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Evaluation of Resisting Moment Against Sliding as Rotating Mass

MASATOSHI SAWAGUCHI*

SYNOPSIS

As one of calculation method in stabilitj} analysis of low embankments on clay
was the evaluation of resisting moment proposed, assuming that the sliding soil mass
was a rotating body by such a reason. why the range of sliding area was limited, and
moreover, the shape of the cross-section of the sliding mass might be a circular arc.
As the ground is composed of clay, the §=0 analysis could be applied though the
undrained strength of clay was assumed to be in proportion with the depth. This
evaluation was applied to several cases where the sliding most occures. Finally the
formula was demonstrated to the possibility of calculating of the resisting moment of
a footing against sliding,

§ 1. Introduetio

In the case that the range within which failure occurs is limited in its length
and, strictly speaking, the length of side areas is relatively in a short distance in
comparison with its width, the resisting moment acting on the slip surface has better
to be estimated not only in two dimensional problem but also on both sides of the
sliding mass; otherwise, the design will be apt to become uneconomical. In this
report is a sliding mass considered to be a part of rotating mass and the resisting
moment against sliding is evaluated, assuming that the shearing strength of soil is
empirically in proportion of the depth of the ground. In this case the shearing
strength of the soil is assumed to be given by undrained compression strength, and
also its mobilization is assumed to be at the peak value everywhere over the slip
surface,

§ 2. Method of Analysis

2—1 Evaluation

Supposing that the sliding of mass with its length within limited range occurs
around a horizontal axis which is situated at some height, H, above the ground, the
resisting moment against sliding can be obtained as the following general equation,

* Chief Researcher, Soil and Structure Division
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in which the shape of the slip surface on the vertical section is expressed as f(x).

The infinitesimal area of the slip surface is shown in Fig. 1, where the direction
of the resisting force acting on this area, dF, is perpendicular to the axis, xa’. As
the infinitisimal area is at a distance, f(x)+H, from the axis, the resisting ‘moment
against sliding on this area, dM,, is expressed as

dMy={f (&) +H}df (1)

If this moment is integrated all over the slip surface, the resisting moment acting
on there is given in the form

M=(\" {rG+Har (2)

where « is the angle of circular arc of the slip line as shown in Fig. 2, and L is the
maximum length of the sliding mass parallel to the axis as shown Fig. 3.

dx

A f{x)+H

(X} + H

Fig. 2

/
H{x}+H
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Let us scrutinize the area, dF, in the equation above. Supposing that the un-
drained shearing strength, C,, at a given depth, z, is in proportion of the depth, that

is,

Cu=Cy+k(z—H) (3>

where C, and % are the constants of the undrained shearing strength with respect to
the depth, the resisting force acting on the infinitesimal area is given in the form

dF={Cy+k(z—H)dA (4>

where dA is the magnitude of this area and can be obtained as follows; supposing
that the angle between the tangent on the slip surface and the axis is 4, tan 8=1"(x),

and so
dA={f(x) +H}sec 0 dp dx

={f(@®)+H{f (©}+1]Vide dx (5

where ¢ is the angle between the direction of a given infinitesimal area and the
horizontal line as shown in Fig. 3.
Substituting eq. (3)(4) and (5) into eq. (2), we have the resisting moment

M= {F@+HPUS DY+ 1V Cort ke D Yp d (6

As z in this equation is
{f(x)+H}cos ¢

so, finally, the general equation in the resisting moment is expressed in the form
Lact
M= | (@ +HRUS @ Y+ 1DVECAR S )+ HDoos p— H)dpds (7)

Furthermore, if M., and M, denote the terms of the equation above corresponding to
C, and % respectively,

Mo=Gol| | /() +HY S @) Yoo+ 1) Vedp di (8)
M=t | {fD+HPU/ @ P+ + Hleos o~ Hldprdx ()
e H
As a=cos 1W
Mor=2Co{ G+ BV Yo 10eeoss - B g
. MkrszjS:{f@)+H}“E{f'<x>}2+1l”zcosso-dso'dx
L
~%H| () + HPW D P+ 10eost g
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where the first term of My, is

kS:S;{f(@ +HPH S (%) +1)Y2cos p-dp-dx

=2 {fG) +HP U WP +131sin a-d

Here, we setting

F=S:{f(x) + 82 PPI{f () }2+ 1] V2%0s! dx (10)

7
fl)+H
G :Sj{f(x) FHEWS @R+ D) + HY - HV2dx an

the resisting moment against sliding is, as a result, expressed briefly in the form
M,=2C,F+2k(G—HF) (12)

In what follows, a few specific forms of f(x) will be given and evaluated to
practical use.

2—2 Case 1 Cylinder
In this case, as f(x)=D and f{x)=0, so

F=SL(D+H)2cos‘1 H g,
1]

=L<D+1rf)2cos-1_Df'+Jir — (13)

G={ D+ D+ HY—HY}ax

=L(D+H)Y{(D+H):—H}\2 (14)

Then, if dimensionless functions F; and G; are used instead of 7 and G for conven-
ience,

F=LH*F,
G=LH*G,
where F1=(1 +§)Ecos‘1—ﬁ_—~lﬁ/? (15
G1=(1+§)2{(1+%)2—1}1/2 (16)

As a result, the resisting moment against sliding in this case is
M,=2C,LH*F+2kLH*(G—F}) (1"

The results of calculation with F, and G, are shown in Fig. 4.
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2—3 Case 2 Cone
This case is not practicable but useful for the general equation in case 3.

2

_ D 1 eaN— D
f(x)—-—L x I (x)—T
If these equations are substituted into eq. (10) and (11) in the same way as in case 1,
(4 2V rr (2)) oo
F_SO(H+T,—:C) 1+(L)} cos H+%xdx s

Though the process of integration of this equation is omitted here, as a result,
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P2 (5 R(2)
where
Pl rrpm=n)="%" _%(ii;j—;?_“LTzl“ln %%) @0
Likewise,
o= e P @ (o e e
This becomes
o= e ()]0
whe|re :
lg)=(r i) - () - @
—% cos‘1(1+§)
So that, the resisting moment against sliding is
mdar e (B e e B (odm)

G, and F, will be given in Fig. 5.

2—4 Case 3 Disk

This is a special one of case 2 as shown in Fig. 5, and the equation of moment
can be obtained by making L approach to zero,

Thus, the resulting moment against sliding is expressed as

Y P 4
M=2 OHF2+7kH*(Gg 3F2) (25)

where F; and G; are all the same as in case 2 because these equations include only

the maximum depth of the slip surface, D, and the helght up to the axis from the
ground surface, H.

2—5 Case 4 Ellipsoid of revolution
As f(x) in this case is in general expressed as

Fe=Rpft () ( )+H | (26)

R,y xRy
Rz 41— (x/Ry)?

50 fx)=—
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Substituting these equation into eq. (10) and (11), and expressing them with
dimensionless functions, F; and G,, the resisting moment against sliding is given in

the form

M,=4C0R12R2F3+4kR13R2(G3— gl Fa) @n

Fs( H R, )=Sf/m(1_u2)1/2[1+{( Rlﬁ)z—l}uzjm.cos‘l—H/Rl du (28)

7 \ Q-2
B)=S, e () e () - Ve 0w
—_ 7 —
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As it is impossible for us to solve the equation above, the numerical solution was

L _

=t (e}

calculated by the digital computer and the result is given in Fig. 6.

Fy :
L5 R‘z
\ X - ;l X
H f
\ e—;p / Ry /
1.0 FP’/%‘ "\\e .'pé‘:‘r;v.m.u DA gifﬁ'
\\
0s AN
0 \%
I
O Ol 02 03 04 05 06 07 08 09 10 Hf
Fig. 6 ()
Gs
0.8
Q7 \ ye
Tl P
06 /= "—‘4?‘\%29-__ —‘?/}?& "
‘%\9:&[
S
05 , \
04 \
03 \\\\
Qz \
AN
.l
C ol 02 03 04 05 06 07 08 08 10 HAR,

Fig. 6 (II)

Fig. 6 (2)

— 5 —




2—6 Case 5 Sphere
This is the case of R=R,=R; in case 4.

Accordingly, the resisting moment against sliding is written as follows;

M.=4COR3F3’+4kR4(Ga’—%F3’) (30)
where
L/R HIR : :
— —_s 212 —1__  t4jFL
Fy={ " a-uicos T g D
LIR . 2 ‘
(. (H 12
’— — U] L) g2
G S (1—u2) _{1 (R) u} du e

-1

The solution is given in the same figure as in case 4.

2—7 Example 1

If we suppose that a failure occurs within a limited area, it is interesting to
investigate what difference will be made between the case of including the effect of
the resisting moment acting on the side areas on the total resisting moment against
sliding and the case where this effect on its sides is neglected. For this purpose, let

us assume D=H=6m, C,=1t/m? and £2=0.125t/m® and make the value of L variable.

With the values of dimensionless functions in the figure of case 1, which correspond
to the condition above,
F, =4.2 G1=7. 0

M,=2X1X6* X4, 2XL+2%X0. 125 XX LXK (7.0—4.2)
=453.6Lt-m .
In case 3 under the same condition, from Fig. 5,
Fo—=6.2 G,=11
and then

M,:%xlxeaxs.ﬂ%x@x (11—%—)(6. 6)

=16573 t-m

Thus, the ratio of the combined resisting moment against sliding to that one
without the effect of the side areas,

453.6L
453.6 L +16573

varies by the length, L, as shown in Fig. 7.
I 9 —
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This figure shows that, when the effect of side areas on the total resisting moment
is neglected, more than two in factor of safety is still included in the estimation under
L=35m, and it seems very uneconomical.

2—8 Example 2

In the case that an isolated footing fails, it can be empirically supposed that the
sliding mass becomes an ellipsoid of revolution.

Supposing, for example, that such a square isolated footing as shown in Fig. 8
rotates around one of its sides as an axis; that is, H=0, let us calculate the resisting
moment against sliding as a shape of ellipsoid of revolution. As it is resonable to
assume that whole of a square footing lies on the surface of the ground of the slid-
ing mass, and the elliptic curve on the surface passes through the corners of the
square footing, so, let us examine whether we can obtain the magnitude of R, and
Ry in the least factor of safety by varying the ratio, R/R;. In this case also, the soil
properties are assumed to be quite the same as in example 1.

As H=0, R, and R; have the relation as follows:

()48

F; and G; can be found in Fig. 6 for each value of R,/R,.

R /R, 2 1 0.5 0.2 0.1
I, 1. 60 1.23 1.10 1.06 1.05
Gy 0.83 0. 67 0.61 0.59 0.58

From the value above and eq. (33), the resisting moment can be calculated ;




R/R, 2 1 0.5 0.2 0.1

M, 65300 12240 4610 4555 7570 t-m
Mr _(r-m)
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Fig. 9

Fig. 9 is the plotting of these values. This shows that M, is at theTminimum at
R,/R.=0.3, that is, from eq. (33) together,

Rj_: 6 m
R2=20m

Thus, if the condition of the ground and the dimension of a footing are given,
the sliding mass as an ellipsoid of revolution can be determined for a given height.

§ 3. Conclusion

If the undrained shearing strength of socil under a structure is assumed to be
linear with respect to the depth, the resisting moment against sliding can be obtained
by assuming that the shape of the sliding mass is a rotating one with a horizontal
axis above the ground at a given height. When the strength of soil is uniform, the
solution can be obtained by setting k=0 as a special case.

Finally, the auther wishs to express his gratitude to Mr. Nakase who had given
much suggestion to this report.

(Received the Institute, January 31,766.)
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