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SYNOPSIS

A regular train of water waves can be generated with a vertically oscillating
flow at a channel bottom. The solution of velocity potential for such flow-generated
waves has been obtained, and expressions for wave profiles and bottom pressure
are presented. Results of a small scale test for this type of wave generator show
fair agreement with the theory developed: the generated wave heights being 80
per cent of analytical ones and the force required to drive an underwater piston
being some 20 per cent larger than analytical ones. The reflection ceefficient of
the wave generator was also found to be 16 per cent in terms of wave height.

Because of this low reflection coefficient, this type of wave generator is a
very promising one to be fitted to an experimental wave tank which has been
troubled with the problems of multi-wave-reflection hetween the wave paddle and
model structures under study.
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LIST OF SYMBOLS*

Ap —amplitude of original progressive wave

b =half-width of wave generating slot
B =width of channel
y =amplitude of piston movement

- flx, z)=function for velocity potential (see Eq. 4)

I'(u, z)=Fourier transformation of f(x, z) (see Eq. 7)

ra =force required to drive the piston

g =acceleration of gravity

g(w) =integrand function for G(E, z) (see Eq. 19)

G(E, z)=nominal function for f(x, =) (see Egs. 17 and 18)

h =water depth

H =generated wave height

H, =standing wave height

H, =height of original progressive wave

i =imaginary number (=+—1)

k =wave number of 2x/L (see Eq. 24)

kn =imaginary wave number (see Eq. 25)

K, =reflection coefficient in terms of wave height

z =distance between a vertical wall and the source of partial reflection
L =wave length

7t =integer (=1,2, 3, ...... )

b =hottom pressure

r =total pressure over the wave generating area

R(a) =residue of ¢g(w) at pole of w=«

£ =time

T =wave period

T =integration variable for f(xz, =)

U =maximum velocity of vertically oscillating flow

w " =complex variable for the integration of g(w)

w =weight of water mass moving in the same phase with the piston
W =average rate of work done by oscillating flow

T =horizontal coordinate measured from the center of wave generation
z =vertical coordinate measured upward from the channel bottom

o’ =subscript referring to the inside of wave generating area

o =subscript referring to the outside of wave generating area

* Only the most commonly used notations are defined here. Notations not generally
used throughout the study are defined only in their place of usage.
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=subscript referring to standing wave

=pole of g(w) '

=retrogressive wave profile
" =progressive wave profile

=parameter standing for x+b or x—b (see Eq. 18)
=constant {3.14159...... )]

=density of water

=anguwlar frequency of 2=/7T

=velocity potential

=golution of velocity potential for flow generated waves.




I. INTRODUCTION

In the planning and design of harbor structures and coast protection works,
model experiments are indispensable tools for engineers. The stability of a
proposed breakwater against wave actions, the crown height of a sea wall to
prevent the overtopping 6f waves, and the most effective arrangement of break-
waters to shelter a harbor from waves, are a few examples of the prcblems

which can be solved successfully through some scale tests. These model tests and

other fundamental experiments are carried out in a test flume or tank which is
provided with some wave maker.

One of the problems inherent to model tests is the simulation of the open sea

where all outgoing waves die away in its vast area. The model test has to be

carried out in the bounded area of a wave tank. Waves propagating toward a
vertical wall of the wave tank are reflected at the wall and tend to disturb the
original wave system, unless some devices of wave energy dissipation are pro-
vided. For this purpose wave absorbers are installed at the end of a wave tank

and, in some cases, along the side walls too. But in the case of the stability

test of a vertical-wall breakwater, incident waves may be reflected totally hy
the model reakwater. If the wave maker is made of a vertical plate moving
back and forth, or up and down, the waves reflected by the model breakwater
will be refiected again by the wave maker and disturb the incident waves to the
breakwater ; hence the test can not be continued any more.

The current technique to avoid this multi-reflection of test waves is either

to complete the test before the arrival of reflected waves or to install wave filters

in front of the wave maker. But neither method is satisfactory; the fromer for

its short time available and the latter for still remaining reflected waves.

A promising method to solve this multi-reflection problem is to generate the
waves with a vertically oscillating flow at the bottom of a wave channel. This can
be done with an underwater piston which moves up and down in a vertical cylinder
connected to the channel bottom. Since this type of wave maker does not have

a vertical plate which causes the wave reflection, it is considered that there will

be little reflection from the wave maker. Actually a similar type of wave maker

has been constructed at Kyoto University in 1960 and has been used for the study
of wave overtoppings for sea walls (Iwagaki et. al. 1962). But it seems to the
authors that there has been no analysis of the wave generation mechanism and

little information is available for the efficiency of wave generation and the powei'
required for it.



Hence an attempt has been made to develop a theory of the wave generation
for this type of wave maker so that engineérs can design the wave maker with
some confidence and proceed in their model studies in the field of coastal engineering.
The present report deals with the development of the theory and discusses the
comparison of theoretical wave generating efficieny with some experimental data.

II. THEORY OF WAVE GENERATION WITH A VERTICALLY
OSCILLATING FLOW

Foundamental Equation and Boundary Conditions

Let us presume the existence of the velocity potential, ¢», which satisfies the
Laplace’s equation:
v 2

The boundary conditions are given at the water surface, z=h, and along the

channel bottom, 2=0. With the assumptions of small amplitude motion and of

uniformly oscillating vertical flow of Ucosa? at the slot of the channel bottom
from z=—% to =0, the boundary conditions are expressed as (see Fig. 1):

11K
i
F

Fig. 1. Definition Sketich of Coordinate System

_lei_{—Ucos ot for|z{<b at z=0 (2)
oz ¢ for|z|>b at ==0

2
?:_({) g._a_c‘b_zo AL =7 et e e e e (3)
ot* oz .

in which U denotes the magnitude of oscillating flow, o is fhe angular frequency
of 2x/T with the wave period being 7, and ¢ is time. We may also add one
more condition to the above ones; that is, the velocity potential shall have the
form of progressive waves at r=--co after Stoker 1960 (p. 59).
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Since we are seeking the solution for the velocity potential of oscillating form
in two dimensional domain, the velocity potential can be written in the following
form: .

P, 25 8) = — F(Z, B) COS Gt «orreveeeermmemimnneeeininieeann, e ienaaiaa (4)

Then the function f(z, z) must satisfy the Laplace’s equation and the boundary
conditions of

BFY U o ISl s
(az )==°F({0 for z|> b (5)
(Zf)hn_%ﬂx’ R)=0 e S o (6)

Fourier Transformation of f(x, z)

The solution for f(x, ) can be obtained by means of the Fourier transforma-
tion. Let F(w, 2) be the Fourier transform of f(zx, 2) such that,

Flu, 2)= f _w @3 (S, L) AlS +wvnrenerenr e (7)
flz, z):iél;r— f_w MBI (16, R)Atr oeeeeer (8)

The Laplace’s equation and boundary conditions for f(z, 2) are then rewritten
for F(u, z) as

— 12 F(u, )+ 2;2 (e rre e re et e e e et ar et e ar et r e e e e et aasneren (9)
oF 2U sin ub
OF ) _BUSMMD o
of ol
of B2 TL) oot e
= )] >, h) (11)

Since the general solution of Eq. 9 is given by
F(u’ z)=C_|_(u) glfz._i— Cz('u) A I L L L LR R (12)

the simultaneous equations for C,(z) and Cy(x) are obtained from Egs. 10 and 11
as:

Cl(u) — Cg(u) = _ZES;:] D e, s (13)
(u_%z) e Cy(2)— (u+ _‘;i) U Ca(8) =0 -ov v iane e a e (14)

By determining the parametric constants Ci(z) and Ci(x) from Egs. 13 and 14,

the function F(w, z) is obtained as:

U sin u#d[(ug+o?) ere L (1g—a?) emrle))
#*(o*cosh #h—ug sinh uh)

Flu, z)=

— 7 _



Evaluation of f(x, z) through a Complex Integration

With the transformation function F(x, £) being determined in Eq. 15, the
function f(x, z) is recovered with the relation of Eq. 8 as:
U = et=sin ublug cosh u(z—h)+o?sinh w(z—A)]
flz, %)= T f o w¥[o*cosh eh—ieg sinh u/i] du
_ U (= ug cosh u(z—h)+o*sinh u(z—h)
T 27 Y . uiocosh uh—ug sinh wh]

[eiu(.t-i-.'n — glulz—) 1 drt

..................... (16)
1f we introduce the following function G(£, 2)
(™ e™ug cosh u(z—h)+a’sinh u{z—h)] _
GE 2= f o #*(o%cosh uh—ug sinh uh) B e {17)
then the function f{z, z) is expressed with G (£, 2) as:
U .
f(x’ z)=277r£—.[G(x+b’ z).._G(x_b’ z)} .......................................... (18)

Thus the problem is to evaluate the integration in Eaq. 17 so as to obtain an
explicit form of f{z, 2). ‘

The integration can be evaluated by the method of complex integration. Let
us consider the following integration with the complex variable, tw, in the z—v
plane:

= f . GULOY AT v errremremnneers e n e et (19)

in which ¢(w) is the integrand of Eq. 17 with the integration variable, =, being
replaced by the complex variable, wo. The contour of the integration is taken as
a semi-circle with detours at w=-—%, 0, and % in the upper half of x—v plane
for £>0 and in the lower half for £<0, as sketched in Fig. 2. The detours are
so provided to avoid the poles on the x-axis.

Applying the Cauchy’s residue theorem, the integration of Eq. 17 is rewritten
as:

—k—y

Iwzf g(w)dw+ glw)dw+ f glzo)dw+ f: g(w) dw
85 - 5 k — kg

A —

+ fs glw)dw+ f;_rg(w)dwﬁ{— fs glw)dw+ f;rg(w)dw

=277 i R(a'ﬂ) ........................................................................ (20)
F=1
in which §, denotes a semi-circle from A through —A4, S, S, and S. for the
detours at w=—%, 0 and % with a radius of », R(ay) is the residue of the pole
at w=ax, and = is the number of poles. The upper sign of the double signs in
the right hand side of Eq. 20 is for £>0 and the Jower sign for £<0; this nota-

tion for the double signs is applied throughout this section.
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Fig. 2. Integration Contours

As it can be seen readily, the part of the complex integration along the
u-axis from —A to A is the same with the integration in Eq. 17, provided the
radius A being extended to infinity and the radius » being reduced to zero.
Therefore G(E, 2) can be obtained from the following equation:

G(E, z):lir‘ljtl{iEzri i;]lR(an)— f gGw)dw— f g{w)dw
Ane S4 Sy
—_ fs g(w)dw_. fs g(w) dww } .................................... (21)

The terms in the right hand side of the above equation are evaluated one by one
as shown in the following.

First, the singular points of g(w) are obtained as the zero pomnts of the deno-
minator, i. e.,

LT T U TSROSO (22)
c?=gw tanh 3 7 T (23)
Equation 23 has the solution of w=—% and %, and w=—¢k, and ¢&x such that
G2 == g FANI Bl oot crerenn (24)
G — Gl LA e v re et (25)

These equations determine the locations of the poles of g{w). The condition of



Eq. 24 is just the same as 'that describing the wave number of 2z/L for the
small amplitude water waves with the wave length of L. Actually 2 is shown
to be the wave number as seen in later sections.

Second, the integration along the large circle S, from A to —A is shown fo
g0 to zero as A is extended to infinity. Since the functions, tanh wh and tanh
w(z—n), approach unity as w increases, the limit of the integration with A—ec
is expressed as:

. e'“fcosh w(z—h)[1+o2tanh wiz—h)fwg)
,111_.15.} f Ag(w) dw —,111_.1‘{.1 f s, wsinh whle?/(wg tanh wh)—1] dw
. e*cosh w(z—h)
=< ,liiqlf w? sinh wh dw
Lw$
< lim f dw‘
A= SA w

Since the contour of the infegration is taken at the upper domain of w for E>0
and at the lower domain of w for £<0, the numerator of the above integrand
does not exceed unity. Hence,

hm‘f (w)dw’_ im _—tf: 4 d6

T

< :111_.127 =} creererrntiraenas (26)

A—roq | . Azegm

Third, three integrations along detours at w=-—%, 0, and %‘are evaluated
with the residues R(—*%), R(0), and R(%) as:

| | A
111_1:13 { f S_‘g(w) dw+ f Sog(w) dw+ f Skg(w) dw =Tt [R(—&)+ RO+ R(%)]

OO OO OO U (27)
These residues are calculated as:
Rk)= [gffv ))J wate k(szli:z(;i?fgkh)
R(-k)= g(('if;)) ] = k(i?;f;z:}-ll—.k‘zzh) .............................. (28)
RO=[ iy ], ==t i

in which N(zwe) stands for the numerator of g(zv) and D'(w) is the derivative of
the denominator of g(w). Hence,

liﬁ{fs g(w)dw—l— fs g(w)dw—l— fs gr('r.v)dWJL

4 cosh kzcos kE 1
; R} | cerieni 29
k(sinh2kh+2kk)  ktanhkh +(h—=) :I (29)

‘Fourth, the residues at singular points at w=zk, and —ik, are evaluated in

the same way as those in Eq. 28. The results are written as:

:—1—71'




e F atCos knz
B e I T R TP P PP PR P P PR P PP PR PR PP EETETEEEREEE R 30
fen (50 2knh+ 2knlt) (30)

Substituting the results of the calculations, Egs. 26, 29, and 30, into Egq. 21,
we obtain the function G(E, z) in the following form:

e e¥afcoskaz cosh kz cos kE
G z)=tmni {41;21 Fe (S0 2ndi+ 2 ) —47 (sinh 2kh+2kh)
1 1
USROS 31
+ k tanh %I ek g @

As stated before, the upper signs of the double signs in the right hand side of
the above equation are for £3>0 and the lower signs for £<0,

The function f(x, 2) is now calculated from Eq. 18 with G(§, 2) obtained in
Eq. 31. The calculation must be done separately for three ranges of z: i.e,
x>b, b>xz>—0b, and —b>=x.

For the first range of xz>&,

cosh kz sin kx sin kb &=, e~®ursinh kad cos byt
f, =AU e oty i Fa(oin Zhait 20 froe@
For b>x>—b,
&, e~#ucosh knx COS knz cos kb cos kx cosh kz
filz, z)=4U {4,?‘;1 ku(sin 2knh+2kah) & (sinh 271+ 2kh)
B eSO ETRUURURUOROON
+a—h+ ktanh kR T (33)
For —b>z,
: sin kb sin kx cosh 2z > ¢™%sinh knd cOS knz
fida, zy=—4U{ E(sinh 2Bh-t2kh) T2 Jou(Sin 2kuit 2k RCT)

It is shown that the above solutions of f{(x, z) satisfy the Laplace’s equation and
the boundary conditions of Egs. 5. and 6. A

With the function f(x, z) evaluated in the above, the velocity potential is
described in Eq. 4.

The Solution of Generated Wave Profile

Since the Laplace’s equation and the boundary conditions are linear with
respect to ¢, we may superimpose a velocity potential of the following form, s,
in order to obtain the velocity potential for progressive waves:

(/J"" =fs (_1;' z) GITL €FF o vvvrotnnernasnsoaiotsntrioeisnioseitssstncsnrtbtsinsenrnnrsborsronrsoen (35)
where :
sin kb cos kx cosh kz
Filz, 2)=4U R(sinh ZBh ok (36)

The new velocity potential thus formed is written for the range of |x|>% as:

1l —



Do=Pho+ Ps= —folx, 2)C0s ot +fs(x, z)sin ot

s [ _sin kbcoshkz
= % (sinh 2kh+2k0)

sin(k!xz|—ot)

"9: e~*alsisinh kb cos kuz o t}
i=1  kn(SIN 2knhi+2ka1)

The expression for the new velocity potential for the range of |z|<bd is
presented in the next section for the pressure variation, because the profiles of
generated waves away from the generating area are of major interest at present.

The water surface profile is then obtained from this velocity potential as:

1 amo]
7= a oF “in
AU [ sinh &k sin b &, e~*n®lsinh £nb sin knh . |
T o { sinh 2kh+ 240 cos(k|z|—at) +n>='1' —'Ysin 2k +-2knh) St a-t}
........................ (38)

The first term of Eg. 38 clearly indicates that two trains of waves with the
same amplitude are generated and propagate away frcm the generating area
toward z=o and z=—o0. The second term which is in actual an infinite series
represents a distrubance centered around the generating area. The disturbance
diminishes its magnitude rapidly as it goes far from the generating area. In mcst
cases the magnitude of this disturbance will be neglected in comparison with
that of the first term. Table 1 shows the result of a numerical evajuation of the
first and second term for the condition of Eh=~kb=1. This example clearly
illustrates the rapid decrease of the second term with the increase of x.

TABLE 1. Magnitude of Disturbance in Terms of Wave Amplitude
for Zh=kb=1.

’ ' ~ Second Term/First Term

xfb -
I n=1 n=2 } n=3 -‘ remaindey sum

1.00 0.114 0. 024 0.010 0. 026 0. 174

1.25 0.055 0. 005 0. 001 — 0,06l

1.50 0. 027 0.001 — — 0.028 -

1.75 0.013 — — — 0. 013

2.00 0. 006 — — — 0. D06

If the oscillating flow is produced with a horizontal plate moving vertically
in sinusoidal manner with an amplitude of ¢ and the angular frequency of o, the

velocity U is replaced with ec. The wave profile away from the generating area
1s then expressed as:

— 12




sinh kh

p=4e S—’immn kb COS(k|:E]-—a‘t) ....................................... (39)

The wave generating efficiency, or the ratio of the generated wave height to the
stroke of the underwater piston, is then obtained from Eq. 31 as:

H 4 sinh kA )

% — Sinh Zkh_l_zkh sin Yy R TR L L T T T T RN (40)
It will be readily seen in Eq. 40 that this type of wave generator is very efficient
in the shallow water but loses its efficieny as the water becomes deep. This
characteristic is the opposite to the ordinary wvertical-piston-type or flap-type
generator which has a high efficiency in the deep water. Anocther characteristic
is a peculiar nature that the wave height becomes null whenever the slot width 24

L2 u

11 T -é \._//_‘-\\____//——'\ 1]
TITTT 777777 A o 7777777

1.O — —23 T

06 ¢ - 5
o 4 . b1
L P 4
05 RN :
/ :ﬂ‘. ‘1 _ i
A % C™ N
0.4 / '( 0?._} f/ it
/ .~ ’ :)f/ \ \
03 < . :

: s L < \‘
A At LN
02 — NE
‘_,t'-‘ ///‘/(_ “l \
O. | | o — ‘ ; ‘l"i (’?%

0.0l 002 0.05 Q. (02 o5 }
AR

Fig. 3. Variation of H/2e versus hi/L for /h=0.5, 1, and 2
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coincides with a multiple of the wave length to be generated; this may be
explained as due to the cancellation of positive wave generation with negative
wave generation. Figure 3 shows the variation of the wave generating efficiency
for the cases of £=0.54, 1.0h, and 2.0A. ’

Bottom Pressure at the Wave Generating Area

The pressure variation at the bottom of the wave generating area (|x|<#% and
z=0) can be calculated from the generalized Bernouiile’s equation as:

P:p[g(h_z)_]_ %ﬁfi:l [T {41)

£=

The velocity potential for this case is the sum of ¢: with fi given in Eq. 33 and
of ¢ given by Eq. 35: i.e.,
Di==hit s = — f1COS TLt FsSIIL GF  worrrererresrerermrernniriaieein et (42)
The substitution of Eq. 42 into Eq. 41 yields the bottom pressure as:
p=pgh+pafdz, 0)Sin ot4+pafa(m, 0)COS Gt «-reorrerremmmmismiiniiaiiiiins (43)

The total pressure over the area of the oscillating flow, P, is then obtained by

the integration of Eq. 43 from x=—& to x=b. The result of the integration is -

written as:
, -
P=RF f de:?:prbh‘i'PiSln Gt oS g crereeeins e irssasima e iaisanns (44)
-—i
where: B=channe] width
a0 (1 __e—Eknb)
=2 3 S S, S A —
Pi=2pcUB bh{ 2 bk (sin kbt 2 k)
o sin2k6 1 |
~2 1b kb (sinh 2kb+22h) T Rhtanh &k 45)
sinZkd
_Px =8po‘UBb]L kb kh (Sinh 2k]1+2kh) .......................................... (46)

The maximum total pressure is easily computed from Eq. 44 after the evaluation
of P, and P with Eqgs. 45 and 46. Such a maximum pressure will give the
maximum driving force of a moving channel bottom or of a piston placed very
near to the channel bottom.

In actual designs of wave generators, however, a piston to generate the
oscillating flow must be placed in a vertical cylinder or in a side tank connected
to the cylinder. In these cases, the mass of water in the vertical cylinder and
in the side tank is forced to oscillate in the same phase with the movement of a
piston. The piston must be driven against the inertial force of the water mass
in addition to the total pressure of Eq. 44. The driving force, therefore, is given

by:

S

1




el X
F=P;cos ct+ (P¢—|—%W)sm ot
where: W=weight of water mass moving in the same phase with pistomn.
Some examples of numerical calculations by Eq. 47 are given in Table 2 in the

next chapter.
Another interesting problem is the average rate of work done by the

oscillating flow to the waves. The average rate of work, W, is calculated as:

W= f_// f jbp[_%}z=udxdt

1 T/ PU dt
=T C0os ot
T s -

1 [ .
=7 f [20gBbh+ Pisin ot + Pscos oz] U cos of dt
-7/

Since the integrations of cosot and sin2¢¢ over one wave period become zero,

the above integration is rewritten as:
oL [ ot dpdr B SIORD
T J U oSt At = e U B o+ 2k
Using the result of Eq. 39 and the relation of U=eo, the average rate of work

of the oscillating flow is further rewritten as:

= 1 BHAL 2kn ‘
W=2X 16 fale; T (1+ sinh ok ) ..................................... (49)

This is exactly the average rate of wave energy propagation into two directions.

SOME RESULTS AND DISCUSSIONS OF EXPERIMENTAL
STUDY

IIL.

Experimental Apparatus

In order to investigate the validity of the analysis developed, a small scale
test has been carried out. A small wooden channel, 3.50m long and 0.20 m wide,
was constructed with a slot of 20cm square at its center as shown in Fig. 4.
The slot was connected to a side tank of 20 cm square at a depth of 36 cm below
the channel bottom through a duct of 5cm high and 20 cm wide. The side tank
was provided with a piston of 20 cm square which was forced to oscillate sinusoi-
dally in the vertical direction with a crank wheel and connecting rod mechanism,
The oscillation of the piston thus produced a sinusoidally pulsating flow at the
channel bottom. At the ends of the channel, wave absorbers of crushed stones

with slopes of 1 to 4 were also provided.
The profiles of generated waves were recorded on an electro-magnetic oscillo-
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Fig. 4. Sketch of Test Channel

graph with resistance type wave gages. The forces required to drive the piston
were also recorded with a load cell of strain-gage type which was inserted at the
middle of the connecting rod. The wave periods were measured with an electronic
time-counter which counted the time required for one rotation of the crank wheel
up to four digits.

Profiles and Heights of Generated Waves

The first test ;Nas conducted at the water depth of 15¢cm. The amplitude of
the piston movement was set at e=3cm and the period of the oscillation was
varied from 2.02 to 0.612 seconds. Two wave gages were set in the channel,
each 80cm away form the center. Profiles 'of generated waves recorded with
these gages were just the same as those generated by an ordinary piston-type. or
a flap-type wave maker.

The generated wave height varied from 1.24 to 2.95cm The wave generat-
ing efficiency, or the ratio of the wave height to the stroke of the piston 2e,
varied from 0.206 to 0.492 accordingly. The variation of the efficiency is in good
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Fig. 5. Comparison of Experimental Values of H/2e with Theoretical Ones

agreement with the analytical one of Eq. 40 as shown in Fig. 5, where the
efficiency H/2e i1s plotted against the relative depth A/L. The wave generating
efficiency, both experimental and analytical ones, increases as the relative depth
increases up to n/L=0.2, and then shows a decrease with the increase of /L (or
with the shortening of wave period). The experimental wave generating efficiency
is about 80 per cent of the analytical one in the average. The smallness of the
experimental efficieny may be explained as due to the energy dissipation caused
by eddies around the edges of the slot and channel connection. The fluctuation
of the experimental efficiency is considered as the result of partial reflections
from the wave absorbers which were not efficient enough because of small space
available; if the slope of crushed stone could have been made as gentle as 1 to
10, there would have been little fluctuation of the experimental efficiency.

Driving Force for the Piston

The measurement of driving forces for the piston was made for the amplitude
of 3cm for the piston movement at the water depth of 15cm.  The measurement
was also made for the case of an empty tank, The driving force for the piston
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varied almost sinusoidally with respect to time. There was little indication of
the second harmonic component appearance. The experimental data of the
maximum driving forces (averages of peak wvalues of tension and compression
forces) are listed in Table 2 and shown in Fig. 6 as well as the results of the
calculation by Eq. 47. Since the tests were made for two cases with and without
water, the driving forces for the piston in the empty tank were subtracted from
those in the tank filled with water to yield the net forces. These net driving
forces were larger than the theoretical forces by the amount of 10 to 30 per cent
as seen in Table 2 and Fig. 6. The weight of the water mass was 48.5kg for
this case with the increase of velocity at the duct being taken into consideration.
The cause of the difference between theoretical and experimental forces is not
clear; some portion of water in the channel near the slot may have been
oscillated, thus increasing the effective weight of water mass.

As seen in Fig. 6, the driving force for the piston increases almost propor-
tionally to the inverse square of wave period, This indicates the inertial force
of the water mass being predominant. This fact is also illustrated in Table 2 in
which the dynamic pressures of P; and P; become very small compared to the
inertial force of cUW/g at short periods. For the purpose of a wave generator
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design,the dynamic pressures of P; and P, may be neglected for the estimation
of maximum driving force, provided the effective weight of the water mass being’
estimated reasonably.

TABLE 2. Experimental and Theoretical Driving Force for Piston.

i

T Fy* Fgex Fexp':Fw—Fc Ps Py ' —D—U?F—V— Fear

{sec) (kg) (kg) | (kg) (kg) | (k&) | (k) (kg)
1. 851 1.66 0.63 1.03 0.28 —0.92 1.71 0.83
"1.584 2.55 0.57 1.98 0.32 —0.87 2.33 1. 49
1.303 3.92 0.67 3.25 0. 36 —0.81 3.45 2.66
1. 069 5.58 0.78 4,80 0.39 —0.66 5.12 4.47
0.883 8.83 0.98 7.85 0.36 —0.59 7.52 6.93
0.740 13.2 1.12 12.1 0.30 —0.51 10. 69 10.18
0. 641 17.2 1.54 15.7 0.20 —0.59 14.28 | 13.69

Note: * B, is the driving force in a tank with water
*% L. is the driving force in an empty tank

Refiection from Wave Generating Area

The last of the tests was concerned with the wave reflection from the wave
generating area; unless a low reflection had not been proved, the present wave
generator could not be said to be a practical one. Since a direct measurement of
wave reflection from the generating area was difficult, an indirect method
utilizing the multi-reflections between the wave generating area and a vertical wall
was employed to estimate the magnitude of the wave reflection.

When a progressive wave is introduced in a region which has the complete
wave reflection at one end and a partial wave reflection at the other end in a
distance of / as shown in Fig. 7, the standing wave height at a vertical wall
(x=1), H;, is expressed as (see the Appendix for detail):

Vg
—>1 gz&/
A [N <«
i Source ! A 5.5
; of ] '

: Partial %

t Reflectioh ’

7 S ST s

2

x:o X = l

Fig. 7. Definition Sketch of Multi-Partial-Reflection System‘
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_ 2H,
 [1+ K —2Krcos 2k1)M*

in which H; is the height of the original progressive wave and K is the reflection

H,

coefficient. Therefore, the standing wave height H, takes maximum values when
l=n L2 and mimnum values when /=(2n+1) L/4, in which » is an integer. The
wave heights at these maxima and mimina are written as:

2H,

(H)max= TR, T (51)
2H,
(Hs)tn = TR T (52)

The reflection coefficient from the source of partial reflection is then obtained
from Egs. 51 and 52 assuming the constant height of the original wave as:
_ (Hywax—(Hain

(H)max+ (Hs)min
Although this analysis is an approximate one as seen in the Appendix, it never-
therless enables to estimate the magnitude of the reflection coefficient by measur-
ing the variation of the standing wave height with respect to the wave period.

Based on the above ana]ysis; the test was conducted with the wave absorber

Kr

placed only at one end of the channel; the other end was kept vertical without
a wave absorber. The water depth was set at 12 cm and the amplitude of the
piston movement was 3 cm as before. The results of the measurement are
shown in Fig. 8 where the wave generating efficiency H/4e is plotted against the
relative depth /L. The denominator of 4e for the wave generating efficiency
instead of 2e¢ was so chosen because of the doubling of the wave height at the
vertical wall. Although the upper envelope of the experimental data shows a good
agreement with the theoretical efficiency, a periodic fluctuation of the experimental
data with seven peaks is clearly seen in_the figure. If the distance between the
vertical wall of the channel and the outer end of the slot which is 185 cm for
the present case is taken as the length of the multi-partial-reflection region I, the
seven peaks of the experimental data fit very well with the analytical peak
points of [=nl/2 for n=2 through n=8. Therefore, the wall at the outer end
of the slot is considered to cause the partial reflection at the wave generating
area.

By drawing two smooth lines connecting the maxima and minima of the
experimental data and by measuring the maximum and minimum values of the
wave generating efficiency for the same relative depth, the reflection coefficient
of the wave generating area was calculated from Eq. 53 as 16 per cent in the
average. This amount of the reflection coefficient indicates that 2.6 per cent of
the wave energy was reflected at the wave generating area and the remaining
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Fig. 8. Varidtion of Standing Wave Height versus Relative Depth

97.4 per cent of the wave energy traveled across it toward the other side of
the channel, although some wave energy might have been dissipated by the
turbulence around it. The transmission coefficient of the wave generating area is
estimated as 98.7 per cent if the amount of energy dissipation is assumed to be
negligible,

The high value of the transmission coefficient of the wave generating area
was confirmed in the observation of the wave profiles at the other side of the
channel which had the wave absorber. The wave heights at this part of the
channel became less than 0.5 cm at the wave periods of 0.63, (.82, and 1.34 seconds.
These decreases of the wave heights are considered as the result of the superposi
tion of two waves with their phase angles being different by 180 degrees. The
condition for the opposite phase angles for the two waves, one generated and the
other moving backward after the reflection at the vertical wall, is given by
l=2n+1) L/2 in which ! is the distance of the vertical wall and the location of
superposition. If [ is taken as 185 cm, this condition gives the wave periods of
1.30 0.79, and 0.62 seconds for n=1 through #=3, showing a fairly good agree-
ment with the observed periods.

)



IV. CONCLUSIONS

Summarizing the results of the preceding sections, the followings are the

major conclusions of the present study:

1. The solution of velocity potential for water waves generated with a vertical-
ly oscillating flow at a channel bottom has been obtained, and expressions
for wave profiles and bottom pressure at the wave generating area are
derived from the velocity potential.

2. The experimental values of generated wave heights were about 80 per
cent of the theoretical values for the range of the relative depth from 0.06
through 0.27.

3. The force required to drive an underwater piston which pfoduces the
oscillating flow is mainly of inertial force, being approximately proportional
to the inverse square of the wave period. The experimental driving forces
were some 20 per cent larger than the theoretical ones. ‘

4. The reflection from the wave generating area was estimated as to be about
16 per cent; the refiection seems to be caused by the wall at the outer end
of the vertical slot.

5. The method of water waves generation with a vertically oscillating flow
at a channel bottom thus seems to be a very promising one to solve the
problem of multi-reflection between a wave maker and model structures
under study.
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APPENDIX
Water Surface Profiles in a Multi-Partial-Reflection System

An analysis of the water surface profiles in a multi-partial-reflection system
has been developed by the author (1962) and presented in the report by Ippen,
Raichlen, and Sullivan (1962) for the purpose to estimate the transmission
coefficient of a wave filter in a closed basin. The analysis can easily be modified
to the system shown in Fig. 7 so as to describe the variation of the wave heights
in the system, as shown in the following.

In the analysis the following assumptions are imposed:

i} Small amplitude wave theory applies.
ii) Waves are reflected completely at =7 and reflected partially at =0 with

the reflection coefficient of K.

iliy The n-th reflected wave can be superposed on the original progressive
wave,
The original progressive wave introduced in the system is expressed as:
1= AGCOS (FE—RI) «+rrerrreresianaaniree e e bttt (A.1)

This original progressive wave is reflected completely at the vertical wall of z=/,
following the first retrogressive wave:
gI:AUCOS(o't—I—kx_zkl) ............................................................ (A' 2)

When this retrogressive wave returns to the origin, a part of the wave is reflected
and the following second progressive wave is formed:
'J’]g:I{RAUCOS(O‘t—kx—Zkl) ........................... e aa e et e anray (A 3)

As before this progressive wave is reflected at z=/. The resultant second retro-
gressive wave is described by:
Ea=KpAgCOS(GEA BT —dRL) tovvvmremmemmiaeaensiisii e e (A. 4)
In a similar manner two families of progressive waves (.} and retrogressive
waves ({,) may be defined, their amplitudes decreasing progressively with increas-
ing »n due to the multi-partial-reflections at the origin.
The wave system which ultimately exists between the source of partial reflec-
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tion and vertical wall may then be expressed as the sum of all the progressive
and reflected waves.

,7=m+§1+,?2_|_§2_|_...+,7ﬂ+§,“+ ................................................ (A.5)
Since these waves may also be expressed as the real parts of complex numbers,
i.e.:

=K1 Acos [ot—kx—2(n—1)R(]

=Real{ Kp* 1 Acexp [{(ct—kx)] X exp{—2i(n—1)RIT}

the resultant wave of Eq. .A. 5 may be expressed as:

n=Real | Ao{expli(ct—kx)]+expli (ot +hz—2kD]}

X {1+ Kpexp(—2ik1]+ Kexpl —ihllt-+} | worreeeinseen (A.6)

For an absolute value of the reflection coefficient less than one, this series
converges to: .

. Ao
1—Krexp[—27kL

n= Real l: ] {exp(7(ot—rkx)]+expli(at+ kx—zkl)]}]

........................... (AL T)
Taking the real part of Eq. A. 7, we obtain the expression for the wave profile
in the multi-partial-reflection system as:

_ Ao i . _
1= L Rt — 2K nc0s Ok (cos (ot —kx)cos(ot+kx—2k])

—Kpcos (ot—hx+2k{)— Kpcos(at+ kx); ---(A.B)

This equation expresses the displacement of the water surface from mean water
level as a function of time for any location between the source of partial reflection
and the vertical wall of the channel. The wave profile at the vertical wall is
obtained simply by letting z=[ in Eq. A. 8§, i.e.:
. H

M= R 9 Kncoszil
in which Hy=2A4, is the height of the original progressive wave. The standing
wave height at the vertical wall of the channel is then derived from the above
equation after some trigonometric manipulations. The final torm of the standing
wave height becomes:

{cos(ot—kl)— KrCos (Gt +RD)}eererienn (A.9)

_ __2Ho _#
T [+ Kg2—-2Kcos 2k
which is Eq. 50 in the text.
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