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1. The Problems of Density Current
Part 11

Tokuichi HAMADA

Synopsis

This paper follows on ““The problems of density current. Part I. (1967)",
and consists of two chapters.

In chapter 1, the stability problems of interfacial and internal waves are dis-
cussed. At first the property of the wave-induced Reynolds stress at the Kelvin-
Helmholtz instability is examined. The present method is more general than in
Part I. The result shows that the Reynolds stress in this case can be treated
as a particular one of ordinary treatment of instability regulated by the second
derivative of velocity profile of the general flow.

Secondly the instability of interfacial wave at a two-layer flow is treated.
The velocity profile of the upper layer is assumed parabolic. To solve the eigen
value equation easily, a simplified method is used. Two numerical examples are
recorded, and the results are agreeable. In the appendix the change of wave
celerity of internal wave in a case, in which a mixed layer between two homo-
geneous layers exists, is examined.

Thirdly the instability of internal wave with a shear flow is studied. The
variation of fluid density is same as in the above-mentioned appendix. The result
shows the noticeable effect of the velocity profile of shear flow in the upper

" homogeneous layer against the stability.

In chapter 2, the problem of control section of two-layer flows is discussed.
Firstly a case of the linear long wave is treated, and secondly the problem of
interfacial hydraulic jump is examined. Thirdly the interfacial resistance and
the variation of width of flow are taken into account. The sesult shows a new
aspect of this problem, and it may be applicable to some actual events.

—_ 3 -
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The Problems of Density Current

1. On the Stability Problems of Interfacial and Internal Waves

1-1. Wave-induced Reynolds stress of the Kelvin-Helmholtz instability

In the Kelvin-Helmholtz instability of two layer fluids with uniform flows
discontinuous at the interface, the Reynolds stress acts on both the surface and
the back of the interfacial boundary, and the stress on the back is equal and
opposite to the stress on the surface. The increase of momentum and mechanical
energy of instability wave is controlled reasonably by this Reynolds stress. This
is already stated in “ The problems of density current, Part I” (T. Hamada (1967)).
Here another aspect of this Reynolds stress is explained to make clear the pro-
perty in the relation with the more general view of the wave-induced Reynolds
stress.

x-axis (abscissa) is taken horizontally along the interfacial boundary in still
condition, and y-axis (ordinate) is taken vertically upwards positive. In the re-
ference of section 3.1 and 3.2 of Part I, we put the vertical gradient of density
and the no-perturbed flow as

py=@LP—p)&(y), Uy=(UP-UD)(y) (1-1)

At the same time, from the relation (3-15) of Part I, the real part of the complex
phase celerity c¢=c¢,-+ic; can be written in its first order approximation

_ pOYD4FHYD
&= LD

and ¢, of this expression is also considered to coincide with the velocity of no-
perturbed flow just at the interface. Here p¢©’, U™... are concerned to the upper
fluid, and p®, U®, ... are related to the lower fluid, and the suffix y in (1-1)
means the differentiation with respect to y.

The perturbed motion is assumed two-dimensional. The stream function of
the perturbed wave motion may be expressed by

(1-2)

p=0p@)e*="", u=—¢y and v=¢, (1-3)

# and v means the horizontal and the vertical velocity respectively, and here ¢(y)
and ¢ are complex. We consider the perturbed motion of vertically stratified
fluid with inviscid property (or more practically the Reynolds number of the fluid
motion is very large), and so the motion of the first order is expressed by

Dy Uw g Py Py Uy _
owt s W‘{k"c,— Utic 75 GUticy 7 o U+ia}""° 1-4)

J.W. Miles (1961) may be referred to introduce this relation. In (1-4) U is hori-
zontal general flow with vertical shear, and if p,=0, this relation comes back
(4.3.1) of C.C. Lin (1955). In the present problem of instability, the characteristic
equation was solved by another way. ¢, was already given by (1-2), and ¢:>0
was also established. '

Then we consider the wave-induced Reynolds stress, which is kept by the
product of horizontal and vertical velocities of the perturbed wave motion at a
fixed point. In general

—_ 7 —




Tokuichi HAMADA

= ——;—R(ﬁ ) (1-5)

Here asterisk means the complex conjugate, and R( ) means the real part of
( ). (1-5) is transformed by making use of relations of (1-3).

ok
T= %;(%?,* — S,,;l;ga)ezkci ¢ (1-6)
On the other hand, from (1-4)
k%_(:d U‘ll)v o—U +£ i)-y{((:r— U)ﬂ—Cz}
7 @—Ur+d " 5 {e—Ur—cy+4a—Uyre|?

(_ @Uwe: g 2(cr—U)e: _ _
_Z{ pler—U)l+el  p {(er—U)—cty*+4(cr— U)ch}q’_o 4=

oyt ";_vﬂav - {

If we multiply (1-7) by ¢*, the complex conjugate of ¢, and subtract its complex
conjugate from the resulted relation, we have

w_ % 4 PV *_ o 97 @ Uyhei
o g9t 5o o)t D
__i 2(01'— U)Cz } _ .
5 (o Uy—ap+4— Oyt |0 0

Properties of wave motion of the present instability are used in (1-8). As the
motion is irrotational in both fluids, the Reynolds stress does not appear apart
from the interface y=0. So the treatment is limited to the vicinity of the inter-
face. We integrate (1-8) from y=—4 to y=+4, (4 is a positive small quantity),
and so the path of integral passes the interface.

4

4
S _A(%W’* — i)Y =| evp* — e} (1-9)

(1-9) is a result of partial integral. In comparison with (1-6), this term is not
active because =0 at y=+4. Then

4 oy L —pD
S_dg(sow*—wt)dy=——ﬁ(o_n (pv* — oot (1-10)

In this modification the expression of gy of (1-1) is used. p~? has an intermediate
value of p» and p», but is not determined here. In concern- with the term of
—2i{- -+ Jpp* of (1-8), the integral of the part concerned to the second term in
the brackets may be neglected, if 4 is sufficiently small. We use the following
approximation for the integral concerned to the first term of the brackets.

P Uy=pO(UD— UD)ily) (-11)
and then

Sd (o Uy)yc: d =SA (U(l)_Uw))
-4

ai(y) Ci
*
o= U+t

2
dy  {o—Uyptey el

2

(1-12)

2
=ak(U“)—U(”)%‘¢} — k(U — U ®) P
1 -0

1
Ci +0

__8_




The Problems of Density Current

Here « is a positive constant usually of 10° order. The solution of the first order
approximation of the present problem of instability is shown in section 3.1 and
3.2 of Part I. According to this solution, |p[*,={¢|%,=l¢l: is consistent, and by
making use of the wave amplitude A, at the interface

lple= Al (1-13)

In consideration of the property of dé(y)/dy, we can see ahat the first term of
(1-12) is active at the lower surface of the interfacial plane, and that the second
term is for its upper surface.

From (1-10), (1-12) and (1-13),

ol i¢]
[)( )_p()

b (pvp™* — o) =2iak(UD—U®)c; A} at y=-0

= -—Ziak( Uv—U®), A at y=+40

(1-14)
In the reference of (1-6), the Reynolds stress at the interface is
(0 17F0—-2)
L T=0= g ﬁ)—kﬁ([](l) U(B))CtAZGEkctt
- (1-15)
5 0—=1>50—3)
T = —-Czi %u)—‘o_mkﬂ( U — U(”)ctA2e”°°t‘

As pD>pW, if UDSUD, ry acts to the negative direction, and 740 is for
the positive direction.

In (1-15) a coefficient ap~p~® is not determmed by the present procedures,
and we go back to the treatment of Part I. The increase rate of the momentum
transport corresponding to the Reynolds stress of (1-15) was shown by relation
(3-20) and (3-21) of Part I.

AM® L UWw_yU®
i — Al kz"‘pmpm_‘gcl)—_’_‘l—,(;em“
! ' 1-16
-(M_AZ % —(1)—(2)_U(1>—_U(_23 2ke,t ( )
ar - ke O 4@ e
From this,
o 5(0—1)5(0—2) _ ‘3(1){7(2)
9 O —p® - pO+p® (1-17)

By this way the Reynolds stress is determined, and the expression is mainly
regulated by U,,,,:(U“’—U‘”)i%‘?//l of (1-12). Stillmore ¢,=U® ((Z) means the

interface) is acceptable at y=0 in the present case. From these properties we
can understand the Reynolds stress in the present case as one of special cases of
the expression of wave-induced Reynolds stress shown by the relation (4.3.6.) of
C.C. Lin (1955, p. 54). The form (3-24) of Part I was an intuitive introduction of
thisstress, and the present form of the introduction may clarify its relation to the
more general case.

— 9 —



Tokuichi HAMADA

1-2. An instability analysis of interfacial wave caused by a shear flow

Here we investigate an instability of interfacial waves in stable two-layer
fluids caused by shear flow with the velocity profile of moderate curvature. In
general the viscous term of the perturbed equation is not negligible in these
stability problems. But according to the analysis of T.B. Benjamin (1959), if the
height of the critical layer from the wavy boundary is far greater than the thick-
ness of so called “wall friction layer”, the inviscid solution of interfacial wave
offers a good approximation. Using this idea clarified, the present treatment is
assumed inviscid. We use the co-ordinate system of 1-1. y=0 is taken at the
interface in still condition. U, u®, v, p» .. are concerned to the upper
fluid, and U®, #®, y®, p .., are for the lower fluid. The upper boundary of
the upper fluid is taken horizontally at y=#h:, and the horizontal lower boundary

Y
|
h|
U(“
[O )
/O (2)
~ha2
BSSEESSNANNNANANANNAAN

Fig. 1. Schematic representation of two layer flow

— 10 —
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The Problems of Density Current

of the lower fluid is at y=—hs. To simplify the problem, we assume U has
a profile of steady parabolic type, and U®=0. (Fig. 1)

(1-8)

go=Y S Y2h-y), UP=0 (1-18)
1

y=h: means a free surface, and U“~® is a velocity of the general flow at the
free surface.
In the same way of (1-3) and (1-4), for the upper fluid
(U =Xl —Kip®)— Ufilpd=0 (1-19)
for the lower fluid
P —klo® =0 (1-20)

Interfacial boundary conditions are .

P 4 pb = Ph 4y at y=y (1-21)
K/8 (1)_3_7l= W =

at TV =0 at =y

) (1-22)
9

a Y

P® and P™ are from no-perturbed condition, and by making use of
UD(p)=UP(0)+ U= U§P(0)y
the simplified linear relation from (1-22) is

My 91 - _
=0 o=y at y=0 (1-23)

Boundary conditions at y=#4: and —h; are

vO=0 at y=m 1
(1-24)
V=0 at y=—h f

The boundary condition at y=—#; is correct at a rigid inviscid boundary, but the
condition at y=*#; is an approximation with respect to the upper free surface of
interfacial wave.

We select the method of W. Heisenberg (C.C. Lin (1945, 1955)) for an approx-
imate solution of (1-19). This method is usually used in a case in which 4 is
finite, and stillmore, as will be shown later, it is conveniently extended to the
approximate estimation, when 4 is large. By this method, using the boundary
condition at y=#h;,

PO(y)=—(UD —)BOFy {1+k’Sy(U“>—c)‘3Sy(U“>—c)”dydy+ cees
0 0
' ) v
+(U(l)_c)B(l){S (U(l)_c)—ﬁdy_}_kﬂg (U(l)_c)-?
0 0
v v
xg (U‘”—c)’g (U“)—c)"dydydy+----} (1-25)
0 [}
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v ¥
0 0

h
Shl(U“)—c)’ﬁdy-i-kﬁS ‘(Um-c)-ﬂg (U<1>—c)ﬂg (U —c)*dydydy+ - - -
0 0

F2= ny Y
1+kﬁg (U(l)_c)—ﬂs (U(l)_c)ﬂdydy-*-....
0 0

(1-26)

Here B is an arbitrary constant. Using the amplitude A of interfacial wave
at the interface,

p=A®gikca—cv 1-27)
v Y
DY) =(UD—c)A® il_i_kzg (U(”—C)”’S (UD—cpdydy+--- }
0 0
A(c) Y Y v
_(U(l)_c)————{g (U(l)_c)—ﬁdy_l_kzs (U(l)__c)—ﬂ S (U(l)__c)ﬁ
Fy (Jo 0 0
i v
xg (U<1>—c)-ﬂdydydy+--.-} (1-28)
0
Using this expression, P +p™ at the interface y=y is given by
)

A
W) L HD = . p (D
PO +p "R

gilcz—ct) p(l)g A(O)ei}c(z—cu (1-29)

On the other hand the solution of (1-20), which satisfies the boundary condi-
tion at y=—hs, is given by

@ =DD sinh k(y + k)

In consideration of interfacial displacement of (1-27),

—CcAW®

A
sinh khg

sinh k(y 4+ hs) (1-30)

2) —
o =

From this, P +p? at the interface y=y is
P® 4 pD =Dt AL coth khyeit == — g g A D gtk(z—ct) (1-31)

A characteristic equation is obtained from (1-29) and (1-31).
(o —pD)g=p®c?k coth khz+p“”117 (1-32)
2
¢ in (1-32) is usually complex, but, if U®=0, (1-26) is simplified to
L okcothen
5=c 1
In this case (1-32) is

(0P — p®)g=ck(p® coth khs+ oV coth khy) (1-33)

This is a well-known characteristic equation of interfacial wave without current.
We consider the simplified approximate method to solve (1-32). In general
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v
the first term of F; in (1-26) can be expressed by S 2(U“’—-c)'ﬁdy. Here y: and
vy
ys are real, and the path of the integral proceeds on the real aixs. We take the
limit of c;—+0 at c=c+ici. U{P>0 is clear, and taking the case of y:1>yo, >y

at U(y.,)=c,, we have approximately.

sz dy_1<_1+1>
y (UO=c T UD?\ ya—yo, ~ Y1,

gl)u Ugl)// Ugl)n .
_—U—gm-logelyz—ycrl+Wlogelyx—ya,|—Wzn (1-34)

Here U and US”" are the first and second derivative of U with respect to
y at y=1o, respectively. When y,, approaches ¥ in (1-34), the real part is ap-
1 1 1

U <_ Vi=vo, | Y1—Ue,
controlled by the first derivative of U™ at yo,. On the other hand the imaginary
part of (1-34) is controlled by the second derivative of U at .. By this way
at the case of k—0 the real part of Fi and also the real part of (1-32) can be
treated using the first derivative of U™ only. We enlarge this method to the
general case of (1-32). It means that, at the complex solution of ¢=c,+ic: of
(1-32), ¢; is controlled by the second derivative of U™ at y., and UM should
be in consideration, but that the real part ¢, is approximated by the solution which
is obtained by the case of linear profile of U®. Then we consider the flow of
the triangular velocity profile, which has the same total discharge with the flow

of upper layer of (1-18) (at y=h, U“’:%—U“'”; at y=0, U®=0 in this tri-

proximately expressed by ) . This is negative, and is

angular velocity profile). Its vertical gradient of velocity equals the first derivative

of UM of (1-18) at y=-§h1. In the present case usual value of yo is smaller

than %hl, and we use the flow of triangular velocity profile to find ¢, approxi-

mately.
Putting as follows in (1-32),

L Ac+Be+D (1-35)
Fy
for the above-mentioned triangular velocity profile of U, we obtain
A=kcothkhi, B=—a, D=0 (1-36)
Here UY=ay is assumed. By this way
L _ ok coth khi—ac (1-37)
F;

Hereupon we take F; and ¢ as complex variables. Putting Fy— Fy+iFu, c—cr+icy
in (1-32), we have
(0 — pMWD)g=p (¢, +ic:)? k coth khs+ p(c-+ic:)*k coth khy



Tokuichi HAMADA

—pVa(cr+ics)— pV7 Fii (1-38)
Fa
In (1-38) | Fy|’>| Fui| is assumed. The imaginary part of (1-38) is
c 1y 23 in 1
*O Y 2096,k coth Ehs+2pMek coth khi—pPa
—_ )2
- ci(crk coth khi—a) (1-39)

20Wcyk coth khs+2pVcrk coth khy— oD

From (1

¢ in (1—39) is given as a progressive wave,

-37) f‘—>0 at sufficiently large value of .

_ pPa+/ (0Da) +4(0Dk coth kha+p®Fk coth khy) (o —pD)g (1-40)
- 2(p®k coth khs+pVk coth khy)

The important point of this treatment is the estimation of Fy;. From (1-34), at
k—0, it is clear that

U(l)ll

~ [4
F"___—"U(l)rs
4

(1-41)

We rather consider the case in which &k is moderately large. In the case in
which kh is finite, if yo /h: is small, the approximate value of Fy; is obtained as
follows by making use of (1-26).

Ugl)n Ugl)n kghf Ugl)uz kzhf Ugl)// k‘h:

Fy=~— Ugl)ls = Ugl)/s * 6 + Ugl)u e 9 - Ugl)ls T 120
Ugl)uz U(l) "o, . Ugl)/u s 1
Ugl)“ thl 2700 k h U(l) 5 u.h 4536 k‘h Wh ‘44—1k4h
(1-42)

The estimation of Fi; is not easy from (1-42), when kA, is large, and we use the
following procedure.

When the flow of the upper layer is shown by U®=ay, and the flow of the
lower layer does not exist, the mechanical energy of interfacial wave can be ex-
pressed by (here terms of order of ¢} is disregarded at c=c,+ic:),

kinetic energy

1 (p(l)a)ﬂA(O)i

1
=— A3 (p® — o) f—
Ey 4A 9o —pD) 8 k(p®+pD)

) D) (p(”—p‘“)
+ZP(1)QA<0)2\/ T 1 o + k(p“"l‘.o‘”) (1-43)

potential energy
E,:%A‘””g(p(”—p(”) , ‘ (1-44)

— 14 —
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The Problems of Density Current

In (1-43) and (1-44), both ki, and khs are treated to have large positive values.
Now A® is assumed to increase with time, and is shown by A®=APett, This
amplification of interfacial wave can be caused by the mechanical property of
the general flow, which includes the moderate effect of the second derivative of

the velocity profile. This means the existence of Fi: to determine —‘%(EwE,,)
in (1-43) and (1-44).
In consideration of (1-40),

i(E,,+ Ex) =kci A, p(”crk-i-p(“crk—lp(”a (1-45)
dt 2

The treatment of development of wind waves by J.W. Miles (1960) can be also
applied to the development of interfacial waves in the present case, and the
essential point of his method is

d
'EZ(E’)'*'EE):CTT

(1-46)
—— T by 2__51)_”
== 2P( kloe’| U
Using (1-28), ¢(ys) can be shown as follows at the condition of ¢;—+0,
1 1 Ao 1]
So(l)(yo)zA(O)]ﬂ(_gygr Ugl)"{' Zy:r Ugl)r )_‘_.7’— Ugl)l
A® 1 i 1 UL
+'ﬁ;ﬁ(§iﬁn,+§€(ﬁnmya>+'~° (1-47)
The expression of ¢; introduced by (1-45) and (1-46) is
Ci= _.E.p(l) e 2 U (1-48)

A3 (P(”Crk-}‘p(l)Crk—%p(l)a) U

At the present procedure, c; of (1-48) should be equal to ¢: of (1-39) with the
condition that kk; and khs are very large. That is
(l)la Ugl)//

) _ — I‘/’c ¢
Fucr(crhk—a)= ”A(O)ﬂ U

(1-49)

In (1-49) Fi and |o”|? are expressed by (1-42) and (1-47) respectively. With the
L. 2k—ac- and the conditions of /1>, and of Fir»

present simplified form of

F?T
Iy,
U(l)//
Fy~ —n——zl)—
U;”s
A(o)ﬁ 1

(1-50)
Fi. U®Pn J
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Here the important condition is 41>y, . If this is established, Fi; of (1-42) can
be approximated by the first term even in the case in which kh, is very large.
The expressions of ¢, and ¢; are approximately determined by this way, and this
determination should be examined from the aspect of the momentum increase of
interfacial wave by the second relation of (1-46). This is done as follows.

The momentum transport of interfacial wave in the upper layer is computed
noticing the existence of UM =ay.

MU’=—;—pmA‘“”kc,-—%l-p(“aA(m (1-51)

Using the amplification A= A{eke;t |

AM®
dt

=pOkcic, A _.'%pu)akciA(m (1-52)

In the same way for the lower layer,

M<2>=-;—p<“>A<°>2kcr (1-53)
%: '<2>k?ctc,A<m | (1-54)

and so
f%=%( M4 Mm)z(,,m+p<z>)k2ac,A<°>2—%pmakamm (1-55)

¢; of (1-55) is transformed by making use of (1-48) and (1-50), and then the ex-
pression of r in the second relation of (1-46) is used. The result is

dM
atr —°

(1-56)

This means the momentum relation is also satisfied within the present approxi-
mation.

Two examples of numerical estimation of amplification factor kc; are given
by the above-mentioned method. We consider the case of idealized estuarial
model, and so p>=1.000 and p‘®=1.020 are used. Example-1 shows a case of a
small scale model test of the rivermouth. Conditions for flows are given by

hi—oo, m=10cm, UWM=-0.12y*42.4y cm/sec (1-57)

and so U%®=12cm/sec. Using the observed result that the wave length of
interfacial wave in such model is usually 1~10cm, the results of computation in
the present procedure are expressed as follows. (Table-1)

In Table-1 the condition of ~1>y._is almost satisfied, and stillmore Yo, is far
greater than the expected thickness of so-called “wall friction layer” of T.B.
Banjamin (1959), which is active in the vicinity of the interface. Values of (c)x.n.
and (co)k.u. are given by the computation of the Kelvin-Helmholtz instability, when
the uniform flow is assumed in the upper layer with the same total discharge as
U® of (1-57). (cok.u. is far greater than ¢; of present proceure. This may be
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Table 1
L Yo h ¢ c . (errm. | (cdx.m.
(cm) k (cm) ug™ (cm/rsec) (cm/sec) ke (cm/sec) | (cm/sec)
2 3.14 0.820 2.20 1.88 0.210 0.661 3.96 3.59
3 2.09 1.03 2.15 2.34 0.251 0.527 3.96 3.37
4 1.57 1.22 2.10 2.75 0.284 0.446 3.96 3.13
5 1.25 1.39 2.06 3.11 0.311 0.391 3.96 2.87
6 1.04 1.55 2.02 3.44 0.334 0.349 3.96 2.59
7 0.897 1.71 1.98 3.75 0.354 0.318 3.96 2.27
8 0.785 1.86 1.95 4.05 0.371 0.291 3.96 1.90

used in exceptional cases of strong jet like flow of the upper layer.
Example-2 is for field observation, and the conditions of flow are

ha—co, h1=200cm, U®=-—0.00225y*+0.9y cm/sec (1-58)

and so U "=90cm/sec. The length of interfacial waves considered and the
result of computation are shown in Table-2. The condition of h1>y., may be
also established in Table-2.

Table 2
L Y %) ¢ ¢y (crrm, | (cok.m.
(cm) k (c%) Ug” (cm/;ec) (cm/sec) ke (cr;/sec) (cm/sec)
10 0.628 4.68 0.878 4.17 0.148 0.0931 29.7 29.7
30 0.209 8.57 0.861 7.55 0.209 0.0439 29.7 29.2
50 0.125 11.48 0.848 10.04 0.231 0.0290 29.7 28.6
100 0.0628 17.44 0.821 15.01 0.211 0.0132 29.7 27.3
150 0.0418 22.57 0.798 19.17 0.159 0.00668 29.7 25.8
200 0.0314 27.35 0.776 22.93 0.0996 0.00313 29.7 24.3
1.0 |
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Fig. 2. Values of kc; and a. against &
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As values of y,, of these tables are situated at the far outside of wall friction
layer of the 1nterface the effect of viscosity for the amplification of interfacial
waves may be very small. Accordingly we only consider the attenuation effect
of viscosity. The approximate mechanism of viscous attenuation in section 1.2
and 1.4 of Part I will be applied to the present problem. We put the amplitude
of interfacial wave at the interface A§¥e~=t considering only the viscous attenu-
ation, and from (1-34) (or more accurate from (1-21)) of Part I,

( no)l/ﬂ
2‘\/2 K y

—_ gk(0™®—p™)
p(2)+p(1)

a =
(1-59)

o

The relation between % and «. (v=0.01 approximately) is

k 3 1.5 1.0 0.5 0.1

a 0.248 0.103 0.0612 0.0262  0.00353
Values of kc; and a, against % in the above-mentioned two examples are shown
in Fig. 2. Because kci—a, is positive (assuming a linear combination of them),

interfacial waves may be amplified. The expression may be a typical

kei—a
time duration necessary for the amplification, and this is not so large. From
Fig. 1 k—l—— may be several seconds in the model test. On the other side the
Ci—at

wave celerity ¢ is several centimetres per second. Interfacial waves in such
model experiment will be largely amplified at the relatively short running distance
(may be less than 1m), and will be probable to become unstable and to begin
the turbulent mixing.
1-2. Appendix—The decrease of wave celerity by the existence of mixed layer
at the interface

When the mixed layer is formed at the interface, the characteristics of internal
wave (the name of interfacial wave is not proper in this case) becomes different
from the interfacial wave. The most remarkable one is the decrease of wave
celerity of the principal mode of the internal wave in response to the thickness
of the mixed layer.

A three layer model is considered. The general flow is not included. The
model in still condition is as follows. (Fig. 3)

II-layer —h3<y<0 p=p®=const.
IIl-layer 0<y<y: p=pPeV=p(1—ay) (1-60)
I-layer n<Ly<h p=pP(1l—ay1)=pV’=const

We are mainly treating the density difference of salt and fresh water. There-
fore ay: may be about 0.02, and the approximation of e ¥=1—ay is.sufficiently
reliable.

The analysis is of lmear perturbed waves in inviscid condxtlon and at y=—hs
and 7 the vertical movement of liquid is neglected. This is ‘correct for the fixed
horizontal boundary at the bottom, and for the free surface at y=#h, this is an
allowable approximation. Stream functions of three layers are given by
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Fig. 3. Schematic representation of assumed model

II-layer UD=—g®, Py =g®
ll-layer u®=—gP, vO=¢ (1-61)
I-layer uO=—g® Py =g®

The vertical displacement of equi-density plane at y=0 is shown by A®eitks—ot)
at y=y: it is shown by A®Mgitka—at)

There is no difficulty for expressions of ¢ and ¢. For ¢ we may
compute in the refrence of H. Lamb (1932, pp. 378-380). In consideration of con-
joining of the vertical velocity at y=0 and y=y: and of the disappearance of the
vertical velocity at y=—h; and y=*h,, stream functions are shown by

(€]

PO = m sinh k(y + hg)eitkz=et2 (1-61)

II-layer
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—gAWeta/DV  cos (By1+e€)

I-layer P = o sinh K(yi— 1) oS e sinh k(y — h1)eitkz=o0 (1-63)
[¢]
Illayer  ¢®=— ‘“‘,t ” tarvw Cosc(ﬁi’:’e) gitke=at) (1-64)
Here
Au)___A(z)e(a/a)ul&S((:%‘s/lsﬂ (1-65)
2
ﬁ:k\/<%_1>_%%ﬂ= X (1-66)

From the conjunction of pessure at the flexible boundary of y=0,
k coth khg:%—ﬁ tane (1-67)
From the conjunction of pressure at y=y1,

%cos By1—psin By1—k cos fy1 coth k(y1—hi)

= %sin By1+ B cos By1—k sin By1 coth k(y1— hl)} tane (1-68)

The general form of the characteristic equation is obtained from (1-67) and (1-68)
by the elimination of tan ¢. But the discussion of the general form is complicated,
and we limit the treatment into following two cases; (i) the case in which kA,
and k(hi—y1) are very large. (ii) the case in which the wave length of internal
wave is very large compared with the total depth hi+4:.

Firstly we treat the case in which cothk(y1—#/i)——1 and coth khs—~1 are
consistent. The characteristic equation is

2
(ky1 X)* tan kyr1 X+ (azl) tan ky1 X —2(ky1 2 X —(ky,)? tan by X=0  (1-69)

We can use the Boussinesq approximation to (1-69) referring the condition ay:=~

2
0.02. The term ("‘Z‘)

tan ky: X is neglected in (1-69), and in (1-66) a simple form

\/ —g‘:——l =X is used. The solution of (1-69) contains principal harmonic and
[

also biharmonics. For the reference the solution of (1-69) obtained as above-
mentioned is shown in Table 3. We see that the phase of #‘® of biharmonics
varies significantly between y=0 and y=v:, and this is of course expected from
the simpler example by H. Lamb (1932). These biharmonics, which satisfy
strictly idealized conditions of (1-60), are not so important in practical meaning,
and we only remark the property of principal harmonic.

If we put the eigenvalue of the principal harmonic as

_ (gkayn )1 §
a——{ > } (1-9) (1-70)
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Table 3
ky1 Xprlnclpal Xt.he second Xthe third Xt.he fourth
0.1 4.434
0.2 3.110
0.5 1.919
1.0 1.306 3.668 6.112
1.5 1.028 2.586 4.481 6.487
2.0 0.860 2.029 3.425 4.913
2.5 0.745 1.695 2.789 3.967
3.0 0.659 1.450 2.362 3.337
3.5 0.592 1.277 2.054 2.883
4.0 0.539 1.144 - 1.822 2.540
4.5 0.494 1.039 1.640 2.278
5.0 0.457 0.954 1.492 2.065

5 means the decrease of the celerity of the internal wave in the present case to
the interfacial wave. In Table 4 values of 6 of (1-70) and ¢ of (1-64) are recorded
against ky;. From Table 4 the decrease of wave celerity is obvious with the
incerase of the thickness of the mixed layer, and this tendency is remarkable
when the thickness of the layer is comparable with the wave length. e in Table
4 connected with X principal in Table 3 indicates that horizontal particle velocity
at both sides of the mixed layer is equal and opposite. The sign changes in the
midway of the mixed layer.

Table 4

kyi 0.1 0.2 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
5 | 0.017| 0.034] 0.076] 0.141| 0.195 0.242f 0.283 0.318 0.349| 0.377| 0.402( 0.424
e |—0.222—0.311|—0.480/—0.653/—0.771|—0.860|—0.931|—0.988/—1.036|—1.076|—1.112(—1.142

Secondly we treat the case in which the wave length of the internal wave is
sufficiently greater than the total depth ’i+#4:, and so approximations of

coth k(yx—hl)#m and coth kha'-—:k—zz— are used.

The characteristic equation in this case is

—(kle)’tanky1X+(ky1X) +(k X) h h tankle
alfy Y1 ayi Yi
( L >tanky1X+ ol tan by X— 0 P tan ke X (1-71)
If y: is very small in (1-71), we have
8 — gays _
¢ (1_3@_)_1 +<1 +a_m)_1_+_yn 1 (-7
2 Jh—y 2 /Jha hi—yihs
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Table 5
case 0.1, 0.1) ©.2, 0.2) (0.3, 0.3)
| iky1=0.01 0.988 0.974. 0.960
* 1 ky1=0.001 ©0.989 0.974 0.960

and on the other hand in the case of two-layer liquid we have

(p(ﬁ) _p(l))g
=" : (1-73)
+__.

h hs

‘(in (1-73) hi is the depth of the upper layer, and h: is the depth of the lower
layer). (1-72) is connected to (1-73) at y1 —0, and using the premise that ay: is
constant, the wave celerity has the tendency to decrease with the increase of .
But y: in (1-72) is too small compared with % and 4s, and the solution for prac-
tical use is obtained by the numerical trial of (1-71).

Y
hs’
hyly) is (0.1, 0.1), (0.2, 0.2) and (0.3, 0.3) respectively, and these soulutions are
1—Y1 .

compared with solutions of (1-73) in which the interface of two fluids is taken at

Putting ay1=0.02, we seek solutions of (1-71) of three cases in which <

y:—yz—1 (the middle point of the mixed layer). Here p»=1.020 and »>=1.000 are

used in (1-73). The result is shown in Table 5. This table shows that the
decrease of the wave celerity is not significant in the range of the assumed
thickness of the mixed layer. If the mixed layer is enlarged to cover the total
depth (from y=—#3 to y=h1), we can use the estimation of H. Lamb (1932, pp.

378-380).
(2
N

2 (1-74)

Here dp is the density difference taken at the lower and upper boundary, and %

means the total depth. On the contrary, if we use h1=h2='g- in (1-73), we have

Co'——.‘«/ah_ 2

(1-75)
Here dp=p®—p®. Thus the extreme case may be given by c/cy=2/x, setting
virtually 4p of (1-74) and (1-75) as the same.

1-3. An stability analysis of internal waves by shear flow

A three-layer model with a mixed layer is examined. A shear flow is mono-
tonous, and the curvature of the velocity profile is negligible. This type of
stability problem relates practically to the internal wave at the rivermouth where
we can find the superposition of fresh and salt water with the intermediate mixed
layer. It was already reported by L.N. Howard (1961) that the internal wave

L — 22—
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Fig. 4. Schematic representation of assumed model

which is not forced externally is always stable for the Richardson number greater

than —‘11— We treat here the case of 0<R¢<%.

The present model is shown as follows (Fig. 4);

layer density flow
II-layer —00<Y<0  p=pP=const. U=U®=0
III-layer 0<y<yr p=pP=pPeV=pB(1l—ay) U=UP=ay ) (1-76)
I-layer NLy<Loe  p=pP=pP(1—ayi) U=UD=ay

Here a is constant (real and positive). ay; is small, and is about 0.02 in practice.
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The feature of this model is that U linearly increases in I-layer, (for instance in
fresh water layer). A model, in which U=const. in I-layer, and U increases
linearly in Ill-layer, is already examined by J.W. Miles and L.N. Howard (1964).
In (1-76) we elongated Il-layer to —oo, and also I-layer to +o. But in practice
this means that the thickness of II- and I-layer is two or three times or more
greater than the length of internal waves.
We use the expression of stream function of (1-3).
In II- and I-layer

P — ki =0 (=2, 1) Q1-77
In IIl-layer A

1 ad

@ @_ — -
(er—U+ici)} " ¢r—U+ics

Pyy—apy {k‘*—ag

}go(s’=0 : (1-78)

In II- and ILlayer, ¢ is given by p~e¢*®. The vertical displacement of equi-density
plane from the still condition at y=0 is expressed by 5™, and the same quantity

at y=y: is given by »®. These are periodic and expressed by
ﬂ(ﬁ)zAgz)eik(z—cb)
} (1-79)

0( D= A(()l)eik(z—c&)

Corresponding properties of waves at II- and I-layer are given by;
in Il-layer

2 — 2 k(0L
B = —c ADetvgikiz-ot)
H— ez
u( )_kCAS2)ekyezk(a: ct)
(1-80)
VB = —tkc AfDeTgitn
. PP = — pD gy 4 pD ket AP etugica—ev
in I-layer
D = A (ay1 —c)e—tv-vpgiice=ct N

uH = Agl)k((l?/l _C)e—lc(y—ill)eik(z—ct)

D=7k AW, — O\l y—v ) pikiz—ct)
v kAP (ay1—c)e et (1-81)

b =%(p“’—p”’)g—p(“g(y—y1)+p“’A6"

X (ayl _c)e”c(ll’-lll)(ck_ayk_a)eik(:—ct)
In IIl-layer, putting p=e“»?X in (1-78)

a_ 1 &
—U "9 c—TUy 1

X0+ {—-k“—a }X:O (1-82)

As ¢ is complex,. if U(ye)=c-+ic;, by making use of U=ay, we have

N4
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Cr C
Yo, =" Yo=" (1-83)

(1-82) is simplified by the Boussinesq approximation.

Xy + —k’+ga‘a2—(yl_To)2 X=0 (1-84)
Therefore the solution of (1-78) is
p=ePY A X+ BX-) (1-85)
Here
Xemtu=upion (Lo o ey
4425 16+46 4426

L BB, B 2 2
36+60 16445 44267 Y T 64185 36160 16+45

k? 8
Xz v ]

X- is obtained from X: by d— _5.
é is given by

o=4/ 12 <%=R¢) (1-86) -

d is real and positive in this problem, and it satisfies 1>8>0. The modified
Bessel function can be conveniently used to (1-85), but in the reference of the
convenience of algebraic computations for the numerical determination of ¢;, X+
and X- are used in this treatment.

Using (1-85) characteristics of waves in IIl-layer are shown by

¢(3) =e(a/2)v(AX+ + BX_)eik(:c—cl,)
= {—%e(aﬂw(A)ﬁ+BX_)—e<n/2>v(AX;+BX'_)}

X etk(z—ct)

VO = ket DV A X+ BX-)etecze0 (1-87)

pw):%(p(z)e-ay_p(z)) — pWg=ta/By [ {%(AX++BX-)

+(AX;+BX'_)} (c—ay)+a(AX++BX_)] gikCz—ct)

X, and X_ mean the differential derivatives of X and X- with respect to ¥

respectively.
The characteristic equation are introduced by (1-80), (1-81) and (1-87). Neces-

sary boundary conditions are
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VO =p® | pO=pHD at y=0
(1-88)
v =y | y®=gyD at y=y

It is noted that the discontinuity of density does not appear at y=0 and y=y;.
The characteristic equation obtained is expressed by

[(kc—gzg_a>X+<o>—CX/+<o>:| [<k+%>X-<y,> +X,-<y1>]

—| (o= =) X oo | [ (45 Ko K | 0 -89

<ky°_'g'yc_1>X—<0> —Ye X <o>
Xico> X co>—Xoco> X <o>

\

A=

aAP

(1-90)

\

(kyv"%?/o_l) X coo =YX’ <o>

B=— aAf
X+<0>X(—<0>_X—<0>X{+<0>

In notations <0> means y=0, and <y:> means y=y:. Three conditions as

follows are used to solve (1-89).

(1) 9e,, which statisfies U(y.,)=cr, situates between y=0 and y=y1. (y1>¥.,>0)

(ii) The method of the singular neutral mode for ¢;— +0 pointed out by J.W.
Miles (1961, 1963) is used. For instance (—y.)/2+¥/2=g =it1/3+o/Dy 1/3+3/2 in the
present study.

(iii) A case, in which /y.,/ is sufficiently smaller than both y:—y., and y., , is
taken into consideration, and so

. (1 8
(U=, =00 290 (o 1290 =i (5 e = e, Y

(1-91)
(Yo, +iyo JAEI 5 o V331 4 (—;j :I:%) Yoo, =0/171

Using these conditions, next relations are obtained subsequently.
Xy <y > =X+ <yl>)r—iyc,;(X+ <y1>)tl (1-92)
X1<y1> =(X{p<yl>)r— iyot(X{+<y1>)il (1-93)
Xico>=—10e7/D( X o5 )+ e—‘“a/”"yct(X+ <0>)r2 (1-94)
X <o =ie-i“/“"(XQ<0>),1—e-i<5/”"yci(X’+<0>),3 (1-95)

Here
l/z-(;a/z R 5/3+8/3 K K
(X <u>)r=Y1—Ye,) + 1+2 (Y1—Yo,) + 16445 4125 -
‘ 2 3 2

X (yl_ycr)s/wa/z + k k k (1 _ycr)13/2+6/2 R (1-96)

36+60 16+40 4+20

w
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1 k(5 8
Koaspda=(Xral=(g+5 ) mpe e oo( 312

X (Y1 = Yo YW1+ 4 i k: <g+—6—>(y1-—yo yi/3+a/s
: T 16446 44-26\2 " 2 T

3 3 3
b k k (13 )(y1—?/o Yi/s+a/a 4 (1-97)

36+66 16446 4425 \ 2
5 0

1 6\/d 1 _ 3 4
(X <y )= <?+—2—> (3——2"')(?/1—%7)"” 834 (E-}-E) <?+—2-)

9 g > ( 7 0 > kZ L )5/i+d/2

oy \1/3+8/3 ON(L o)\ K _
Tt20 Y ¥e,) +<2+2 272 ) 16145 425 Y Vo

i
412
13 a\/11 bt kb 2] \
Ty 114313 4 ... —
+<2 +2>< * )36—%—65 16+45 425 YY)V HH i oo (1-98)
k! k2 P
— o, 1/24+8/2 P P
X <odn=v; <1+ 4+25 Vet 1645 4+28 Vor

+ k2 k3 B > .
36+65 16+45 4+25 ycr-l- ......

1 5\ /5 &\ &
Kol =(Xraln=v5," ml(z +"2‘>+<’2"+?> T+ Ver
BB, (13+> BB B }
T\ 72 36460 16440 4120 Vert
(1-100)

9 s
+<?+E) 16+45 4+20 %

' 1 6\/é 5 3 8\ &
6/1 -3/2 —_—l —_—— —_—-

(X <os)n=y2 {(2 2)<2 )+<2+2><2+2>4+25y°’
+Hg+5) 5+ e T o+ s) 5+ 5)
2 ) 16+40 4+23 Vet 2/)\ 2
} (1-101)

k2 L
X 36160 16+4 4.,_25 Yo, oo

Xo<y>» X’_<,,l>, X_«> and X > are given by the index change §— —é
By making use of the above-mentioned expressions, the characteristic equa-
tion . (1-89) is transformed to the next two relations after some algebraic com-

putations.
(1-102)

—cot a(Mi—M)=ys (Ki+Ki)

tan 2 a(Mi-+ M)=yo(Ki — i) (1-103)

Here
— 27 —
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M= {'(ky"r_'g_y"r—l) (X <o>)71+’yc;(X+ <0>)rﬂ} {<k+%> (X -<yps (XL <1/1>)’}
(1-104)

M= {(kyor—%ycr—1>(X_<o>)r1+?/c,(X—<o>)rﬂ} {(k+%)(Xf<y1_>‘)7+(X’+<yl>)r}

(1-105)
K= { (e, s, )Xoy (=) s ok, (K o
y {(k+§)<x.<yl>>f+(xc | - {(kyc,—-gyc,—1>(X+<o>)n
+0 Kol (B4 (X g )t (KL oo (1-106)
K= {(kyc,—gyc,)(x_@»ﬂ + (k—%)(X-<o>)ﬂ+yo,(x’.<o>)ra}
x{ (B4 5 ) Ke ot Kb = (e~ e, ~1) Koo
(1-107)

+yc,<X_<o>>ﬁ} {(k+%)(xa<yl>>r+<xa<y1>)n}

Firstly the case of ¢;—0 (neutral mode) is considered. In this case the

neutral curve is determined by

Mi—M;=0 1
(1-108)
| M+ My=0 -
and so we obtain ' o
<ky0,_%ycr_1>(X+<0>)ﬂ+yor(X+<0>)r2=0 )
(1-109)
<k+%>(X+<'yl>)r+ (X% <yp>)r=0
or
<kyc,.—’%ycr—1>(X-<o>)rl+’ycr(X—<o>)rn=0
(1-110)
<k+i2t'>(X—<y1>)r+(X/—<y1>)r=0

If small quantities are neglected, (1-109) and (1-110) are modified to

(BYo,~1)( X+ <05 )1+ Yo, (X4 <05 )ra=0 1 09
(1-109")

(X, <y1>)r+(X/+ <1/1>)7'=0 J
— 28 —
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(o, = 1) X=cos 1+ o (X-coshn=0 )
(1-110")

k(X—<yl>)r+(X{-<1/l>)T=0

By this way the neutral curve is determined by (1-109) and (1-110), or simpler
by (1-109’) and (1-110").
At this point we remark the wave induced Reynolds stress of this model.
This stress is expressed by

_1

> ﬁR(m):%ﬁI(-@@-go*) fgtest (1-111)

0z

— P W=

With the condition of y,,— 40, we compute this stress in the vicinity of ys,.
Above y, -

T(>1/c)=‘lilz—-ﬂ_’(AB*—BA*)ﬁkemt‘ (1-112)
Below o,
T(<UC) =—ZTIF)'(AB*e—im3 _A*Beind)akezkctt (1_113)

Then (1-112) and (1-113) are transformed by making use of (1-90), (1-94) and
(1-95) with a condition y,,— +0.

-1 '
T Ty pat AP 5k sin on- €™t

{ (kyar—%ye,—1>(X+ <o>)rl+yor(X+ <0>)7'2& { <kycr—-g-yor—1>(X_ <0>)rl+yc,',(X- <0>)rﬂ}
I(X+ <0>)71(X—<0> )72"‘(X— <0>)r1(X+ <0>)ﬂ la

X

(1-114)
T(<yn=0 (1-115)

Accordingly above ¥, the Reynolds stress has generally finite value, and below
Yo it is zero. Expressions (1-114) and (1-115) are introduced with the condition
of yo,— +0, and these may be applicable to very small values of y.,. If condi-
tions of (1-109) and (1-110) for neutral curves are applied to (1-114), (>4, becomes
zero, and this means the wave induced Reynolds stress disappears along the
neutral curve, and the finite jump of the value of Reynolds stress at y. also dis-
appears. In (1-114) r¢,, also becomes zero at R;—1/4 or at R;—0.

Next we remark to the second relation of the neutral mode in (1-109), (1-
110’). According to expressions of (1-96) and (1-97), (Xi<y>) and (Xk<y,>)r are
always positive at the condition of 1>8>0. Therefore, as £ and « are positive
in the present problem, the second relation of the neutral mode cannot be satis-
fied for any k. This means that the neutral curve cannot be drawn in the region

of %>R¢>O. This is an important result of the present treatment.

A contrastive result is ‘obtaind in the case in which in Ilayer (3:1=y<o0)U
is checked by the condition U=U™=qay,. We see easily that this case is trans-
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formed to the treatment of J.W. Miles and L.N. Howard (1964) by the shift of
the coordinate. In the present system of co-ordinate, the relations for neutral
mode are expressed by R

(kye, —1)( X+ <05 1+ Yo (X4 <05 )Jra=0 }
(1-116)
(kye,—1)( X+ <yp>)rt ycT(X/+ <y>)r=0
(kycr— 1)(X— <>+ ycr(X_ <0>)ra=0
} (1-117)
(FYo, — 1N X- <5 )r+ ’.l/c,.(Xl— <y>)r=0

(1-116) and (1-117) each corresponds to (1-109’) and (1-110’) respectively. To
satisfy (1-116) and (1-117), y.,=(1/2)y: is necessary in the reference of each pair
of (1-96) and (1-99), and of (1-97) and (1-100). For an example of y;=1, Yo, =
0.5, a neutral curve is drawn for 2>0. This curve coincides with Fig. 1 of

Miles and Howard (1964), when a used by them is replaced by k/2 in the present

notations (« is wave number in Miles and Howard, and is estimated with the
unit of length ¥:/2 in the present notations). By this way the instability region
(c:>0) exists in the inner area of the neutral curve, if the increase of flow is
checked by U =ay; in I-layer.

For the present treatment we estimate ¢; by makig use of (1-102) and (1-103).
For the numerical determination of ¢;, terms of much higher orders than in
estimation of the neutral curve should be taken into consideration.

The characteristic equation from (1-102) and (1-103) is

tan—g-fr(K1+Ka)(M1+Ma)+c0t-g-rc(K1—Ka)(Mx—Mz)=O (1-118)
. . 1. ga 3
To simplify the procedure, 5=7 is taken(therefore RF?:—IE , and an

example for y1=1, ?jor=%

k(>0) and y,,. With the condition used that /y./ is much smaller than Yo, and
Y1—7%o,, a solution £=0.937, y,,=—0.137 is obtained. This shows that Ye, 1S nega-
tive, and so ¢: is also negative. As it is already found that the neutral curve is

and «=0.02 is computed numerically to determine both

not drawn in %>R¢>0, this means that waves of arbitrary wave number is

stable.

As shown by (1-91), y.,/¥., and y.,/y1—¥y., are not negligible in the present
case. The expressions (1-112) and (1-113) of the wave-induced Reynolds stress
are also applied to this case, and (1-114) and (1-115) are modified as follows.

ezkcir,

[ (Xt <05 i X - <o It — (X co5 )l X <05 )r2 |2

-1
TR~ "g patA§ ok
X [sin on { (kycr—%ycr— 1>(X- <0>)rl +ycr(X~<o>)rz}

X { <kycr—%ycr—1> (X4 <05 )+ Yo (Xt <o> )rﬂ}

RS
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@

+c08 7+ Yo, [ { (kyor— 5 Yo, — 1> (X-<osIm+yo (XL <0>)72}
&

X (kyo,—- 2 yo,—l)(X+<o>)u+yor(X+ <o>)n}

_ <kyor—'g‘yor—1>(X_<o>)r1+yoT(X_<o>)n}

x (k?/c,—%yc,.— 1)(X+ <051+ Yo (X' co> )ﬁ}

— (X <05 )ra( X'+ <05 1 4+ (X <05 I X <o> )ﬂ] ] (1-119)

ekeyt

(X s <05 )r(X = cos 2 — (X = <05 )ri( X4 o5 Ira 2

T(<yp = %‘5421‘1 0ok
X Ye, [ { (kyor—%yo,—1>(k_ <0>)72+y0,(X,_<0>)ﬂ}

x { (e, =, —1) (K oot 6 (Koo

— {(rve,~ 0, 1) (X <o+, (X ]

a

X (k?/or— ) yor—1>(X+ <0>)r2+yor(Xl<o>)ﬂ}

— (X~ <05 (X4 <05 )1 +H(X_ <o5 (X <0>)72:| (1-120)

Expressions (1-119) and (1-120) are used for the present numerical example, and
the result is as follows.

T(>1»=0.0229pa’ AP2pkes
(1-121)

T(<ye) = — 0'047754214((12)262"”1‘

This result clearly shows that the mechanical energy is transferred from the
perturbed wave motion to the primary flow, and corresponds to the stable mode
of waves.

Another case of stable mode, in which the strong shear flow existed and
1/4>R;>0 was kept, was found by K.M. Case (1960). In this example the fixed
horizontal boundary was given at y=0, and the velocity of general flow was ex-
pressed by U=ay (y>0), and also the density was expressed by p=pwe~?. The
problem was solved as an initial value problem, and the stable mode was obtained.
In the present example the distribution of density is different from Case’s example,
and the fixed boundary at y=0 is replaced by the wavy flexible boundary. The
common feature of both examples is a distribution of general flow, which increases
monotonously beyond the region where the significant decrease of density appears.
It is already shown that, if the velocity of general flow is checked in the upper
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region, the unstable mode appears in some parts of the wave number-R; number
diagram. By this way in the problem of idealized estuary, which consists of
three layers of fresh, salt and mixed water, we can consider the case, in which
progressive internal waves are almost stable and do not develop in 1/4>R;>0,
if the flow increases sufficiently in the fresh water layer. But the influences of the
curvature of the velocity profile and of the viscous effect should be reconsidered
for further investigations.

2. On the Control Section of Two-layer Flows

2-1. Interfacial linear long wave

We consider a system of two-layer flow, in which U® and U® mean the
uniform velocity of the upper layer flow and of the lower layer flow respectively.
Therefore the perturbed wave motion is irrotational, and the linear characteristic
equation for wave celerity (inclusive of surface and interfacial waves) can be
obtained by dynamical and kinematical conditions of surface, interface and bottom.

{0 tanh EAD 4B coth kA®)ct—2{2p™ U tanh EAD +p®(UD
+ U®) coth kh® )t + [GP“) U™ tanh kAD 4+ p®{(UD +2U D) 3T D1}

tanh kA
tanh ka®

(2
x coth kpw — 29 {1+

k Ho—2fop s

0Py tanh khD
2) 1) 2 (1) 13) [@') P i - A ) @y — "
F+oPUDUD(UD+U®) coth kh l {U +U tanl lh(”}]c

+ [p‘l’ U®4 tanh ki +p® JDITD coth kh‘”——’%

x {U“)’+ Um)zM} — ( g

3

tanh kr® ?) (o2 —p®) tanh kh‘l)] =0 2-1)
o and p® are the density of upper and lower fluid respectively. A% is the
thickness of the upper layer, and 2 is for the lower layer. The bottom is rigid
and horizontal, and the surface is free. The algebraic computation for the in-
troduction of (2-1) is cumbersome, but its theoretical foundation is familiar. The
solution of (2-1) contains four waves. Two external waves are generally pro-
gressive and reverse progressive. Two interfacial waves have much smaller
wave celerity than external waves. The external wave is generally stable, but
for the interfacial wave the Kelvin-Helmholtz instability may occur in some values
of UMW, UM and k. .

The simplest analysis for the control section of two-layer flow is introduced
from (2-1) assuming that ¢=0 and k41 and kh; are very small. In this case (2-1)
is transformed to

Py Y ASEY g SOIHR <‘0(2\khl(” U(a)z_ p<:g > U

_ p(z)g h(l)

P U<m+<-%—>2(p(”—p(1’)kh“)=0 (2-2)

N3
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(i) Two cases are possible for U =0, UM >0,
The first one is a case of external wave.

[ pPg _ g(p® —pO) D>
PREVEPAY o

(2-3)

In this case the relation between surface amplitude and the interfacial amplitude
is obtained as

D _p\2
A= A(O)[em(’)— g:(’;(]g:_)c)f) sinh kh(”] (2-4)

A® and A® are the amplitude of surface and interface respectively.
By making use of conditions of ¢=0 and k" very small to (2-4), and sub-
stituting for U™ by (2-3),

1) p(l) »
Aw =1k =1 (2-5)

This means the stationary long wave train externally formed. The distinguished
character is from (2-3)
U(l)2 _ p(ﬂ) 1 _p(ﬁ)_p(l)
gh o Rijpcs oD

(2-6)

This control condition is for the external wave, and is generally far greater than
1.
The second one is for the interfacial wave.

U(l)ﬂ p(ﬁ)__p(l) U(l)B F(1)2 1
gh> = pm <g‘—4&-h‘“_ T ) 2-7)
o
A(O) p(?)_ (¢)]
Ao= _—f’—p( . (2-8)
The meaning of (2-7) and (2-8) is clear.
(ii) For the case of UM=0 and U® >0
U(2)2 p(ﬂ)_p(l) U(ﬂ)2 F(2)2 1
gh® — e (gﬂh‘” o T ) (2-9)
p(ﬁ)

In this case, from the consideration of (2-4), A®=0 is established for any
value of A®,

The above-mentioned analysis shows that the interfacial long wave as a small
amplitude wave can oscillate with a control condition of F{?=1 or F®=1, and
the transition is not one-sided. In some books and papers the formation of the
control section of two-layer flow at the river mouth was explained by this mecha-
nism. (G.H. Keulegan (1966) etc.) But the treatment is limited to the small am-
plitude oscillatory motion. For the long interfacial wave of finite amplitude, the
existence of stable steady mode should be examined in each occasion.

2-2. Interfacial hydraulic jump
When the hydraulic jump of idealized type occurs, the depth of flowing layer
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is not continuous at the control section, and there the jump of finite height may
be seen. Two cases of interfacial hydraulic jump are examined with conditions
that interfacial and bottom frictions are neglected, and that the surface is free.
This may be typical cases of the frictionless aspect of the control section of two-
layer flows.

(i) This case consists of a flowing upper layer and a still lower layer. The
upper layer is formed by the depth %2 and the velocity (assuming uniform) U®
before jump, and AW’ and U™’ after jump. The depth of the lower layer is A®
and A’ before and after jump respectivly. The change of the free surface
elevation caused by jump is given by 4k (assuming positive when the free surface
is lowered by jump). Following to our previous discussions dp=p® —p® is assumed
small as compared with p™®.

It is evident that

J/ACOIN Xe Py ¢ SINT NS YNy} A (2-10)
From the law of mass conservation,
PR W = gD > e (2-11)

Using this, the law of momentum conservation is

.g. 1 1)/ 1 1)/ 2)7 3 — 1 1 2M
z(h( ) BN D — PO — (BB — DY} = DO YD > (2-12)
From the immutability of pressure at the lower layer,
(o9 — pD) (B — hD)=pM g dh (2-13)
By making use of (2-13), (2-12) is
(3 __ h(l)_h(l)/
gp (110 (hO 4 ROy (B — h‘”):h(“U‘mW—— (2-14)
From the law of energy conservation,
13
_‘%4__2_!,(1);,(1)(](1)3(;1)'2 1>—gp<1)U(1>h<1’4h=0 (2-15)
dE » . s .
Here g should be positive, and it means the energy loss per unit time. Using
(2-13), (2-15) is expressed by
%?Jrlp‘“h“"f‘”a(;ﬁfi 1) = gUHO(p0— pOX —H)=0  (2-16)

Then (2-14) is considered in more detail. Using (2-10),

g (h(”-l—h(”’)(h(” h(l)/)_—(h(l)+h(1)l) AP - dh

(1)

D — a1y

= hD T2
=ho Y=

On the other hand, using the assumption that 4p/p® is small, and putting
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(h‘“-—h“”)-f(%';dh (this is an approximation from (2-13)), the first term of left-

hand side of the above relation is

—(h(l).l..h(l)’) (h(l) (1)’)——(h(l)+h(l)/) (h(l) h(l)’)

+ (h‘1)+h“)/) dp ah

(1)

By this way (2-14) is transformed to

L (p> 4 peory= —U< » (2-17)

(ﬂ)

From (2-17) we can easily obtain

Qays 2
2 L L amerer | g U (2-18)
p> =TT 1o

A

This is firstly obtained by C.S. Yih and C.R. Guha (1955). This relation shows
with sufficient approximation that A®’/h®=1 consists in correspondence with
F{”=1. Therefore, from the low of momentum conservation, in which frictional
effect is neglected, both cases of A®'/A®>1 and of AV’ /pdO <] seem to be possible
according to the value of F{”. At this point the relation (2-16) is to be examined.
By making use of (2-14), (this is a strict form of momentum relation),

dE A — B
= —gU“’Ap(h‘“'—h‘”)—(—WL

(h(l) _h(l)r)ﬂ

=_gU(l)Ap(h(l)_h(l)/__Ah) T

(2-19)

(2-19) is a correct energy condition, in which the frictional loss is neglected, and
from this A®’'—hA® <0 is realized. Also in the reference of (2-13), 44 becomes
negative, indicating the rise up of the surface at the downstream of the jump.
Accordingly AV —ha1’<0 is evident. Thus the consideration of energy conser-
vation limits the possible case to A®//A>1 (Fig. 5), and this means that the
flow should be from supercritical to subcritical. The transition at the control
section is one-sided, indicating that the loss of energy (2-19) at the jump is not
negligible in the treatment of finite height.

(ii) A case, in which the upper layer is still, and the lower layer flows, is taken
into consideration. The thickness of each layer before and after jump is expressed
with the same notation as (i). The velocity of the lower layer before jump is
noted as U™, and U™’ for the velocity after jump. As the statical pressure in
the upper layer is not varied (there is not the frictional effect of interface and
bottom), the relation, which corresponds to (2-10) of (i), is

hO — hO = O _ > (2-20)
The relation of momentum conservation, which corresponds to (2-18) of (i), is
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control section

;

- U(f) >0
"> 1 .
Fr (f)< /
7(2/-.__: 0 .

ASAANNNANNNANNANAANSNNNNNNANNN

Fig. 5. Interfacial hydraulic jump

B 1 1 Uos
==+ 5/ 1+8F® , FP'= (2-21)
<o ) T dp @
oLk |

The relation of energy conservation, which corresponds to (2-19) of (i), is

) ) _ hH\s
dE _ 4 o —hO)

dt o = (2-22)

control section

7—/2) > 0
—_—

> 1 Fro<7
MMMMMMMMMTTTTTTTRERRR

Fig. 6. Interfacial hydraulic jump
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From (2-22) h®'>h® is immediately obtained, and (2-21) indicates that F$?
is greater than 1 before jump, and it becomes smaller than 1 after jump. The
tendency from supercritical to subcritical is same as (i), and the transition is
again one-sided (Fig. 6).

2-3. The control section with variable width and interfacial resistance

In this section the interfacial resistance and the bottom resistance (if neces-
sary) are taken into account, and stillmore the variation of the width of the flow
is also considered.

(i) A caseof U®=0 and UM >0 is treated. A suitable equation of motion was
already given by J.B. Schijf and J.C. Schénfeld (1953).
For the upper layer

(2-23)
0-—9“’9—-%1;—
For the lower layer

L
(2-24)

0= —p"’g—g—i

The equation of continuity is

QW= UMWDY =const (2-25)

Here x is abscissa taken horizontally and is downstream positive. ¥ is ordinate
upward positive. b is the width of flow (assuming 5= implicitly), and the
bottom is taken horizontally. From (2-23) and (2-24) following relations are
obtained using the shearing stress of interface z:.

For the flowing upper layer,

19U 9k gh® g

2 oz 9 oxr 9ax pnm (2-26)
For the still lower layer,
(¢9) (€3] [¢))
o oh ok T4 0 (2-27)

o9 oz " 9r Tompm T

In this case stress acting on the bottom base is neglected, and in actual problem

it contains some questions.
(€3]

Eliminating ¢ oh

0z from (2-26) and (2-27), and using the relation

GRD b
aum  Qun | ar  ag )

xS + b

dx  “hwipan
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we obtain

. ob»
1 Q(I)B 1 ah(l) Q(l)ﬂ ax ﬁ__l_ h(l)_‘_h(ﬂ)
TR ggh® ) dx T hDBDL gghD T p gg  HDpD

=0 (2-28)

1
_ ‘p(ﬁ) _p(
Here e= —

presentation of o> and p™®, as the difference between p® and p® is small.

The interfacial shear stress z; has a complicated character, as it has not the
usual property of shear stress acting on the rigid boundary. The amplification
of interfacial wave may be a cause of this stress, and in this case the exchange
of momentum depends mainly upon the action of pressure. Therefore the detailed
character of z; may be examined in the future problem. In this paper we put
it as 7;=peUD? in the similar manner of the general expression of flow resistance.
This type of expression is also used to the shear stress of air flow upon water
surface covered by developing wind waves.

Using this expression (2-28) is

, and a notation p of the third term is used as a common re-

ox _sg hO3ps o g Ao b(l)ghu)s=0
(2-29)

1 QW2 \ ghw 1 QW pw £ hOLp® Qs
(1'— eq b(l)aha)a)

U (1)2
egh®
turbation the variation of AV +A® =} is very small, and it is neglected. As the
density of fresh water is very near to the density of salt water in estuarial pro-
blems, this simplification does not influence the fundamental characteristic of the
perturbation.

The first relation is shown by

The relation (2-29) is perturbed in the vicinity of =FM=1. In this per-

h(()l) b x(h(1)+h(3’)
The second relation is shown by
_3_<ah<1>>2 {_2_(31;(1)) kh 2h§°—h
i )t (o oo )i he )
< ab‘“> *hv
oh h ( 2)
(B )it e =0 (2-31)

0 h(()2) bgl) < ab(l) )
ax /o

h is equal to AV +A® as referred, and a suffix 0 means the value at the control
section. From (2-30) we can put 6 =54{"e= in the vicinity of the control section,
and so

ok 1 /b
=i (=35 (5> )
From (2-31)
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1 /oh® 11 /DN B 1 ek
'35&57l=—335657%%”=—§7§%5<0 (2-33)

(2-32) indicates the increase of width at the control section, and (2-33) gives the
decrease of the thickness of the flowing upper layer. The transition at the cont-
rol section is different from the case of hydraulic jump of 2-2.

Generally the surface slope is very small compared with the slope of the

interface given by (2-33), and its approximate value is determined from (2-26)

O3 Ha
U and Fs‘ext.)z =_(_j_ the

and (2-27) by the elimination of r;. Using F"=

egh(l) gh(l)
gradient of water surface <% in the present model) is expressed in general by
1 Fos Uws
b anw _e<pmh<1> +p(2)h(2)> 1 9w D gh® (2-34)
o oz -  1—Fomn b ox  1—e 1— Foxiy
PO + P DD PO 1 + p®h®
At the control section F$?=1 and F®*%=¢ are clear, and by making use of
(2-32),
ah oD\ —¢ e h{®
(ax>o—< ax >o 1—e+1—e hsz)x (2 35)
Using (2-33), (2-35) is approximated by
o\ __1 e (AN K)o
Qx%_—Bxl—EKh@_d)+h@1<o (2-36)
ah\ . . oh ¢
<ax>0 is very small compared with < Py >o,of (2-33), because 1—e «1l.

A noticeable point is that the coefficient of interfacial friction # is included
linearly in (2-32), (2-33) and (2-36), thus regulating the increase of width, the
decrease of the depth of the upper layer and the surface gradient at the control
section. Though the true property of £ seems to have many difficult points, its
experimental determination was already done by both model and field observa-
tions of the two-layer flow of fresh and salt water. The value of x is about the
order of 10~? by model tests, and about 10-*~10~* by field observations. Accord-
ingly we can apply to a certain extent the present theory to the steady two-layer
flow at the rivermouth, where the flow of fresh water runs out to sea on a saline
wedge (Fig. 7).

(ii) Next we treat a case of U"=0 and U®>0.

Equations of motion for the upper layer are

o

O=—2z1%
. (2-37)
b

— (2P

0= p()g P

and for the lower layer
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control section with

variable  width

R

Fig. 7. Control section with variable width and interfacial resistance

UD 3 ac

R
(2-38)
0=—p”’g—g—§
The equation of continuity is
QP =UDaDp® =const. (2-39)

In the present case we must take into account the interfacial resistance z;
and the bottom resistance . Because 7:<0 and z,>0, we put them as follows
in a similar form of (i).

1¢=—p(“)xtUm2, ‘t'z>=‘0(2>lfz>l](ﬂ)2 (Iu and xb>0) (2-40)

After some computations the next relation is obtained, and it corresponds to
(2-29) of (i).

ob®
1 QM \ ghd ox Q3
(1_ egh® h(z)zbma) ox  egh® h®IpH3

K Qs p £ Q3
egh® R®IpD®I > T g p BDIp

+ 0 (241)

U(2)2
o =FP=1. The

change of total depth A=A +A® is neglected. The first and the second rela-
tions are

(2-41) is perturbed in the vicinity of the control section

@
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JAQNEFT 1SN
_—5:(,;< ox )Ao+ s ~ o tr=0 (2-42)
3 [onD\2 1 /abw h
-hé”( ox )o+{b82’< ox >o+"‘ hgln}
h® IQNE B> [ 3 \1
X< ox )o_ b» < dx? )o+ B ( ox )o—O (2-43)

Putting b =b{e#, and from (2-42) and (2-43)

h 1
B=ki—— 5 h(’) h_S”— (2-44)

oh® 1 B
( o >o < A2 +"°) (2-45)

The surface slope (very small quantity than the interfacial slope) is obtained by

the elimination of z; from equations of motion and continuity. In the general
case it is

b®
_ai_ e ﬂ{( U3 _ )ah"‘” _ T hOU®S gy } (2—46)
ox l—e¢ h egh® Ar  pWegh® egh™® 3¢

. g
At the condition of =F® =1,
egh®

oh W2 e '
(5e)ome 1 @
control section with
variable  width

$‘

/

F< 1
—_— U 2) > 0

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Fig. 8. Control section with variable width and interfacial and bottom resistance
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(2-44) shows the increase of the width at the control section, and (2-45) shows
the decrease of the depth of flowing lower layer. Stillmore (2-47) indicates the
ascent of surface elevation ot the same section. (it is interesting that this ascent
is controlled by the shearing stress at the interface only). These properties are
different from the interfacial jump of (ii) of 2-2, and x; and «», play a role of
linear regulation. This case of an undercurrent may be seen in practice by the
flowing muddy water under clean still water, if the width of flow is suddenly
enlarged (Fig. 8).
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