } Gt (8 Jo Ckair) cosh knchy

+(1—"—I) (g+f7 (D) S kaGrae(®) JoChur) sinh ko
=0. (123)

In the case of nx1, Eq. (123) is rewritten as follows:
P tanh &, hy _P1
L Lrtanbdi) G+ (15 ) (047 (O} kuGruu(s) tanh kushx
=0. (124)

If fv(¢) vanishes in Eq. (124) and the boundary surface has some initial displacement from
the still surface, then Eq. (124) becomes an equation for free oscillations. However, it has a
solution of Gy, (¢)=0 under the initial conditions given by Egs. (98) and (99). Therefore,
only Eq. (122) is significant.

By integrating Eq. (122) with respect to r, multiplying both sides by rJ,(k,r), and
integrating again with respect to » from 0 to r,, the following equation is derived:

P1 tanh k“h][ "
{1+ or tanh k, by }G““ ®

+(1— zl ) lg+fv(®}) k.G (8) tanh ky 2y

=—(1—_>f;( )coshk iy’ (125)

_ 2k, 7o
where L= S T ) (126)

If we solve Eq. (125) for the initial conditions, the boundary surface displacement of { and
the fluid pressures of p; and pp can be obtained.
The boundary surface displacement is given by

C=2‘Gnu(t)«]1(kuf) sinh k“hn cos 8. Qz2n

The fluid pressures can be derived in the same way as for the case of a rectangular tank.
First we get prl.-o and ppl.-o by the integration of Egs. (115) and (117). We obtain

P1leco=—p1 ;:-k—l—G;'., (© cosh kyhy J, (ki) cos 0
1%

—p17fua(t) cos 0+p1l:=0, r=0s
and d Q28)

Prli=0= —an) Guu (#) cosh ky;hy J, (kyer) cos @

_Pﬂrfﬂ(t) cos 0+Pll'x=o, r=0s J
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where pil.o, r=0 and ppl.=, ,=0 are integral constants.
The relation between pp|,-, and pxl.-» given in Eq. (95) gives

?p1 l::o, r=0=PI |x=o, 7=0- (129)
Since the pressures show an initial static pressure distributions at =0, then:
P1le=0, r=0=po+p10h1, (130)

where p, is a preliminary weighted pressure, which may be a function of time.
Consequently, the fluid pressures in each layer are given by the following equations:

P1=potp19(h1—2)—p1 {f¥(Oz+7fr(t) cos 0}

—o13 kLG;;i (&) J, (ko) cosh ky(z—h1) cos 6 (131)
it
pr=pot+9(prh1—prz)—pu{fr(®)z+rfr(e) cos 6}
—o13} kl Gi () J, (kyir) cosh ky, (z+Ar) cos 6 (132)
11

As shown in the case of a rectangular tank, the above equations are applicable to the
corresponding problems inside a circular ground storage tank.

6. Solution of Basic Differential Equations

The differential equations in Egs. (80), (81) and (125), derived in the previous chapter,
have to be solved under proper initial conditions in order to compute the displacement of the
boundary surface between the liquids and the dynamic fluid pressures exerted upon the walls
of the tank. Since the differential equations show the same form, they can be expressed by
the following representative form:

¢' O+ a{g+frDlgO)=—B.fu(D), (133)

where g(#) represents Ap,(2), Cr.(2) or Gr.(¢), fu(?) and f,(z) represent the horizontal and
the vertical tank movements, respectively, and a,, 8. and ¢ are constants.

It is very complex to derive the analitical solutions of Eq. (133), which includes a function
of ¢t as a coefficient of g(z). Therefore, it is convenient to consider two cases: one is the case
of fy(¢)=0, and the other is the case where f(#) has some nonzero values which depend on
time.

6.1 The Case of f,(£)=0 :
In this case, Eq. (133) becomes a linear differential equation with constant coefficients :

q"' (O +a.99(t) = — Bufu(®). (134)
The initial conditions of g(#) and f(¢) are-given as follows: A

qd@=0, q¢()=0,

Fu(®=0, fa(®)=0, for zso.} (135

If the Laplace transformation, which is generally effective for an initial value problem, is
applied to Eq. (134), then it is reduced to

D= f,%(5), (136)

— 28 —
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where s is a parameter of the Laplace transformation, and ¢*(s) and f4*(s) represent the fol-
lowing transforms of g(z) and fn(t), respectively:

g*()= rq(t)e"‘dt,
o Qas3n
F¥ = fatwemar.

Since the inverse transform of ¢*(s) gives ¢(¢), g(¢) is obtained by the residue method as

WD =—Bufu(D+ ﬂ,,wS:sin 0(t—1) fa(dr (138)

where w=+/a,g, which indicates a natural angular frequency of the fluid oscillation.

By using Eq. (138), ¢(¢#) can be computed for any arbitrary horizontal tank movement.
For instance, in the case of fy(£) =bysin®¢, q(¢) is expressed, by integrating the integral term
in Eq. (138), as

q()=— ﬂnbgﬂgg_wﬁ {sinw t—% sin .Qt} for wxQ, (139)
q@®)=— g" by {sin wt+wt coswt} for w=9. (140)

Equation (139) indicates the case of non-resonance and Eq. (140) the case of resonance. In
the latter case, the amplitude of ¢(¢) increases propotionally with time.

The resonance of lower natural frequencies is generally more influential for the problem
of oscillations with multiple natural frequencies. We investigated this phenomenon.

We deal with a boundary surface displacement { inside a rectangular tank. In order to
simplify the problem, we assume that the direction of the earthquake’s action is parallel
to the z-axis, that is, Cr.(#)=0, in Eq. (83). If the value of 7 is sufficiently large, tanh
(nwhi/l)=1 and tanh(nzhyg/l.)=1 in Eq. (80). Therefore, @, in Eq. (134) is proportional
to n, while B, is inversely proportional to n. Consequently, the natural frequency of o is
proportional to the root of n. Since the amplitude of £ in Eq. (83) is approximately
proportional to t®pB,, referring to Eq. (140), it becomes inversely proportional to the root of
n as follows:

camp °C_~/t—'77_y (141)

where Camp represents the amplitude of C.

Equation (141) implies that it takes about ~/7 times longer for famp of the n—th mode to
reach the same height as that of the first mode. In consequence, resonant phenomena in
higher modes are less critical problem than those in lower modes. Furthermore, if we take
into account the damping of internal waves, the resonance in high modes becomes less impor-
tant, because the energy dissipation of the waves becomes larger as the resonant modes be-
come higher.

6.2 The Case of f-(f) having non-zero values

Since Eq. (133) includes a combination term f,(¢)g(#), its analitical solution is very
dificult and complex to obtain. We investigate the characteristic properties of the solution
such as resonance conditions and a variation of angular frequencies, by obtaining approximate
solutions excluding close resonance frequencies'®’.

The functions of f»(¢) and fy(¢) are assumed to follow simple sinusoidal curves, which
are given by
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fr@®)=—ayr*sinrt, }

142
Fu(t)=—by2"sin ¢, (142)

where a, and b, are the amplitudes of the tank displacement, and 7 and £ represent the angular
frequencies of the tank movements.
The equation is rewritten as

¢’ () +o*{l—esin rt}q(t) =E sin 2¢, (143)

‘where o=+va,9, ¢e= a,;)r and E=B,b,2".

It is assumed that ¢(z) does not show any resonance and that ¢ is a small quantity
compared with unity, that is, e<1. Then ¢(#) is transformed to

q(®) =S+ Usin £2¢. (144)
The substitution of Eq. (144) into Eq. (143) gives
S () + 02 S() =ew’{S(t) + U sin 2t} sin £2¢, (145)

where U=E/(0*—2*) and ox2.
If ¢=0, the solution can be expressed as
S@)=7,sin ¢, (146)

where ¢=wt+&,, and the amplitude 7, and the phase difference & can be determined by the
initial condition.

A small disturbance of & sin 7¢ may vary the values of 7, and ¢. So the quantities of
S(2), 7, and ¢ are assumed to be expressed by the power series of ¢ as follows:

S@) =7, sin ¢+ew, (o, ¢, 0, ) +"u, (o, P, 0, T+ 000 ,

Dl — e () +E A+

L9 — B (1) + By (n)+--o0

where ¢=7¢, t=0¢, and %, and u, are presumed not to include the fundamental mode, that is,

(147

52‘“1(”09 ¢,0,1) cos ¢d¢=0,

S:zuz(vo, ¢, 0,7) cos ¢d¢p=0,

and 5:‘“1(7]0) ¢) g, t) Sin ¢d¢=0’

, (148)

5:‘5‘2(770, ¢, 0,7) sin ¢d¢=0,

If we substitute Eq. (147) into Eq. (145) and equate the coefficients of ¢’s of the same power
in the right and the left hand sides of Eq. (145), the following equation for the coefficient
of ¢° is obtained:

— 7" sin ¢+ 7,w? sin $=0 (149)

This equation is always satisfied under the conditions of Eq. (147), and agrees with Eq. (139)
which was obtained by neglecting f,(2).
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For the coefficient of ¢' the following equation can be obtained:
Oty syt Tty 0 Lty o+ 27 Qoo+ 27 0U o+ 27 0UF 01,
=@*(7, sin ¢+ U'sin 7) sin 6—20A, cos ¢ +2B,7,w sin ¢.
The application of the condition of Eq. (148) to Eq. (150) gives
A,=0, B,=0.

Consequently the solution of %, is given by

u,=——’7°—w2— cos (¢+0a)
2rCw+7)

770(92 _
t Sre—7y Y

Uo®
_——Z{w*—(T+Q)’} cos (z+0)

Uw?
- a—27

where 7 %20, ox7+2 and wx|7r—2|.

As for the coefficients of ¢?, the following equation can be obtained:

cos (t—a),

O tppsF T g+ Dty + 207 tho s+ 20004, + 27 Qg+ 0,
=w’u, sin 6—20 A, cos ¢+2w7,B; sin ¢.
The substitution of Eq. (152) into Eq. (153) gives
O UsgsF T 00+ D tUsee T+ 207 thrgo + 20040+ 27 Oz, + 0°uy

— 7)0(1)‘ : — 7]0(0‘ 3 —
= Terr) SR W20 grige—7y Sin (9=20)

Lo in - UG
TGt T TGy O )

Uw‘{ 1 + 1
4 |*—G+2)?  &'—(GF—92)F

Uo* .
T To—G-o T

—2wA; cos ¢+2w7,B; sin ¢.
From Eq. (148), we have

+

}sint

3

= =_—(l)___
A,=0, B, 4 =77

and u, is obtained as follows:

v — 7,0 sin (¢+20) _ 7.w*sin (¢—20)
’ 167°Qo+r(0+1r)  167r°o—7)(0—7)
_ Uw* sin (z+20)
4{o’— T+ Do —C2r+2)%}

Uo® | 1 1
- =T =G-8y

_ Ue' sin (z—20)
o' - (T —-D'Ho' - Cr—2°}°
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where 7%, 0x27r+82 and w=|2r—2|.
If the terms of higher order than ¢’ are omitted, S(z), d7./dt and d¢/dt are given as follows :

S() =7, sin ¢+ew2[2—r(22;’Tn cos (+72)

+ry o T g

R el

. Msin (—278) Usin(2+27)¢

67" Co—1(@-1) o=+ [0"— @+ 27

taem lemarer tema=ay

=G0 o G057 (57
% —0, (158)
ol | (159

Though these equations are derived under the condition that no resonant phenomena appear,
some characteristic properties of the true solution of S(#) can be drawn from the approximate
solution of the second order.

They are:

a) If e is appropriately small, and S(¢) is obtained up to a proper order, it is possible
that S(#) be calculated with some accuracy by the approximate solution except for
points of resonance.

b) If any condition of w=7+8, 0=27+2, 0=|7—2|, 0=[2r—92|, r=0 or r=2w is
satisfied, S(z) becomes infinitely large.

Consequently, S(¢) may resonate at these points. Other resonance conditions may
appear if we take higher order approximation than .

c) Since i?t—°=0, 7, does not increase or decrease with time except at the points of re-
sonance. This implies that S(¢#) follows harmonic oscillation.

d) Referring to Eq. (159), the natural angular frequency d¢)/dt may be shifted away

from @ by the existence of the vertical movement. If ¢=0.1 and 7/w=1, the natural
frequency becomes

¢ _
“5-=0.9920. (160)

The shift of the natural frequency is very small. Therefore, it may be negligible
except the neighborhood of 7=20.

As we mentioned in b), the resonant oscillation may appear if 7r=20, r=0, wo=7r+42,
0=2r+2, o=|r—2|or o=|2r—82|. Since the resonance in the lower modes is more effective,
as previously shown, we investigate the behavior of S(¢) at r=2w and w=|7r—2|.

The homogeneous equation which is derived by using E=0 in Eq. (143) is called the
Mathieu equation:

S (&) + o’ {1—esin 7} S@) =0. (161)
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The Mathieu function, which is a solution of Eq. (161), shows the following properties near
r=2‘01”-
a) If 7 exist inside the region of

2(,,[1.__5___i]<r<20,[1+_5__i ...... ] (162)
4 64 4 64 ’

then S(¢) becomes unstable and increases exponentially as ¢ becomes large. 7=2w is
the condition of a resonance, which is called the parametric resonance and occurs

¢ 2w . .. .
if T=7z, where 7 is positive integer.

2
b) At r=2(o[1i-%——a—m], S(t) has two independent solutions: one is a periodic func-

tion and the other is non-periodic function which increases with ¢.
c¢) If r is outside the region defined in a), S(#) becomes stable and the amplitude
. of S(2) is finite for any value of ¢.
Furthermore, we investigate the resonance at w=(2—7). In resonant phenomena, the
phase difference between the resonance and external force, as well as the amplitude of the
fundamental mode, is very important. This difference is represented as folllows:

v=¢—(2-7, (163)

where ¢ is a phase of S(¢), and v is a phase difference.
It is assumed that the amplitude 7, and the phase ¢ can be expanded, as previously, into
power series of ¢:

631’7; =5Al(’70) "') + 52A2(770: ”) + """ > (164)
%"(9—7)4‘631(’70, v)+esz(770; V)'l‘ """ P (165)

and S(¢) is also assumed to be expanded into a power series of e:

S(8) =7, sin (A+) +eu, (Mo, v, 4, )+ Uy (Do, v, A, pr) A ooerememeeereeeeenes . (166)
where, 1=(2—7)t, and p=(Q+7)t.
. We assume that o’ is different from (2—7)% by e4:
o’=(Q—-7)+ed. 67
By substituting these equations into Eq. (145), approximate solutions can be obtained. We
. calculate the first approximate solution. The first order equation gives
A= (-Q—;l)’)U
B 4 (168)
2e-n
Then:
dy, _ (Q-nU
Jr ¢ 1 , (169
dy _co_ Ae
ar € T)+————2(Q_7.) . 170
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Equation (169) and (170) imply that the amplitude of the fundamental mode increases and the
phase difference becomes large.
When the higher order approximation is applied, the resonance is

o=|nr—92|, ‘ a7

where 7 is an arbitrary positive integer.

At these points the behavior of S(z) is the same as in the case of o=(2—7). The occur-
rence of the resonant phenomena of Eq. (171) in the presence of vertical movement means
that even if 7 and 2 have large values, such as those of an earthquake, resonant phenomena
in lower natural frequencies may appear. This is of great importance in the design of oil
storage tanks, since it indicates that vertical movement plays a major role in the resonant
phenomena of tanks.

This conclusion is also applicable to the corresponding phenomena inside a ground storage
tank. : i

7. Equipment and Experimental Procedure

(1) Model tanks and wave channel

Since we did not have model tank with which the experiments for two different liquids
could be carried out, tanks which were partially filled with water were used for the evaluation
of the theory derived in the previous chapter.

In the experiments, two kinds of tanks were used: one was a steel-made circular tank
with an inner radius of 45cm and a height of 80cm, and the other was an acrylic rectan-
gular tank with a length of 100cm, a width of 50cm and a height of 40cm. Since the theory
is applicable to the computation of propagating wave heights generated by a piston type
wave generator, a wave channel with such a generator was used. The channel, shown in Fig.
5, has a length of 40 m, a height of 1.5m and a width of 2.0m near the wave paddle, gradually
reducing to 1.5m, 7.0m away.

(o]
o
s

~———6400 22700 7000

40100

L 8000 28700 Mave Poddle
o Wave Absorber
o
o
[

Cunit : mm]

Fig. 5 Wave Channel
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Fig. 6 Wave Generator, and Wave Paddle with Tank

Both kinds of tanks were clamped on to the top of the wave paddle so as to move with
it. Figure 6 shows the wave generator and a tank fixed to the wave paddle. Photographs 1
and 2 show the fixed rectangular and circular tanks.

Photo. 1 Rectangular Tank Arrangement Photo. 2 Circular Tank Arrangement

(2)" Mechanism of the wave paddle movement

A low frequency signal generator was used as the generator of input signals to a wave
generator control system. Though the low frequency signal generator can produce three
kinds of periodic signals such as sinusoidal waves, triangular waves, and rectangular waves,
only sinusoidal waves were used for the experiments. A special DC motor, having very
little inertia, rotates according to the signals received from the wave generator control system,
and the rotation is transformed to fore-and-aft movements of the wave paddle by a cylin-
drical screw bar. Photograph 3 shows the wave generator.
(3) Wave Measuring and recording equipment

The waves developed in the tanks or the channel were measured by capacitance type
wave gauges, as shown in Photo. 4. The out-put signals from the wave gauges were
amplified, and recorded on magnetic tapes by a data recorder. At the same time, they were
drawn by a pen recorder.
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Phto. 3 Wave Generator

The displacement of the wave paddle was measured by a displacement meter, which is
shown in Photo. 5. The displacement was also recorded in the same way as the waves.

Photo. 4 Capacitance Type Wave Meter Photo. 5 Displacement Meter

(4) Experimental conditions and method of analysis

The water depth was set at 40cm in the circular tank, 20cm in the rectangular tank, and
40cm and 70cm in the wave channel. The experiments for both tanks were carried out in the
tank movement frequency range of 0.7 to 3.0cps. Also frequencies up to 4.0cps were added for
the experiments on the rectangular tank. The positions of a wave gauge in the tanks are
shown in Fig. 7 and 8. The longitudinal axis of the rectangular tank is parallel to the move-
ment direction.

The experiments in the wave channel were performed at three frequencies, 0.5, 1.0 and
1.5cps, for each water depth. Three wave gauges were set at 0.065m, 10m, and 15m from
the front of the wave paddle.

The amplitudes of the wave paddle displacement were aimed to be 1/100 of the water
depth in each experiment, but their values showed some variation for each frequency. The
small amplitudes were taken to satisfy the wave linearity.

The analog data of the water surface and wave paddle displacements, which were recorded
on analog magnetic tapes, were converted into digital data at an appropriate time intervals by
a high speed A/D converter.
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Fig. 7 Position of the Wave Gauge in the
Rectangular Tank

Wave Gauge

(unit:mm)
Fig. 8 Position of Wave Gauge in the

Circular Tank

The converted digital data of the paddle displacement were used as input data, for a
TOSBAC 5600 digital computer in the Port and Harbour Research Institute, in order to com-
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pute the theoretical formula. The digital wave data were used for drawing the figures of the
water surface displacement.

The figures of the computed and the measured water surface displacements were drawn
by an automatic drafting system in the Institute.

8. Experimental Results and Discussion

Since in the experiments the tanks were forced to move only horizontally and the fluid
in the upper layer is air, of which density is small enough to be negligible, the water surface
displacement is computed by taking p; and f¥(£) in Eqs. (80) and (125) as zero.

8.1 Rectangular Tanks
Table 1 shows the resonant frequencies of the water surface in the rectangular tank with a

Table 1 Natural Frequencies of the Fluid in the Rectangular Tank
(l;=1.0m, ,=0.5m, A=0.2m)

n 1 3 5 7 9 11 13 15 17 19 21

Saleps) | 0.659 | 1.495 | 1.971 | 2.336 | 2:649 | 2.972 | 3.184 | 3.420 | 3.641 | 3.843 | 4.047

water depth at 0.20m. In the rectangular tank even number modes cannot exist, which is
evident from Eq. (80) or (81).

Figures 9 to 14 show the comparison of the computed values to the experimental values
of the water surface elevation, for each frequency. In each figure, a solid line, small circles
and a dashed line denote the theoretical curve, experimental values, and the wave paddle dis-
placement, respectively. In the figures, the paddle displacement shows an approximate sinusoidal
curve which is flattened near peaks and troughs rather than a perfect sinusoidal curve. The
center line of the wave paddle displacement initialy shifts rapidly and then keeps its position
constant. Due to this fact, the theoretical water surface displacement computed by a sinusoidal
displacement could not be compared with that of the experiments. Therefore, the measured
paddle displacement was used for the theoretical computation.

q
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Fig. 9 Theoretical and Experimental Wave Profile in the Rectangular Tank, f=0.5cps
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Fig. 12 Theoretical and Experimental Wave Profile in the Rectangular Tank, f=2.0cps

In Fig. 9, f=0.5cps, which is smaller than the natural frequency of the first mode, the
water surface displacement is initialy in phase with the tank movement but becomes out of
phase as time passes. The theoretical curve agrees quite well with the experimental values.

In Fig. 10, the water surface displacement is greatly inreased, because f=0.7cps is near
the natural frequency of the first mode which is f=0.659cps. The water surface displacement
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Fig. 13 Theoretical and Experimental Wave Profile in the Rectangular Tank, f=3.0cps
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Fig. 14 Theoretical and Experimental Wave Profile in the Rectangular Tank, f=4.0cps

becomes almost in phase with the tank displacement but is more than 10 times larger near
maxima or minima. At the maxima, the experimental values are 1.1 times as large as the
theoretical values, and at the minima, the former is 0.8 times as small as the latter. It is
believed that these discrepancies are caused by the effect of wave nonlinearity. The theory,
however, well represents the actual water surface behavior.

Since for the other frequencies the water surface displacement is not large, the nonlinear
effect does not appear and the theoretical curve shows a good agreement with experimental
values. Though f=2.0cps (Fig. 12) is near the natural frequency of the third mode, f=1.97
cps, the water surface displacement is not as amplified as in the case of f=0.7cps (Fig. 10.)
The reason for the small amplification was previously mentioned in 6.1.

Since in these experiments the durations of tank oscillations were shorter than one minute,
and the amplitude of the tank displacenients were kept small, the cross waves reported by
Sawamoto and Kato'” were not developed inside the rectangular tank. The standing waves
of high frequency, however, were observed over the width of the tank, when the frequency of
the tank displacement was higher than 2.0 cps. The time of the standing waves’ appearance
was not constant, and appeared earlier as the frequency increased. For example, in the case
of f=2.0cps, the standing waves began to appear after 25 seconds. The causes of the standing
waves are unknown since the analysis of the data is finished before their appearance.

8.2 Circular Tanks )

Table 2 shows the natural resonant frequencies of the circular tank with the water depth
of 40cm.

Figures 15 to 19 show the comparison of the theoretical curve to the experimental values.
We note that f=0.5cps (Fig. 15) and f=0.7cps (Fig. 16) are cases of smaller frequencies than
that of the first mode, f=0.970 cps.
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Table 2 Natural Frequencies of the Fluid in the Circular Tank
(7,=0.45m, h=0.4m)

i 1 2 3 4 5 6

fuleps) | 0.970 1.715 2.170 2.541 2.863 3.152

F0.5 €PS , H0.0n , ¥0.4%0n |
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Fig. 15 Theoretical and Experimental Wave Profile in the Circular Tank, f=0.5cps

The water surface displacement for f=0.7 cps is larger than that of 0.5 cps, because

f=0.7 cps is nearer to the natural frequency of the first mode.

When f=1.0cps which is nearest to the natural frequency of the first mode, the water

surface displacement gradually increases with time (see Fig. 17). The effect of the
natural frequency becomes so remarkable that the effects of the other modes disappear. When
the frequencies of the tank oscillation are as large as f=3.0 cps, the disagreement between
the theoretical curve and the experimental values becomes noticeable.

to
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Fig. 16 Theoretical and Experimental Wave Profile in the Circular Tank, f=0.7 cps

We believe that the following are the causes of that disagreement:

The nonlinear effect increases in higher frequencies.

Quite different phenomena, such as cross waves which travell along the wall of the tank,

as reported by Shiigai and Ishikawa'®’, may have developed. They could not be observed

because the water surface behavior was not visible from the outside of the tank.

Though Figs. 15 to 19 show small discrepancies in some area, it is not an overstatement
say that the theoretical curves agree quite well with the experimental values.
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Fig. 18 Theoretical and Experimental Wave Profile in the Circular Tank, f=2.0cps

8.3 Wave Propagation in a Channel

The solution for a rectangular tank is applicable to the computation of propagating waves
generated by a piston type wave paddle, if the length of the tank is assumed to be sufficiently
long. If the length is short, in the computation the waves generated at the side wall of the
tank are, within a short time, superposed by the waves generated at the opposite side wall
and therefore do not represent the actual propagating waves generated by a wave paddle.
Taking into account computation time of the solution, the necessary length of a rectangular
tank was determined to be 100m.

— 42 —



Theory of Transient Fluid Waves in a Vibrated Storage Tank

()]

3.0 3.5 4.0 4.5 5.0
£ (SEO)
F=3.0 cps , H0.40n , X=0.430m
° EXPERIFENTS
THEORY

TANK DISPLACEKENT
Fig. 19 Theoretical and Experimental Wave Profile in the Circular Tank, f=3.0cps

In the case of the water depth at 0.70 m, the wave cellerity of a long wave is 6.28 m/sec.
It takes about 32sec for the long wave to travel to the point of 85m away from the wall.
Therefore, if the computation of wave heights is stopped within the time, the computed waves
at a point 15m away from the wall are not supposed to be influenced by the waves from

the opposite side. The computations of the propagating waves were performed by taking the
measured wave paddle displacement as input data.
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Fig. 20 (a) Theoretical and Experimental Values of Wave Propagation
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Fig. 20 (b) Theoretical and Experimental Values of Wave Propagation
in the Wave Channel, h=0.4m, f=0.5cps, z=10.0m
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Figures 20 to 23, for example, show the comparison of the computed waves with the
experimental waves. In the experiments, wave gauges were set at points 0.065m, 10m, and
15m away from the wave paddle. Figure 20 is the case of wave paddle frequency of f=0.5cps
and water depth of 0.4m, Fig. 20 (a), for x=0.065m in front of the waves paddle, the
" computed wave heights agree well with experimental ones; the computed wave shapes slightly
differ from the experimental ones about the wave fronts. In Fig. 20 (b), for z=10m, and
Fig. 20 (¢), for x=15m, the theory represents the true state of the wave propagation; first,
long waves of small amplitudes formed, followed by shorter waves of higher amplitudes, and
finally waves of constant period and amplitude arrive. The computed wave shapes also show
a good agreement with the experimental ones.

Figure 21, for f=0.5cps and water depth of 0.7m, shows a good agreement on the whole,
between the experiments and the theory, though the computed values at the wave troughs
are 1.2 times as large as the experimental values. Figure 22 and 23 for f=1.5cps also
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show quite close agreement between the theory and the experiments.

Whenever we measure the wave heights at a point away from the wave paddle, we
observe the phenomena that first, long waves of small amplitudes reach the gauge and then
several higher waves come just before the uniform wave train. In these figures, this
phenomena are well shown even by the theory derived from linear equations.

Sverdrup and Munk have given an excellent description of the energy transformation
process and presented a computation method for the wave energy distribution in the leading
part of wave train®*”. We computed the wave height distribution by their method and
compared it to that computed by the author’s theory and to that obtained in the experiments.
Figure 24 shows the distribution of wave heights at z=10m. In the figure, {max represents
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the wave height and {, is wave height of the uniform train.
The computation of the distribution was carried out for the experiments where f=1.5cps

and water depth = 0.7m; the waves were deep water waves. The distribution computed
by the author’s theory agree well with that of the experiments.
computed by Sverdrup and Munk’s method is, however, different from that of the experiments.

In the author’s theory, the waves generated by the wave paddle are taken as a super-

The distribution curve
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position of infinite sinusoidal waves as one can easily understand from Eq. (83). Therefore,
the waves are not a single sinusoidal waves as Sverdrup and Munk assumed. Consequently
the good agreement of the theory with the experiment implies that even if waves are
regular, their propagation properties cannot be truely expressed by a single sinusoidal wave.

Pierson®" also investigated the propagation of regular waves, by the Fourier integral
development of a finite regular wave train, and showed the distribution of the wave heights
at an arbitrary point. His analytical method is essentially the same as the author’s, since
he dealt with the regular wave train as a superposition of an infinite number of sinusoidal
component waves.
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9. Conclusions

The following major conclusions can be drawn from the study on the excited waves in a
transient state:
1. The linearizing conditions are made clear as follows:
a) The amplitudes of the tank displacement must be very small compared to the tank
dimensions and to the thicknesses of the fluid layers,
b) The acceleration of a fluid particle on the boundary layer must be very small compared
to the total gravitational acceleration and vertical accelerations due to the vertical tank
movement.
2. The basic differential equations which determine internal wave amplitudes and dynamic
fluid pressures in transient state are obtained for rectangular or circular tanks.
3. The basic differential equation is analytically solved when the vertical tank oscillation does
not exist. By using the solution of this equation, the internal waves and the dynamic fluid
pressure can be computed.
4. Resonant phenomena inside a tank in higher modes have less effect than in lower modes.
5. In the presence of vertical movement, an approximate solution can be derived if there is
no resonance. According to the approximate solution, the internal waves resonate under the
following conditions:

0, =2,

w,=m7/2,

w,=|mr+82| or w,=|mr—82| (m=1,2,3---- D
where @, is the n#~th natural angular frequency of the fluids inside the tank, 2 and 7 are
the angular frequencies of the horizontal and vertical oscillations, respectively.

The behavior of the boundary layer between both fluids is also investigated under resonance
conditions.
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6. The vertical movement of a tank plays an important role in the resonance of the fluid.

7. The theory is applicable to a ground tank as well as to a sea tank.

8. The validity of the theory was confirmed by the experiments with rectangular and circular
tanks which were partially filled with water and vibrated only horizontally.

9. The solution for the rectangular tank can be applied to the problem of wave propaga-
tion in a channel, produced by a piston type wave generator. The validity of the solution
was confirmed, for the estimation of propagting wave heights, by the experiments in a wave
channel.

The following problems remain to be scrutinized :
a) Experimental confirmation of the theory for two different fluid layers.
b) Confirmation of the resonant conditions and performance of the computation for the
case of simultaneous vertical and horizontal tank movements.
c) Experimental confirmation of the theoretical pressure.
d) Application method of the theory to practical problems.
These problems will be dealt with in the author’s forthcoming paper.
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List of Symbols

ay : amplitude of the vertical tank displacement
A : horizontal cross-sectional area of a tank
A : coefficient determined on the rigid boundary

n
A1.(®) : function of ¢ only, in the upper layer, inside a rectangular tank
Ayp.(®) : function of ¢ only, in the lower layer, inside a rectangular tank
b : width at z in a tank

;b
b 1 b Tz

by : amplitude of the horizontal tank displacement

By : mean amplitude of the horizontal tank displacement

Br1.(2) : function of z only, in the upper layer, indide a rectangular tank
Br.(2) : function of 2 only, in the lower layer, inside a rectangular tank
C1.(2) : function of ¢ only, in the upper layer, inside a rectangular tank
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function of ¢ only, in the lower layer, inside a rectangular tank
function of z only, in the upper layer, inside a rectangular tank
function of z only, in the lower layer, inside a rectangular tank

: E=b,2°8.

: frequency of wave paddle movement

: natural frequency of the fluid inside a tank
: Laplace transform of f;(2)

: horizontal tank displacement

: nondimensional horizontal tank displacement
: vertical tank displacement

: nondimensional vertical tank displacement

: external force vector

: gravitational acceleration

: nondimensional gravitational acceleration

function of ¢ only, in the upper layer, inside a circular tank
function of ¢ only, in the lower layer, inside a circular tank

: fluid depth
: thickness of the upper layer
: thickness of the lower layer

function of 2 only, in the upper layer, inside a crcular tank
function of = only, in the lower layer, inside a circular tank

: unit vector in the z-direction

: I,=Lx2dA

: It=2ku7'o/{(ku7'o)2‘_l}Jx(kuro)

: unit vector in the y-direction

: Bessel function of the first kind
: unit vector in the z-direction

. k==/[2h

: n—th solution of J',(k,7,)=0

: i~-th solution of J',(ku7e)=0

o] (] e (15 )

L b

: half length of a sliced section of the tank

: length of the rectangular tank

: width of the rectangular tank

: half length of the tank

: positive integer

: preliminary weighted pressure of the fluid

: impulsive fluid pressure

: convective fluid pressure

: fluid pressure of the upper layer

: nondimensional fluid pressure of the upper layer
: fluid pressure of the lower layer

: nondimensional fluid pressure of the lower layer
: function of ¢

: Laplace transform of ¢(z)

: Q=S:xbdx

: 7 axis for cylindrical coordinates
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To : radius of the circular tank

s : parameter in the Laplace transformation

S(@)  : function of ¢

t : time

Ty : mean period of the horizontal displacement

ur : velocity of a fluid particle, in the z-direction, inside the upper layer

ug : velocity of a fluid particle, in the x-direction, inside the lower layer

U,y : velocity of a fluid particle, in the r—direction, inside the upper layer

U, 1 : velocity of a fluid particle, in the r-direction, inside the lower layer

Up1 : velocity of a fluid particle, in the @ direction, inside the upper layer

Ut : velocity of a fluid particle, in the @ direction, inside the lower layer

U : U=E[(0*—02%) N
vy : velocity vector of a fluid particle in the upper layer

vr : velocity vector of a fluid particle in the lower layer

v, : velocity of a fluid particle, in the y-direction, inside the upper layer

U, : velocity of a fluid particle, in the y-direction, inside the lower layer i
D1 : nondimensional v

D1 : nondimensional vy

wi : velocity of a fluid particle, in the z-direction, inside the upper layer

wr : velocity of a fluid particle, in the z-direction, inside the lower layer

Wi : nondimensional wj

W : nondimensional wy

x : horizontal axis of Gausian coordinate

z : nondimensional x

X1 : displacement of a fluid particle in z-direction inside the upper layer

Xt : displacement of a fluid particle in z-direction inside the lower layer

Y : horizontal axis of Gausian coordnates

g : nondimensional axis of y

Y1 : displacement of a fluid particle, in the y-direction, inside the upper layer
Y : displacement of a fluid particle, in the y-direction, inside the lower layer
2 : vertical axis of Gausian coordinates

Zy : vertical displacement of a fluid particle, inside the upper layer

Zx : vertical displacement of a fluid particle, inside the lower layer
“a : directional angle of earthquake action, measured from the x axis

a, : constant coefficient

B : constant coefficient

7 : angular frequency of the vertical tank movement

4 : small quantity of the angular frequency difference .
€ : nondimensional small quantity=ay?/g

g : boundry surface displacement or water surface displacement

Cmex : propagating wave height

& : wave height in uniform wave train

: amplitude of the boundary surface displacement, from its still position
: axis of cylindrical coordinates

: 2=(R-r)¢

=@+t

: phase difference

L o=7t

=0t

ST I S G
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: velocity potential

: phase of boundary surface displacement

: angular frequency of the horizontal tank movement
: natural angular frequency ’





