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A NOTE ON URSELL’S PARAMETER FOR LONG WAVES

Takao Horiguchi

1. Introduction

A critical parameter p,A%/h* for long waves was introduced by Ursell in 1953,
His course of discussion was developed by the general perturbation series of Lagrang-
jan method and three equations were classified depending on 7pA%/A*>1, jippd®/H2~1,
70A%/h*< 1. In the present paper, the parameter 7,2%/4® is directly contained in the
equations expanded from Friedrichs’s method, which is modified by the different
stretching between the depth and the amplitude, and equations are classified by
noA2/ B8 < 1, 7o2%/h¥> 1. By this modification it is implied that »a%/4® is used as a ,
parameter to derive the equations such as o= (h/D2 used in Friedrichs’s expénsion
method and the other parameter ny/k is used for the estimation of approximation. It
is also shown, in the case 7p2%//4%> 1, this method gives the same results obtained by
Keulegan and Patterson which were derived from the potential theory.

Assuming the motion to be two-dimensional and irrotational, the equations of
motions, the continuity equation and the boundary conditions at the free surface
y*=p*+h* and at the bottom y*=10 are written as follows in terms of the Euler

variables:
ou* fu* | 4 Ou* 1 op*
Tt o aﬁ* S __ai* 1, D
u* | w0t | sov* . 1 op* ,
or* Tu ox* v ay* g* p* oy* ' a, 2
au* a.v* . .
du* _ op* o
0l = 0, A, 9
* * - . '
%’?* u* g’?* —p¥ == a, 5
t xr at  y*=yprp* |
v*=0 ~at y*=0 1, D

where the asterisk is used for the dimensional variables. Since the depth is constant,

the x-axis is taken on the bottom and the y-aiis is positive upward. The dimensional
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variables which are contained in Equations (1,1)~{1,7) are transformed to

w* =co-’7£u x¥=lx

Ro
v*= gy R/ Y*=hoy

1, 8
pr=0*g*hop co=+~g*h,
7*=70"7 h*=hoh
pr=to 4
Co

where [, denotes a characteristic horizontal length, %, a characteristic ' vertical length,
no* a characteristic amplitude, and ¢, a characteristic velocity. Hence, Equations(l,1)-
1,7 are led to nOn-dimensiona_l equations given by

[ﬁ + o 2 2P }+ﬁ2 = a, 9
ap . .
{ﬁ U 142 }+ﬁ2 % =0 (1,10)
di ov
ou _ ., Oy
ﬁ-@—ﬁ"éx— (1,12
ol B-ZL+pru- G| —po=0 1,19
at y=Fyp+h
=0 a,14)
- =0 at y=0 1,15)

where o= (ho/l5)?, B=no*/he. If o<, that is to say, n*lp?/he is larger than unity,
£=0/8 = h®/n*l;* is taken as a parameter of perturbation, and if o> j, then,
&' =n*1%/he® is smaller than unity, and £’ is regarded as a parameter of perturbation.

2. The derivation of equations for the case »*/2/h> 1

Epuations (1,9)-(1,15) are devided by 3 and are transfo'rmed o

x{ﬁ o 2 }+/3 Ou__g @ D
2 ap dy __
K [3 +ﬁ u + 1+=£ +ﬁf)‘a—y-‘—- (2, 2)
. 37,1 _
xﬁ ay =0 : _ 2, 3
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du _ v 9 4
= 9k @,

m{ﬁ—%;i—}—ﬁ’*u%x—}—v:o } ot ymbyh 2, 5
=0 (2, 8)
=0 at  y=0 2, D

Here, we assume

e I I B | _-

?)=T)Q+’5'U1+Ezf)2.+""“" ] @ 8

p=notEysFEipyte ‘ _ j

P=DotEprHEi gt

and furthermore, (2,5) and (2,6) must be replaced by Tayvlor series expanded at
y:ﬁvﬂ—‘_h! '

O it S R R T T i - )
+ 3B w25 { 8L+ x}“.”] =m+h+...f..:o @ 9

(2], on B 22- ]_5W+h+——ﬁ2(v W TH ), et =0 210

From the zeroth order equations of £, we can obtain

UOEO (2; 11)
uo=to(x, 1) (2,12)
po=0 at y=Pn-th | @1y
2-1. The first order approximation -
The equations for the first order of & are given by
auo 2 auu __aP_D__ i
B8 + 8% By + At =0 2,14
ap ' S
14220 =0 ‘ 2,15
2 . @15
auo 81}1 ' A 2
L - .1
Bt | @18
au}_ _._?ﬂ . . ) - T NIRRT
8y~ ox o @17
: a’7°+ﬁ2 2o —p,=0 o @ 18)
at  y=fm+h
p1+ﬁm°g;° =0 T 2,19



2,=0 at  y=0 ' (2, 20)
From (2,13), (2,15), the hydrostatic pressure can be shown by

Po=Ppt+h—y - @,21)
, and v, is obtained from (2,16), (2,20),
— aug R
7= —§ Frad o (2,22

For the determinations of 7, and #x, , we assume that § is small and we can also

expand series with respect to 8 ,
uo_:uo(o)+ﬁuo(l)+52z£0(2)+ ...... }
170: 770(0) +ﬁ170(1) + 527}0(2) + ......
Substitutions of (2,21), (2,22) and (%,23) into (2,14), (2,18) lead to the first,
the second and the third order equations of 8 as written respectively in the following’:

(2,23

{auo(u) 3'70“') } 0
7a® (0) @20
ﬁz{ D24V g5, P% 914, @ + /N }:0
ot x dx
. 2,25 .
2 000D 4 ) 0 07 0 02 | 0™ , 1
ﬁ[ Jo 0 24 S0 =0
(1 ®
pol 2 s e B B
ﬁs[ (2) Re) a%o( ) +u0(0)£%0x(_1_)+aua_0;} o (2,26)
Buto Bug® ) _;
{0) Q0 (1 Yeo" " | —
T 7 ox 0 dx ] 0
Equations (2,24), (2,25) are transformed to
04 5 3% @ }_
4 T v Bt 2,21)
[¢)] &Y 2 Nz
ke L = @, 28)

, and from (2,24), (2,25), (2,27), (2,28), the following equations for a progressive
wave traveling in the positive x direétion can be obtained:
70O =20 &—~"% 1)
1
2y =——
S TVR” (2,29
1 '
(1)—_ (1)
Ve




Making use of the relations in (2,29), the third order equations can be given by

2y (2) 2y (2) {0 (1) 2y (0)
ﬁa{a 7o -—ha ’70 } ﬁs{ 3’70 a%o +3%(1)3 g;; _

T
B L
—u 2} 2,30)
7 aﬁd | |
| | ta =™ KD

Putting 7—7,(®=P7" and taking 7, in the right-hand side of (2,28) approxi-
mately as 7 , (2,28) yields with an error of O(8%

e @y op 0° [ 3 7P
ﬁ{atz Ot } ‘Bkaxz{ 2 h } (2,32)

"~ When (2,32) is returned to the original variables, we can obtain the same equa-
tion as shown by Airy, '

P s BT s O (37
¥z 8 h ¥z 5 h e 12 ¥ : 2,33)
2-2. The second order approximation
The second order equations of ¥ are given by
ﬁaul +B2 aul +ﬁg aug + ap]_ +ﬁi} aul ,_0 ’ (2, 34) )
8 avl + B2, 8?)1 + apl +Buy 81; =0 (2,35)
8u1 81)2
=L . +—=-= 3y =0 | (2, 36)
Bug 87)2
By — ox 2,30
O T S = C@®
¥
. Y ﬁﬂo"‘h
Pt s aal"" + B =0 2,39
1)2=0 y:0 (2v40)
Firstly, from (2, 17), (2, 22), %, can be shown by
2 2 .
= ) —pT-Y @,41)

where #,{(0)=u,(z, 0, £, then, v, is obtained from (2, 36)
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3 . .-
vm—plu Dy g P 2 (2,42)

Secondly, from (2, 19) and (2, 35), the pressﬁre Py is giv_én by
1—ﬁ7i1+ﬁz{ (ﬁ%;‘h) }

%14 72 uo duy O
{a TN W Rl ] ' ,43)

In order to coincide #; of (2, 34) with that of (2, 38), Equation (2, 34) is applied
on y=Fnth. Substitutions of (2, 41), (2, 42), (2, 43) for (2, 34), (2, 38) lead to
the first and the second order equations of 8 as shown respectively by

(o) (
PO, 00 )

ot ox C
o o 2,44)
L/} 23] —
o 3, O f=0
o [0, 0(0)  %ug® B2 Fp 0 ]_
b { a1 ot 2 T ag )70
W | By, O () 8,, ( " (2,45)
2 0D 4 20 hs] [ |
A { ax b= ox® 6 =0
where the following relations are taken into consideration:
ul(o):ul(o) (0) i
82 {0) hZ
V=2,V (0) —_3?2 0
2,, (1) 32 2,, (0)
20, @ =204, @ (0) — 8;;;2 hT—%(D)au% 7
ve®=0
2,2_{1):_311!1;0) (O)h : at y=pnet+h
* (2,46)
AT (O AL (0) asuo“’) 13 -
(2y— 9% — 5 (0
v % " oa T 6
o 0w, 0), 0w,V () du ®
(3) —= __Yeel o (0) — 1 w
02 aﬂf h ax vo ax vo
4 Lue® B Fu®, o B
" ox® 6 9x® 2

Since the motion expressed by (2, 44) is the -same as given in (2, 24), the first
order wave motion with respect to B is represented by (2, 24) of the first order
approximation of &, which is determined by a proper boundary condition, then, 7]1(0)
and %, can be made equal to zero. Accordingly, .(2, 45) is transformed to .
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B2 pRp, (D h"' 4, © . -
2 1" 1 2 0
p [ TR v } ﬁ dxt (2. 4D

and

PTALLY) -—-7 (1) : .
O@="wn® (2,48)

Let 7 be 77—770<°)=,6770(1)+E‘87)1(1) we can obtain from (2, 27), (2, 32), (2, 47

iard } 3 P K 9% ‘
o S —nTs R ey 2, 49)
where the terms in the right—hand side are replaced by », and the error is of order

oM. .

On the other hand, if 7,® is equal ‘to p Wthh is a solution of (2, 49) from the
beginning, 7, and 7,V can be neglected. However, the phase velocity of 7 in (2,
49) is approximately given by '

- 2 2.
e=vE (1+p 3T tpet 2| 2,50

, therefore, the error contained in (2, 49) is generally of order O(8*) due to the transf-
ormation given by

8 _ 8 i -
o 5D
Returning to the original equation, (2, 49) is transformed to
Ryt 3 gkt | R ik
e R A .52

As for the velocity on the bottom, putting
2 (0) =20 + Bt O+ £82, © (0)
7=29'P 4o D+ pyy O
we can obtain from the lower equations of (2, 24) (2, 25), (2, 45)

ﬁ +ﬁ 8u(0)h+ ﬁz 9 [u (o)%(cn } ﬁzasm(m h—8=0 2,53

/xd 6
Considering (2, 50), (2, 51), and integrating (2, 53) with x, #(0) is given by
— 1 fo 1 7 2 0%y :
ﬁu(O)-—dz[ﬁn s axg} (2, 54)

where 7, is replaced by 7 in the right-hand side and the error is also of order O(8.
From (2, 41), the horizontal velocity at an arbitrary point is given by

e e L

On the other hand, there is no vertical velocity of the zeroth order of 8, then,.the
vertical velocity is obtained, to the third order of 8, from (2,22), (2,42),

—_ 7 —



Bu=Prv,+ rivy

xﬁzau(o) 0UY) yt 2ﬁaa uo() . _’%’3

—_ 97 1 7 __ I\ o
e e Y

When (2,55), (2,56) are returned to the original variables, the following expressi-
ons can be given:

. - =" _ ,7*2 k‘*z _ y*z \ 32,7*
w'= %*—{_”* in +'( 3 27/ ax*z} (2,57)

*— g* *{ _ 1]* 37]* B2 _y*z oy }
° \/ W (1 2k*)8x* +( 3 6 ) 9xz*® (2,58)

Equations (2,52), (2,57) and (2,58) are the same as shown by Keulegan and Pa-
tterson.

The third order equations of 8 are given by

I O Pu® B o P, 00 P
ot atox® 2 O Axat ot 3xF
on (1) (O) 0% (0} k2 . P ITR )
@0 "\ gy O U0 A™ ay ¢y Qo
+ 1249 o H“o axa P +u (0) P
_0u® Pu® B om® | 9w P hz}
dx ox® 2 ox ox  Oxt 259
ﬁa{ an® +u*(0) o + 2,1 (0) e _ 9y 0%y R* "
0 ox L ox ox ox* 2
b1 () , 3@ (), _Fue® B _u® _ ) B
() 0% 7,0 g _ (0)
T ox + dx = ox® 6 oxt o 2.
e’ }_
(1) 9%o™ [
+ 7]1 ax 0
, therefore, (2,5%) is transformed to
3%, 627]()} [ 3,7(0) 3,7“ av() 8%y
s [0°7, 1 8 0 1 11?7 %
o S T P P e L
__ 070 B33y (D) B ® By D (@ %4,V (0)
ox ot ox ar 0 dxot
PAL) 6 771(1) Du™ AP 8%, (@ . 827]0(0);,.2
ox0t dxt 3 Ox? ax®
(0} 8. (0)
oy o e

2-3. The third order approximation

The third order equations of £ are given by
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ﬁaug -HBZ aug +ﬁ2 3u1 J_ﬁgu 8u0+ aﬁz +Bv auz

oy
3%1 —
+ B 7y = (2,601
16 a?‘Jg +ﬁ2 602 +ﬁ2 301 ¥ 6152 +ﬁv1 al)z +B?/4 37)1 — (2,62)
aug 31)3 —
e 3y 2,63)
ous 803
3y ox (2,60
Ba’h + B2, 3’?2 972 4 g2y, 3’?1 + B 3’?0 — 5B, Ouy 979 (2, 65)
9y ox
e G}
— f, 902 a;’f ﬁ?z%'—_ ) at y=pro+h
d ) 0 1 L
potbre ot b it P hi=0 - 2,56)
v3=0 at y=0 ' (2,67
From (2,39), (2,62), p: can be obtained to the third arder of S,
— 8, 0 ua g 0 u1(0) 1.y, 0 (D)
8 o auo aul(O) ¥ (Bpth)? :
+ Py () Tt 2 Fo B }{ >~ PR | (2,68)
, since 7, and %, (0) are neglected, ps becomes
_ 3 0%, (0D | ¥® _ (Bnet-h)® '
From (2,37, (2,47}, us can be given by
a4 "
=y @O —p LD Ty e Bre (2,70)
, and p; is also obtained from (2,63), (2,70),
— _ pous (0) 5 0% ul (O) J’a ey P ' '

In the same way as the second order approximation, applying(2,61) on y=pn,+4,
the first and the second order equations of § can be given respectively by

Oug'® (0) |, an,(@ ] _
s P+ T =0 1 .
0750 | 82 (0, 1 _ [ ’
B{ ot + ox 'I‘} 0
ofBua W (0) , Gt ) _
A { ot + ox }_0 . ]



ﬁz{ 37]2(1) 2;; (O)h }:0 . J 2,73

Since (2,72) and (2,73) are the same equations as (2, 24), 7,9, % (0), 7,0, u=0 (0)
can be neglected. Consequently, the equation to the second order of 8 is independent
of «# higher than the second order and the rapidity of convergence depends on B.

The third order equations of 8 are given by,

[l O PO By e e oD )
ﬁ{ ox%t 2 owior 20 T om0

) 2,74
ﬁa{ D | ), PO B Pue® b }:0 J @7
T ox o’ 6 axs‘ 120

then, (2, 74) is transformed to

g 627]2(2) 627)2(2)} 8 h5 aﬂuo(ﬂ)_aéul(1)<0) ha }
P { T B { 30 Fw%0r o5t 3 (2,75)

Accordingly, let 7, be s and the solution of (2, 49), we can obtain from
@, 30}, (2,60}, (2, 75} ’

o 3 nd K o
ﬁ{arz ~hgk } {2 PR e
pe( 2B Y _pes B “

2 30 ox*

where 77— 7s=%7,® + £y, @+ 3B ®
Furthermore, when #; is replaced by » in the right-hand side, (2,76) can be trans-
formed to

8%p . 3 2 B oYy
ﬁ{atz ”az} Bh {2 PR T

h 337 2_ 2 hai 34 }
+6x 2 (ax) Pr 30 Bx* @77

However, generally, (2, 49) has an error of O(f%, only for the case where, in
Equation (2, 50},

3_ 7 h® 62 - | \ |
1 g +& 67 oxt 8 (2,78)

, namely, the phase velocity is very near to 4/, Equation (2, 77) is being established
on the error of O(B%).
Returning to the original variables, (2,77) becomes

3% *h*a p* — a2 { 3 g + B*e gepk

at*2 dx *2 ax *2] 9 L 3 oz e
B9t N\ M 5477*} . _

— 19 —




3. The derivation of equations for the case 7,*l¥/h®<1

In this case, Equations (1, 9)-(1, 15) are devided by ¢ and are transformed to

G au 9 au 8p ! 3u —
B 3 + 5 E + pp +& ﬁv—a =0 ) | 3,
2l 142 ap i’ o2 a” =0 3, 2
ﬁt+x’ 9y — L = 3, 3
3y '
ou __ dv
3y  ox S
p-27_ 2 2 3’?——” =0 (3, 5)
1 at y=Py-t+h
p=0 3, 6)
=0 at y=0 3, O
*12
where !c':n—;mf"ﬁ “
Equations (3, 5), (3, 6) are expanded at y=§n,-+4 as shown by
o, O __ .1 2 37?
[ﬁ o TPu ax —F vjy=ﬁao+h+ﬁ@ ) dy. [‘8 o T, v].v=ﬁrzo+k
1 corp_ 2 02 [ 2, 00 . e
+ 2 B (r=mo) Byz'\ﬁ B % Ev]y=ﬁqo+h+ 0 G, 8
1 g N 8%
(#).., +h+ﬁ(v (L]t B Sh),, .,
+-..=0 (3’ 9)

As shown in (3, 3), the vertical velocity is determined by the higher order hori-
zontal velocity, therefore, a different way of discussion is developed.
On an arbitrary n-th order of &', vn-; can be given by

Un— 1—-—ﬁ‘|. 6un 4 (3, 10)

uax

, and #n-; is obtained from (3, 4),
tn-s=uns = [Ty gy Ry

In the same way, the following expressions can be obtained:

o I i = e

(2m =1




rpm [ O ay.nay

(2m-—3)

+ el § e Oy

(2m—5)

+(_ﬁ)S%@kﬂu§Qdy

=y, S dydy

(Zm 1)

m—1 0 3yn, (0} y2m-8
+(=P P Om—31

+(—pYmunl® G3,12)

and

v gem Un

Un— m-—un-m(O)"I‘( ﬁ)mS S ox2m d_‘}’ “dy

o= §rg-§ S" e gy ay

(2m =2)

+(— ﬁ)S S“'azun m+1(0) dy dy

v 9%y,

St @+ (O - § T dydy

(2m)

m—1 02 24—y (0 yim—e
+ (=5 7 @m—2)]

3,13)

__|__( ﬁ) 9* Un- m+1(0) g

Substituting (3,12), (3,13) into (3,2), the pressure of the n-th order can be given,
to the second order of 8, by

ap,. 31)1; 2 C Y0%un+y
3y P o F Su owor &

@3,14)

, then,
— 12 —
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or=pn @+ [ [ L1y 4y 3,15)

and the pressure to the second order of 8 at y=pn.+£ is obtained from (3 9, 3,14,

pn+ﬁﬂn 31’0 =0 (3,16)
where ; 3
Po _ 3% 2, Uu
BT a2

Consequently, we can obtain

n=P1n at  y=Pn+h 3,17

, therefore, Equation (3,15) can be transformed to
— __po Bnoth (v g2 Un+1
pn=Fm—F .[o .[0 oot dy dy

o a Un 41
+8 ] J iy ay @18

Noting (3,1), (3,8), (3,10), (3,18), the first order equations of 8 can be given by

o2 4 m2 ) |

at dx
(3,19)
(0) Bo+h §gg,, (O
ﬁ{ A/ ™ a’g‘x dy}=0
As for Pn, we can evaluate from ‘the zeroth order equations of &, that is,
ﬁauo + By 35:60 + %Po =0 ' (3,20
Bt g 2014+ =0 3,21)
p4 g (3,22)
dx ?
aﬂo avo .
Fy  ox (3,25
B 7% + B2, 970 =0 W . 3,24)
x at y=Pfnt+h '
p0=0 . . (3,25)
vo=0 at y=0 (3,26)
From (3,24), we can obtain '
3’70(0).:
at 0

, and from (3,18), (3,20), (3,22), we can also obtain

= 18 =



Boot-h (¥ 3
ﬁ auo +8 867.23 _ﬁzsoﬂﬂ aiaulz dy dy_l__ﬁzs S gt?:ﬁ dy dy

o O C Bt 5% . o - %
— {3 Yo 1 —
P Y0 apar =0 . (3,27

Taking consideration of the first order of 8 in (3,27), %,(®is not a function of x,

and 5,9 is not a function of ¢ and y, therefore, we can treat 7,'® and ,? as

10 =Const,

uy‘®=Const,
Putting 7,¢=0, (3,19) can be transformed to o ‘
P 3@ _ S

If we take a sufficiently large # and neglect 7@ and wp® except. for 7,® and:
#:®, the second order equations of ﬁ can be obtained from (3,1), (3,8), (3,18),

o[ Jttn- 1(1) a% 1 LY 83%,(“3 B34, (® }_
‘3{ SS St dyd+SS ~iaar Ay =0

‘?2{ 1 S Bun 1 d}’} 0 o o (3,29)

, therefore, (3,29) is transformed to

‘82{627713—1( O’?’n 1(1)} Bﬂ{S S S ' U gy dy dy

of2 0x? otax?
3 (® : -
B IR L O @

From the upper equation of (3,19), #® is not a functlon of y, then,
Equation (3,30) leads to

o[ 0%n—y P el z[ks G 7711(0)} . ‘
‘B { atz h’ 32'2 ] ﬁ 3 axg& ] C L (3! 31)

. 1
where the relation #n®=——
Un ‘\/h, 3

If we put
— &) O =5 ()" "pp- D

» we can obtain with an error of O(8%)

CCRCAREEREY o 5

ot? ox2 k' dxd

Returning to the original variables, '(3,32) is transformed to

527}* g*h* ofp* _ a*h* 0® {h*z ok ).
o A v il v u i P } 3,39
From (3,3), (3,4), we can obtain - R

— 14 —



2n nan. .

= (B Bl (3,30
Since #, is not a function of x, (3, 34) satisfies approximately this relation provided

a sufficiently large » is taken, for the value of B is smaller. than 10-2 if p,fl, <107,

and (—p)" is approaching to zero for a large ». Simultaneously, #, is not a function

of ¢, and %, #, can be considered to be infinitely small disturbances propagating on

the surface.

4. Conclusion

As shown in the chapter 2, the fundamental equation to the second order approxi-
mation with respect to £ and B, (2,52), appears in the case n*/*/k® >1. For the case
7o¥l3he® < 1, the second order approximation is the linearized equation as shown by
(3,33). Another complementary equation, the Airy equation, seems to be concerned
with the initial values of wave motion.

Taking sinusoidal waves for example, the right-hand side of (2,33) is considered
to be the terrn amplifying the second higher harmonic component of the original wave,
then, this amplifying energy must be supported by any other term which should be
located in the right-hand side of (2,33). Therefore, the Airy equation is not complete
in the physical interpretation, and the application of this equation is restricted.

Apart from these statements, if it is assumed the balance between two terms in
the right-hand side of (2,49) are lost, for instance, £ is very small initially, a simple
order estimation may be applied. According to the illustrations by Wilson and others,

a deformation appears if

*h? >40 @, 1
RS

This value approximately corresponds to
3

3
ﬂ-— > 200 4, 2

Q)

ke
E'T 3x2

where %, k and 6%/04% are assumed to be of order unity. In the same way, from the
third order approximation, (2,77), if

ﬁ( o7
Ly > 0 “ 3
T
. that is,
’7°hl° >13, @, 9



a deformation can appear in the sense of the third order approximation for the wave
propagating with the phase velocity nearly equal to +/g%p*, because the equation,

9% _ ﬁv_}_ ey, 0% (3 7 K &% g B (8% 2}
ﬁ{ Frem —‘Bhaxﬂ{z TS +ﬁ“’2(ax) 4, 5)

has an approximate solution given by

Ay A2
.2 oy

v=vs—%ﬁ2-ﬁ-x-
where s is a solution of (2,49). Here, note that the deformation is much more slow
than that caused by (4,1) due to £% and «.
Therefore, when 7,*l,2/k,® is situated in
13< 2hE < gq 4, D
ho® .
there is a possibility that the wave form may still satisfy (2,49), but it may not be
strictly a stationary wave.
As mentioned earlier, however, these are concerned with the initial values of wave
motion, there still exist difficult and paradoxical problems against the stability of the

wave form of long waves.
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