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Two Dimensional Influence Chart of Stresses

in a Semi-Infinite Elastic Body

MASATOSHI SAWAGUCHI*

SYNOPSIS

This report states that the vertical stress due to an embarkment of any shape of
. ctoss-section on the ground assumed to be elastic could be obtained approximately but
very easily by using a two dimensional influence chart. And, in appendix, it was
described that, with influence charts with respect to horizontal and shearing stresses,
this could be applied to obtain the initial pore-water pressure related to the consolida-
tion. This possibility was developed by relaxation method of two dimensional consoli-
dation and, as one example, was illustrated by the case of a line load application,

and, furthermore, the possibility of superpc;sing the stresses due to such many line
loads was also investigated geometrically.

§ 1. Introduction

In such construction works as roads, rivers or harbors, there are many cases that
what magnitude of stress will be occured in the foundation under such structures as
have the same cross-section along almost infinite length must be investigated. But, as it
is rather difficult to obtain the solution based upon the elastic theory, an approximate
answer is sometimes urgent.

Up to this time, in order to obtain the stress occured in the ground under such a
structure of finite length, influence charts have been used widely. However, in case
of an infinite strip load of which the cross-section is not uniform, for example, an
embankment, it seems easier and more accurate to obtain the stress by using a two
dimensional influence chart which will be stated in this report because stress condition
in such a case is plain strain. Therefore, the two dimensional influence chart is re-
c:ommended to be applied to any shape of load section to obtain a relatively accurate
answer as regards plain strain problem.

Then, in order to check the accuracy of this influence chart, this chart was app-
lied to an example which was given by Osterberg in his report. And, furthermore,
how much ratio of length to width of a load area with uniform weight can be con-

sidered as two dimensional problem within a range of negligible errot, even if it has

* Chief Researcher, Soil and Structure Division.



a finite length of site, was investigated by comparing the value obtained by this
influence chart with that one by analytical procedure.

§ 2. Survey of the literature

To obtain the stress by elastic theory in foundation under a structure of a
complicated shape of site, many works have been pursued by using influence charts
so far. In 1938, Burmister devised a chart for stress by using a concept of influence
line and graphycal calculation method, and he stated how to obtain easily the stress
at a point in foundation under a structure by counting the number of blocks in his
chart which are occupied by the trace of the site. But this procedure needs a separate
chart for a given depth, and so, it was not very convenient to obtain the stress at any
depth. »

In the discussion of the same report, N. M. Newmark suggested his new chart
which gives a value of dimensionless coefficient as regards theé stress based upon
Boussinesq’s elastic equation. As this coefficient includes only dimensionless term,
that is, the ratio of hotizontal distance between a point in question and a point where
a load is applied, to the depth, the stress at any depth in foundation can be ohtained
by only one sheet of chart.

In his report published in 1940, he discussed again about his chart and presented
a more improved one, where he first named the chart for an influence chart and the
value of stress which one block indicates, for influence value which is constant in his
chart.

In 1942, Newmark published further the latest influence charts for horizontal
stress, shearing stress and the sum of principal stresses in elastic mass.

Recently, Fenske made out the same kind of a chart based upon Westergaard’s
equation as that one by Newmark.

§ 3. Two dimensional influence chart

When a structure is constructed on the ground, the stress occurs in the foundation
which causes settlement or shearing failure of the soil. Therefore, the designers are
demanded to know what magnitude of stress will be occured in the ground under a
structure in advance. In this case, it is most easy and practicable to estimate the
stress by applying elastic theory to the stress in the ground which is supposed to be
semi-infinite mass.

A load put on the ground gives rise to stress to any direction in the ground.

- Especially, the stress in vertical direction is the more interesting because it is applied




to the problem of settlement. The equation for vertical stress in semi-infinite elastic
mass under a point load vertical to the boundary are given by both Boussinesq and
Westergaard respectively in different expression as follows;

: —3Q z
Boussinesq I EEE (1)
Westergaard o =22 7 (2>
T or G

where o, is vertical stress, @ a point load, z the depth,  the horizontal distanse and

=

In Boussinesq’s equation, it is assumed that the mass is isotropic and homogeneous,
and in Westergaard’s equation, it is assumed that the strain parallel to the boundary
surface is zero,

When such a complicated -distributed load as an actural structure is constructed
on the ground, these equations can be superposed by integrating the stress under a
point load, because the principle of superposition is valid in elastic theory.

In the case that a structure has a site of almost infinite length in comparision
with its width, the vertical stress can be calculated by Boussinesq’s equation as fol-
lows ; the vertical stress under a uniform line load of unit length of weight, p, can
be given by integrating eq. (1) as

1

ot 1
T nz NP {3)
=+(2))
Supposing that this line load is distributed between x, and x; which are the distance
along axis in the direction perpendicular to the line load, eq. (3) becomes

_ C
e (45
where C=(28,+sin 205 — (26, sin 28;)
and £ —tan 8, *2_ —tan 8,
<

From the equations above we can obtain vertical stress at any depth under an infinite
strip load of uniform weight, p, which is distributed between x, and =, If scale is
established along x axis so that ¢, may have a constant value — we can name it for
influence value like Newmark’s — that is, C has a constant value, the vertical stress
at any depth under the 6rigin of the scale due to an infinite strip load of uniform
weight distributed on every each scale becomes constant.

Accordingly, the stress due to any shape of load section can be estimated by summ-
ing up the number of the areas occupied on that scale by the trace of load section. In



that case, we must give such a reduction to the dimension of the load section in order
to make the trace as the distance to the depth at question corresponds tothe scale
distance, and then we put the reduced trace in dimension on the scale so that the
point in question may be located on the ordinate. Thus the number of the scale
which is occupied by the traced area of the load section gives the stress in question
with the reduction ratio multiplied by which the quantity of load is reduced so that
some magnitude, for example, the peak of load coincides with unit on the ordinate,

Now, let us make out an influence chart with some value and obtain the stress
under an embankment as an example by using this chart. For example, supposing
the influence value to be 0.025, from eq. (4)

_ C
0. 025——2—”

C=0.157

To determine the scale along x axis beginning at the origin, the value xy/z is first
determined by substitution of x;=0 into eq. (5). Again substituting the value xy/z
for the value x,/z into the same equation, the value xy/z can be determined. Thus,
by repeating this procedure, a series of the values x/z can be determined. Here, if
we take a constant as the scale distance, for example, 10cm in this case, the series of
% values can be plotted along x axis as a scale. As a result, a uniform strip load
which is distributed in each scale induces a same value of vertical stress at given
depth in the ground. The two dimensional influence chart is given in Fig. 1, where,
for x/z>1. 827, the influence value is reduced to 0.0025 so that the effect of load at
a great distance on the vertical stress may be accurately estimated. This scale lines
are written by the dotted lines in the chart.

Now, let’s obtain the vertical stress in the ground under one of the typical em-
bankments which Osterberg gave in his report, by using this influence chart. The
cross-section of this embankment is a trapezoid as shown in Fig. 2. After reducing the
dimensions of the embankment so that the 20" 10 30’ 20’
distance down to the depth, 20/, in ques- J
tion may corresponds to the scale distance

in the chart, that is, 10cm, the cross-section
of the embankment is traced on the chart. 1
As the scale along x axis is symmetric

with respect to the origin, only one side
of the scale is shown in the figure. “Left .
Slope” in the chart means the left side
of slopes of the embankment and “Right
Slope” means the opposite. In this example, Fig. 2
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as the maximum load is ¢, the cross-section is traced so that this maximum corre-
sponds to the unit on the ordinate. Thus, the number of scales including the frac-
tions of scale which are occupied by the traced area becomes 34. 55 for influence value,
0.025, and 2.15 for 0.0025.

Accordingly, the vertical stress at the point in question, o,, is
(0. 025 x34.55+0. 0025 2. 15)=0. 869

If it is demanded to take more accurately the fractions in the part of scales which
are occupied by the straight slope line, what follows is recommended. Supposing the
distance of the scale lines which are cut by the slope to be I, I3 /3 and [, which
correspond to the scale on the ordinate as shown in Fig. 3, the total fraction in that

part is obtained as follows;

%(zl+zza+ %Us+1s) (6)

The triangular in the most remote part of scale
cannot be estimated without by inspection. Com- Y ba g
paring this result with the value given by Osterberg, > Le
there is only about 1 % of error in this value as

shown in Tab, 1, but its accuracy seems to be Fig 3.
good enough for préctical purpose.

Next, let’s consider the influence chart based upon Westergaard’s equation. This
case also begins with the integration to a line load just like Boussinesq’s case. As
Westergaard’s equation is given in eq. {2), the vertical stress under a line load is obtained

Tab. 1

r . . Westergaard

Osterberg |Boussinesg| 4 =0 H=025 |12=0.33

% 0875 q | 0.869q | 0.695q | 0730q|0.774 ¢

by integrating this equation with respect to x within infinite range, that is,

2L, (7

7z oy 2\*
7+(£)

g,—=

Furthermore, supposing a uniform strip load distributes between x; and x5 the vertical
stress at a given point is given by integrating this equation with respect to x as
follows,

— 19 —



a==£(tan‘1—x2 —tan-1-%1 ) (8)
T Nz ne

Likewise as in case of Boussinesq’s equation, a two dimensional influence chart can
be made out from this equation. In this case also, the influence value can be pro-
vided by fixing a constant value as the vertical stress in the ground under a uniform
-strip load which is distributed in each scale along x axis, The completed chart is
shown in Fig. 4. Here again, we can obtain the vertical stress in the same example
as in case of Boussinesq’s equation by using this chart, where =0, 0.25 and 0. 33.-
This result also is added in Tab. 1. As shown in the table, the value for £=0.33 is
the most close to the value obtained by the influence chart based upon Boussinesq’s
equation. And also, as Taylor stated in his book, the value for pg=0 is about two
thirds of that by Boussinesq’s equation.

As it seems reasonable that the vertical stress in the ground near by the center
of structure of which the ratio of length to its width is almost infinite can be a two
dimensional problem without practical error, so, in order to show how much ratio of
length to its width can be considered to be a two dimensional problem in such a
case, the stress occuted under the structure as shown in Fig. 5 was compared in case
of =0 by uvsing both the two dimensional influence chart and the analytical method
presented in Taylor’s book.

N e N
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%

Fig. 5.

This was done for the case of a uniform load and the vertical stress at some
depth right under the center of the structure was obtained. This comparison is shown
in Table 2. As a result, it is clear that the vertical stress obtained from the influence
chart based upon Boussinesq’s equation is almost the same as the value by the analy-
tical method ; that is, the value by that based upon Westergaard’s equation differs the

" analytical value by only 3 %.
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Tab, 2

Boussinesq, |Westergaa ;? -0

Taylor 0.134 q 0.180 q

auther 0.134 ¢q 0.185 q

Therefore, this influence chart is valid enough for practical purposes even in case
of a structure whose ratio of the length to its width is considerably large.

§ 4. Conclusion

While the influence chart which was made out by Newmark is valid to obtain
the vertical stress in the ground under a structure of a limited site, the two dimen-
sional influence chart which was made out by the auther is valid in case of an infinite
ot almost infinite strip load, whatever the cross-section of the load may be. For
example, the validity of this chart will be demonstrated in a problem such as in settle-
ment of an embankment including the weight due to other structures, for example,
a breakwater or pavement.

In many case of two dimensional stress problem where more accuracy is demanded,
the analytical procedure should be used, but this influence chart, just likewise as other
influence charts, is useful to obtain an approximate value very quickly.
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APPENDIX

(A) Approximate calculation of the two dimensional
consolidation by graphical procedure

Just likewise as in the case of o, the influence charts with respect to ¢- and 7.
based upon Boussinesq’s equations can be also made up. ~ These charts are shown in
Fig. 6 and Fig. 7.

With all these equations, we can find the principal stresses occured at a given
point in the ground due to a load of which the form of the cross-section is arbitrary.
Therefore, if the relation between the principal stresses and pore-water pressure is
defined, for example, as

du=B(doy+ A(do,—Aday)] (9

which is called for Skempton’s formula, we can estimate the pore-water pressure at
the point in the ground due to the load. As time goes on, the pore-water pressure
will dissipate, The degree of dissipation of the pore-water pressure can be estimated
by the two dimensional consolidation theory. This estimation also can be done with
the approximation by the graphical solution ; that is,- in imitation of the approximation
by the graphical solution in one dimensional consolidation theory by G. de Josselin
de Jong, the author applied the same method to the two dimensional case. As the
equation of two dimensional consolidation in the case of homogeneous soil mass is
expressed as

Ju __ 0%y 9%
iy =Gy Tt ayz) 10)

so, if squares mesh of small size, dx=dy=4l, is
drawn in the ground parallel to the direction of
x axis and y axis, and the pore-water pressure at

some node, 0, at any time is supposed to be u,, U,
’
Hy —Uo - Co + _—
77 HE (o toegt+uy—dug)
where ' is u, after the lapse 4%, and wui, s, % [ g Uz

and #, are the pore-pressure at the neighbor gride
as shown in Fig. 8. C, is a coefficient of con-

solidation, .
As 4df and 4! can be arbitrarily given inde-
pendently, if 4¢ is defined so that At:ﬂ)i

4Cu ! .
#o is expressed as follows; Fig. 8

— 922




uo’=é—(u1+uz+u3+u4) _ {11)

This simple calculation may be begun at an arbitrary grid. After one cycle of
calculation ended, these figures show the pore-water pressure after the lapse, 4i.
Repeating this procedure, the pore-water pressure in the ground after the lapse of any
time can be obtained. Fig. 9 shows one example of a line load application on the
ground. In this example, the principle stresses can be expressed-as - -

Aal=£cos g dag=10
wr

If the magnitude of a line load is =24,

A01=A—1—rcos g . -
and then
Au*:%cos i - 7 (12)

The computation of the approximation was repeated eight times, the mesh size being
unity, and the values of the pore-water pressure were written down-in each sqiiare.
We will call temporarily these values “pore-water pressui‘e value”,

Now, let us apply this pore-water pressure value to the practical case. If the
magnitude of an applied load and the mesh size in-situ are supposed to be P and H,

the pore-water pressutre in-situ, Ju, is written by

tu=(24. Lxau a3
where du* is the pore-water pressure value at the grid corresponding to the position
required for pore-water pressure in-situ. The ‘pore-water pressure there after the lapse,

T, can be obtained from the pore-water pressure values at N cycle of computation.
N is determined from

T
=1 as)

H?
=c, 4

where the dimensions are as follows:

— 23 —
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P (tim) H @m) €, (m/day)
Let us obtain the pore-water pressure at the position, F, in Fig. 10.

Here X=10m Y=20m P=10t/m T=100 days
Co=1.0Xx10"%m?/day

Supposing A=1/3, from eq. (14) and eq. (15,

22
At—m4><10_2 =100 days o
X=tOm
100 _ ]

100

Therefore, we can use the pore-water pressure

value at one cycle of computation. Taking, for

example, H=10m, from the value in the figure,

du*=0.391 : Y=20m
In a result, from eq. (13),
Su=220:-33%10 1 391 =0, 082 t/m?

3.14X10
S

The case of an arbitrary cross-section of an

embankment load will be demonstrated later. Fig. 10

(B) Superposition of stresses

If some stress state is combined with another stress state, the magnitude and the
direction of the conbined principal stresses will differ from the previous state.
Supposing that the pore-water pressure can be determined by the magnitude of the
principal stresses, we have first to know the magnitude of principal stresses in order
to obtain the pore-water pressure in the ground. For this purpose, the auther has
made out the method of combining more than two stress states. Now, let us consider
the most simple case of combining two stress states. Supposing that the former stress
state is signed as (A) and the superposed stress state \is (B), and that the directions
of the both principal stresses intersect each other by the angle, «, and supposing that
the direction of the combined principal stress rotates from the direction of the principal
stress in the stress state (A) by the angle, #, the stresses of the states (A) and (B)
to that direction become respectively, '



'~ ayta; g1—0z,
o 5 + 3 cos 260

(A)
T =0'1T“0'28in 26
(16)
o= 01"5”2' + "1';"2’ cos(20—2a)
(B)

ffz‘*%sincza—-za)

where the apostrophe means the stresses in the state (B). Other principal stresses
intersecting with the above principal stresses by a right angle can be likewise treated
by substituting 26+4= for 26. Expressing the combined stresses for ¢” and ", these
are;

o= 01;‘624—11’_'2-02’ + 01;02005 20_'_—01’;02’ cos(20—2a)

an

o= IOy 26497 —% in (20—2a)

2
However, this direction becoming that of the combined principal stress requires the
condition that " must be zero.

%sin 204+ %sin (20—2a>=0

Rewriting this equation,
g’ —ad .
I —9 h %

2

g,—a '—al
17924 91 92 oos0a

2
This angle, 20, can be obtained easily by graphical procedure as follows. In Fig.
— 1
11, taking % as the distance, AM, and ﬂT"—z— as the distance, BM, so that the

tan 28,=

¢t

angle between AM and BM becomes 2a, the angle, 26, is obtained as the angle,
MAB. This rule can be verified as follows. Drawing a perpendicular passing through
the point, B, down to the line, AM, and denominating the intersection as B’,

_. BB _. BB’ °

tan (the angle BAM)=—m=— s |
i

|

re o 7 1

%sin 20 :

— B,

- r__ ./
D1 —024. 9102 o520
2 2 Fig. 11

The magnitude of the combined principal stress is obtained by adding the length of

AEB to 0'1+0'2+ 0'1’+0'2’
2 2 : '
This is resulted from the fact that, writing a perpendicular, MD, to the line, AB,




passing through the point, M,

AB=AD-+DB="1"%0s 20+ L‘z“"zicos (20 —24)

This length is equal to the difference between

o1tos, o oy
2 + 2 ’

the stresses to a given direction. Taking 28 as

" and Now, let us consider

the angle between the direction required and the
direction of the principal stress state (A), the

'/

stresses to the direction required can be obtained
as follows; that is, drawing a line intersecting
with the line, AM, by the angle, 26, passing Lzo a
through the point, A, and drawing a perpendi-

cular, BE, to that line passing through the point,
B, as shown in Fig. 12,

o"=AE+ 9t Oy ol bl Fig. 12

"=BF
This can be verified as follows. Writing a perpendicular,
MG, to the line, AE, passing through the point, A,

AG=T1-"%co5 29 EG =@_cos(20—2a)
and MG=7+55in 20 B M= “_f‘z‘_"isin (20— 2a)

Therefore,

—_— r_
o= D= Ttgin 9949 =% in(29—24)

This means that any point on the circle whose
diameter is the length, AB, is to express the
combined stress state, and the magnitude of the
stresses can be shown by the distance between
the point, M, and the point, A or B, and further,
that the combined stress state can be expressed
by a Mohr’s circle.

Next, let us consider what is the magnitude

of the principal stresses, ¢" and 7", and which

is the direction of the principal stress at failure Fig. 13




condition. These values are obtained by graphical procedure as follows ; in Fig. 13,

a perpendicular, BP, to the line, AB, passing through the point, B, is drawn and a
al+02+ g+
2 2
The circle intersects with the line, PB, at the point, P, Then, after drawing a line

passing through the points, A, and P, the angle between the direction of the principal
stress in the state (A) and the direction of the failure plane in the combined stress
state can be obtained by the complementary angle against the angle, MAP. This

circle of which the diameter is is drawn around the center, A.

will be verified in the following. When the combined stress state is at failure, 7//o"
should have the maximum value; that is, the equation

_ Pt
o P2 sin 20+, sin (26— 240)
” Uroit “"}LW +-A5 % cos 2a+“—"?2’ cos(26 —24)

has to become at the maximum. This calculation can be carried out by differentiat-
ing this equation by the angle, §, and making the derivative zero. The result is

gy toe, a/to! N oy—0o , oy — oo’ _
( 5 + 5 )( 5 cos 26, +M~——2 cos (28, 2a))

R I T Co S

The angle, 67, can be obtained by the graphical procedure as follows, If perpendi-
culars, MH, and BK, to the line, AP, passing through the points, M, and B, respecti-
vely are drawn, and these lines intersect at the point, A, and K, respectively with the
line, AP,

AB*=AM?®*+BM—-2AM BM cos (x—2a)

-5 (o s L o

whiles, AP:U_1"2{12+ g 1"21‘0 o

AK=AMcos (26— n)+BM cos (2a—20s+7)
=1~ %0s 2a,+%cos (26, —2a)

and, as AB*=AP«AK, eq (19) is found to be satisfied. Therefore, the combined
stresses at failure plane can be obtained by substituting the angle, 8, into eq. (17).

;_02-!— alf—zl_az’ +Ccotg as

the length of the diameter, AP. The problem about combining more than three stress

When cohesion must be considered, it is enough to take -2

states can be solved by carring on the above-mentioned procedure one by one.
(Received by the Institute, January 31, ’66.)
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