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SYNOPSIS

In the stability analysis of low embankments on rather impervious soil stratum,
the ¢=0 analysis can be used unless the construction is slow. A design graph
for low embankments is compiled using circular slip surface by the ¢=0 analysis

( for the case when the undrained strength of soil increases linearly with depth.
The same analysis is applied to the problem of the ultimate bearing capacity of
long footing. A brief description of Odenstad’s method for designing low embank-
ments is given in the appendix.
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§ 1. Introduction

In most practical problems, the stability of soil masses against failure under
their own weight or under the action of applied loads are examined by the method
based on the principle of limit design. The most general definition of factor of
safety against complete failure, which can be applied irrespective of the failure’
surface, is expressed in terms of the proportion of the measured shear strength
that must be mobilized to just maintain limiting equilibrium. The shear strength
parameters to which the factor of safety is applied in setting up the equations
expressing the condition of limiting equilibrium depend of whether the analysis is
carried out in terms of effective stress or total stress.

The problem of bearing capacity of soil stratum may be most simply illustrated
in terms’of the construction of a low embankment on a saturated soft clay stratum
with a horizontal surface. In this case the excess pore pressure set up in an
element of clay beneath the embankment is given in terms of the pore pressure
coefficients and the increments of principal stresses. The pore pressure will have
its greatest value at the end of construction. Unless construction is slow or the
clay contains permeable lavers, little dissipation of pore pressure will occur during
the construction pericd. After construction is completed the pore pressure will
decrease by dissipation, until finally the pore pressure corresponds ground water
level. ‘

The factor of safety given by the effective stress analysis will thus show a
minimum value at or near end of construction, atter which it will rise to the long
term equi]ibriunﬁ value.

The use of the effective stress method for the end of construction case means
that the pore pressure must be predicted or measured in the field. As this estimate
involves an assumption about the stress distribution and the determination of pore
pressure coefficients, it is usually avoided by going directly to the ¢=0 analysis
which is applicable to the end of construction case with zero drainage.

It has been shown that when a saturated soil is loaded to failure, allowing
no drainage to occur, it will show a strength ¢, $=0.

This value, ¢, will depend on the mode of consolidation of soil before shear-
ing (isotropic or anisotropic), and the rate of change of ¢, with the magnitude of

* __psin o[ K—~(1—-K)As]+¢’ cas ¢/
w 14-{245,—1) sin ¢/
consolidation pressure
cohesion intercept in terms of effective stress
angle of shearing resistance in terms of effective stress
principal strees ratio
Ay @ pore pressure coefficient at failure

where

¥4
[
o’
K

— 3 —



the consolidation pressure p, will depend on the stress history of the soil (normally-
consolidated or over-consolidated).

The construction of an embankment on a staturated soil doposit may lead to
the full mobilization of the undrained strength c¢,, depending, of course, on the
rate of construction as well as on the consolidation characteristics of the founda-
tion itself. For comparatively impervious foundations unless construction is slow
enough to allow excess pore pressure to dissipate, the shear strength to be mobilized
in the foundation may be taken as that of the undrained case c., ¢=0.

In what follows we shall concern ourselves with the stability analysis of
foundation of low embankments assuming the ¢=0 analysis applicable.

In the ¢=0 analysis we need not have any information about the pore pressure.
We have further simplification by using a slip circle analysis since the geometry
of the problem is quite simple. However, the practical calculation work involved
can be tedious because we have to draw many trial slip circles to find the minimum
factor of safety.

So far some works have been done to reduce the amount of calculation work
in the ¢=0 analysis. Fig. 1. shows diagrammatically the various cases considered
by D.W. Taylor®, B, Jakobson®, S. Odensted*™, R.E. Gibson and N. Morgenstern®,

together with that treated in the present paper.

Situation] u Sol NSituation
f _/__ ‘ IEHLIL Cu lzﬂ]’]]I Gu Aﬂﬂﬂ G
Infinite Finite Finite & fé?fﬁﬁé‘ ¢ linflaite §
Strengt\ [Depth  z | Depth 3 Strength Dnept}l] &= Denih - Depth 2
Eu Gu 5.0denstad
} D.W. Taylor | D. W, Taylor ‘ B.Jakobson [ 1%%8 ]F'Dresen’c
_ | Paper
z {(1937) (1937) % (.1948) EeeF[q.ZZ}
Cy B . Cu S-Odens‘tﬂd
RE.Gibson 1966 | Present
L NMorgenstern 1 (1 360/ Paper
x| (1962) 2 (See Fig.22)

Fig.-1. Cases in which convenient design charts are available.

§ 2. Stability analysis of foundations of low embankments
2-1. Outline
Let us consider a low embankment on a saturated soil stratum with a horizontal

surface, as shown on Fig. 2.

# A brief description of the Odenstad’s method is given in the appendix.
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Fig.-2. Situation considered in the present paper.

The factor of satety against failure on the slip circle is expressed as
F=M,/M; (1)
where M, is the restoring moment due to the shearing resistance along the arc,

and M; is the disturbing moment due to weight of the embankment,
The restoring moment is expressed as

M,:RZ?}(RJ&) cu (2)

The value of M, depends on a shape of the sector OCD and on the shear strength.
Therefore the value of M, does not change by shifting the centre position 0
horizontally.

The disturbing moment M, is written as
My=W- z . (3)

where W is the weight of the embankment BEF C, and z is the distance between
0 and centre of gravity of mass BEFC. For simplicity of analysis it is assumed
that a vertical tension crack would develop in the fill above the point at which
the failure surface emerges from the foundation, as shown in Fig. 2. As seen
in the figure, if the chord length CD and the abscissae of 0 are fixed, M. is not
effected by change of slip circle. :

Referring to Fig. 3, for three slip circles the restoring moments on the slip circles
Nos, 1 and 2 are equal, and the disturbing momients on the siip circles Nos, 1 and 3
are equal. Then if we find the relationship between M, and the shape of the sector,
and also the relationship between M, and geometry of the sector and the embank-
ment, it will be possible to examine the stability by combining these two moments.

In the following sections, these two moments shall be studied separately. Finally
they shall be combined to obtain the general solution of the stability analysis.
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Fig.-3. Comparison of disturbing and restoring moments.

2-2. Restoring moment
In the simplest case it is assumed that the undrained shear strength increases

linearly with depth, and can be expressed as
cu=cCo+ k2 (4)
where £ is a constant for particular soil. The constant % has the same dimensions

as density.

0, -
A
; E Go
D
C

L |B

3 Cu=Co+kux

Fig.-4, Caluculation of restoring moment.

Now let us consider the restoring moment about 0 (See Fig. 4), produced by
the shearing resistance along the circular arc CD, unit width og soil mass being

considered,




[:1Y e
M) "= [ otz Reas
g2
= [“{co+ 2R (cos 0—cos @)} R?dd
81

=R2[cot9—l—kR(sin f--8 cos c:z_’):l:=l ( 5.)

where the angle # is measured from the vertical line through the centre 0.

This expression for the restoring moment is useful, in particular, in the case
where the foundation soil has different shear strength distributions, e. g. in the
case of the vertical sand drains. The second term of equation (5) represents the
part of the moment due to the increment of strength %z, and the table of values
of (sin 8—6 cos a) has been published.®

The restoring moment for the whole length of arc ABCDE (Fig. 4.) is obtained
simply by substituting 8,=—« and f:=-+« into equation {5). Then we obtain the
following expression for the restoring moment, "

‘ M,=2Rcocx+ %R (sin ct—ex cOS ¥)]
2

=2
sin®a

[coct+2(I—hat)]

Rsina=[, Rcosc=h

_ops. @ [H 1
=2k sinza[ ] +a cot a:]

=241 F(et, HI) (6)
where H=co/k (See Fig. 4.), and
fle, Hl) =?:23|:% —!—%—cot cx] (7)
By calculating the value of f{c, H/I), we can examine the relationship between
the restoring moment and the sector angle for a given chord length. Values of
fla, HJl) are plotted against the angle « for values of H/{ on Fig. 5. In this

figure the dashed line is the locus of the minimum values of f(c, H/I) for each
value of HJL.

The minimum value of f(«, H/I)is obtained from the condition a%{ fle, HiDY=0,
which gives the relationship between the parameter H/! and angle «

H __3 cot a—2Za cot’ax—ex-cosec?ar
7 1—2ccota

By the above expression the H/I value which gives the minimum value of f(a, Hi)

for any value of a can be calculated. Results of the calculation are listed in
Table 1.



Table-1 S (@, Hilymia. and corresponding. values of HjI and « f

o Hji F (@ H)mmn, Hl F (&, Hil)min* e
0. 0 0.33333 0. 0.333 0 ;
0.1 0. 00036 0.33823 0.05 0. 473 0.515
0.15 0. 00086 0. 34216 0.1 0. 570 0.635 1
0.2 0. 00220 0. 34989 0.15 0. 663 0, 700 !
0.25 0. 00438 0. 35967 0.2 0.742 0. 750 \
0.3 0. 00773 0.37213 0.3 0. 900 0. 817 !
0.4 0. 01955 0. 40708 0,4 1. 055 0. 863
0.5 0. 04161 0. 45926 0.5 1.205 0. 897 i
0.6 0. 08050 0.53723 0.6 1.350 0.924 !
0.7 0.14847 0. 65747 0.7 1.500 0. 945 i
0.8 0.27111 0. 85486 0.8 1.635 0. 962 . :
0.85 0. 36979 - 1. 00565 0.9 1,795 - 0.978
0.9 0. 51264 1.21770 1.0 1.925 0.990
0.95 0. 73070 1.53376 2.0 3.310 1. 059
1.0 - 1. 08290 2. (4896 3.0 4. 700 1. 089
1,05 1. 78695 3.02223 4.0 6. D8O 1.106
1.10 3. 57421 5. 50421 5.0 7. 475 1,118
1.125 6.14263 9. 05661 . 10.0 14.5 1.138
1.15 16. 99761 24, 04452 . 20.0 28.5 1.153
1.16 48, 67488 67. 76431 50.0 69, 8 1. 160
1.163 106, 61316 147, 72300 100. 0 139 1.163
1.164 272, 45791 376. 59332, * : Readings from the f(e, H/!)mw. vs H/{ plot
*#%: Readings from the H/! vs & plot
3 | H/
I L
e, HD _ } =50
S - i o = N I
slnd ( 1 i cot d') l[
| !
6 |
[
|
—
B I
5 41 f
= f 20
3
2 .
1 —-—
— oo 0.t )
0 } 1 ] | | [
0 0.2 0.4 06 0.8 1.0 1.2
o {rod)
Fig.-5. Relationship between f(e, Hfl) and angle a.

— 8 —




If ¢, is constant with deptﬁ i. ¢. k=0, equation (6) can be written

M.=21%
r DSln

= 2R2ac 0

Also the angle & at which the restoring moment becomes minimum for a given

chord length 2/ is obtained by putting ‘
aa]lcif,-___zcﬂlz(sm a;f;;cos a) —0

giving a=1.165 (rad.), which is well known in the ¢=0 analyms Also the

. minimum restoring moment in this case is expressed as

. My min=2.76 [*cy

This expressmn is partlcularly useful since it immediately determlnes the minimum

restoring moment obtainable from any chosen chord length of slip circle for a soil -

of constant c. with depth. B : ' '

If ¢y=0, i.e. H=0, equation (7) becomes
' a (1
fex, 0)=§in2a( —cot a)
The mmlmum value of f(a, 0) is 1/3 at a=0.
“The dashed line in Fig. 5. implies that if [ is given for a knOWn combination
of ¢ and %, the angle a which gives the minimum restoring moment can be readily

obtained. Fig, 6. shows the relationship between the parameter HjfI and the angle
« for the minimum restoring moment.

1.2 |
: \

L — I
lim ot =1.165

/ %*m
0.8 / g
Q.6

04

1.0

02—

e—*]I )

Fig.-6. Relationship between parameter X/l and angle & which gives the minimum
value of f (e, HJI).
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Fig. 7. shows the relationship between the parameter H// and the correspond-
ing minimum value of f(e, Hfl). As shown in the figure, the minimum value of
f(c, HJI) is an approximately linear function of the parameter H/I for the range
of HfI>0.8. Then f(a, Hfl)mmn may be expressed for the range of H/[>0.8, as

Sla, Hfymin. =0.526+4-1.380 (H/I) : (8)

30
20 |-
] /= 0526
, I L B=1380
g ' g
= /
X
- : /
10 V4
!
0 o0 1.0
0 5 10 15 20

-—II

Fig.-7. Relationship hetween parameter HjI Fig.-8. Sectional approximation of f (&, Hil}nin,
and the minimum value of f(e, Hjl). vs Hjl relationship,

Fig. 8. shows the f(«, Hfl}mn versus H/! relétionship for the H/I values less
than 1.0. The non-linear part of f(«, Hf)m» may be approximately defined by

two linear eguations:

Flet, HfD min. =0.4464+1.480 (FIfI), 0.8=>FH[I=0.2 (9)
=0.333+2.045(H/), 0.2>H/I>0 (10)
"These approximate expressions for f(e«, Hj{)mn. are a little conservative as shown
in Fig. 8. |
Then the minimum restoring moment is generally given as

M, =2k 4+B2) (11)

where A and B are constants depending on the range of H/I values considered.
As an example let us consider the slip circle having a chord length of 2/=20m

in the clay stratum where co=1.0'¢/m? and £=0.1¢/m? i.e. H=10m. From Fig. 7,

flet, H/!)min value corresponding to HfI=1 is 1.9. So the minimum restoring

moment is
M,=2k8 f(c, HID)min.=2%0.1 X102 X 1.9=380 ™/,

— 10 —




And from Fig. 6. sector angle « of the circle which gives the minimum restoring
moment is «¢=0.98 rad.=56.2°. These situations are illustrated in Fig, 9.

0.8 /
A A\ o |

H A A\ 12\
|

\\Gu ! { | 1.67 ,\ [

! 0 1 2 3
flx, HA)

Me=2kL® f (o, HA)D

Fig.-9. Change of restoring moment with sector angle for a given chord length.

2-3. Disturbing moment

As mentioned in 2-1 the disturbing moment depends on the chord length and
the centre position of the slip circle. '

Let us consider the embankment where the load intensity is ¢ and length of
the side slope is z. The problem is to find the centre position of the slip circle
which gives the maximum disturbing moment for a given chord length 2.. For
simplicity of analysis it is assumed that a vertical tension crack would develop in
the fill above the point at which the failure surface emerges from the foundation.

It is convenient to consider two cases with respect to the geometry of the
embankment and the slip circle.

Case 1.—This is the situation where the chord length is smaller than the side
slope length, i.e. 2I<a.

Referring to Fig. 10 {a) it is evident that the maximum disturbing moment
occurs when the both ends of slip circle are inside the side slope. And the result-

ing maximum disturbing moment is therefore,

. 2 q ..
= 9
Mo=3-L1 (12)
for the range of z—I>y>1, as shown in Fig. 10 (b).

Case 2.—The case where the chord length is larger than the side slope length,



i.e. 2[>z is considered. It is easily appreciated from Fig, 11 (a) that the maximum
disturbing moment occurs when both ends of the slip circle are outside the side
slope. In this case the moment is expressed as;

Ma=g(l—z+3) (x_y+3~i-f‘+x) 42 (x_y_%)

=T (—aty) (l+7—3) + L (22—3y) ~ (1)
The maximum value of the disturbing moment is obtained from the condition
that
= Ma=L(z-29) =0,
_ oy 2 :
giving y=2/2. And therefore the maximum disturbing moment is obtained by
substituting y=z/2 into equation (13), with the result, |
xz
Ma=% (Zf_ﬁ) | (14)
The variation of M, as expressed by equation (13) and obtained by shifting the
centre position of the slip circle is illustrated in Fig. 11 (b).

(a) {a)

x
My
M
(b !
28 . {b)
3 L i(lz_lf-_z
14, _% 122
3 (12X
x | 23
-1 © 41 (-1} = (x+i} )
-t 0 Y2 % (x+1)
Fig.-10. Change of disturbing moment with Fig.-11. Change of disturbing moment with
abscissae of centre of slip circle abscissae of centre of slip circle
2l<z) 21> z) '

2-4. General solution
In the preceding sections we have obtained the expression for the minimum
restoring moment and the maximum disturbing moment for a given chord length
of the slip circle. Therefore it will be possible to find the general solution for
the minimum safety factor by comparing these two moments.
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The general expression for the minimum restoring moment is written from
equation (11) by using a new parameter n=17/z,
BH )

M, =2k ( A+ 22 (15)
nzx

As mentioned previously, A and B are dependent on the range of F/I value, i e.
Hjnx considered. And the maximum disturbing moment is expressed from equa-
tions (12) and (14), as '

My mas. _2 gridxt 1 >n>0 (16)
3 2
_9g 1 1
=dz(w—s) oz (17)

The general expression for the factor of safety, therefore, becomes;

2-k-n3-x3-(A+%—I)

=

2 o
E-q-na- z?

BH

nr

3

_—_;k.x. (A—l— ), %210’0 (18)

2ekend 8- (A—}—-ii‘:)

BH
4k, .A+n7

q 2___1_
ST

F=

1
, 712—2~ (19

From equation (18) it is obvious that the factor of safety becomes minimum
when » is egual fo !/.. The same value of factor of safety is also obtained from
equation (19) by substituting n=%/.. Therefore the required answer will be obtained
by investigating equation (19) for » values larger than ..

By differentiating equation (19) with respect to n we get

oF 4k 7 1 , H
=— 5+ E(l2An3—.3An—2B;)

on q'”@

Thus the minimum value of factor of safety can be obtained by substituting into

(20)

equation (19) the value n=mn, which satisfies the condition that,
12Am3—31‘]5*1—23—?—r = 2D

It must be remembered that the constants A and B depend on the value of the
parameter Hjl=H/nxz. Therefore after solving equation (21) for various values of
Hiz, it is necessary {0 examine the range of parameter H/npz.

— 13 —




The procedures of calculation are as follows;

(a) Obtain the no values from equation (21) for each combination of parameters
A and B, by substituting values of 8=Hj=x.

(b) Find the range where the Hfnox values are appropriate to constants A and
B.

(c} Substitute the n, values into equation (19).
Thus we get the minimum value of factor of safety I,

BH
F___4Iz:c g - nolx
noz—ﬁ
I~
@ H A5
= e et —————
g B P
¥ 712
AH
= g 'f(A)B) nO’B)
=€q£- . f(A, B, Ny, .8) (22)

where the numerical values of A, B, n, and B are known. These calculations
are listed in Table 2. Fig. 12 shows the relation between z¢ and H/x. As seen

Table-2 (a) Values of s, and parameter Fg/c
H_H .02 A=0333 B=2.045
I R
H Fyg Fgq H z H
4. 09 . ‘; g ‘—E' o oy H ;
0 0. 500 1.0 o0 0 00 0

0.01 0. 505 1,030 429.167 0. 005 416,667 | 0.0024
0.02 0.510 1.061 216.531 0.010 204.082 | 0.0049

0.1 0. 544 1,287 52.746 0. 045 40,984 | 0.0244
0.2 0.580 1. 557 31.841 0.084 20.450 | 0.0489
0.3 0. 611 1,820 24,830 0.120 13.643 | 0.0733
0.4 0.638 2,073 21.196 0.153 10.225 | 0.0978
0.5 0,663 2.321 18. 993 0.184 8.183 | 0.1222
8
&= 4719] (0-333_[_2.045 E) Fl__:F_‘](ﬁ)
kxr m2— o Ny X co kx N\H
ﬁ:{ 4% - T -% - l(tina-—n-—ti. OQE)
an g (n2 _E) 12 z




Table-2 (b)

H_H _3-08 A=0.446 B=1 480
I mzx
H Fg Fg H z H
2,96 x o } kx o n0x H x
0.4 0.611 2.432 18.002 0. 221 7.402 0.1351
0.6 0. 650 2.940 14,503 0.312 4,933 0.2027
0.8 0.684 3.431 12. 695 0. 395 3. 700 0.2703
1.0 0.715 3.911 11,577 0.472 2.960 0.3378
1.2 0.743 4. 390 10. 830 0. 546 2. 467 0.4054
1.4 0. 768 4, 857 10. 268 0.616 2.114 0.4730
1.6 0, 792 5.317 0. 836 0,682 1.850 0. 5405
1.8 0. 814 5.779 9. 500 0. 747 1.644 0.6081
Fo__iné (o 445,140 H)
kx 7102—'E ) T
aF 4k n 1 H
= ¢ * —— 8 - —
o 7 z (nz_%‘)z 12(5.35271 1.338» 2.961_)
Fqg _Fg i)
o kxr \H
Table-Z (c)
E'-:EEO.S A=0,.526 B=1,380
l nux
2 Fq Fq I3 z %
. 76— il =t > ks
2.7 x o kx o nx H x
20 0. 804 6.532 9,014 0.901 1.380 0. 7246
3.0 0. 887 8. 796 8.092 1.225 0. 920 1.0870
4,0 0.955 11,018 7. 607 1.518 0.690 1. 4493
5.0 1.016 13. 203 7.288 1.783 0.552 1. 8116
6.0 1. 068 15, 367 7.069 2.035 0. 460 2.1739
8.0 1.157 19. 656 6. 781 2. 505 0.345 2. 8986
10 1,237 23.904 6.598 2.929 0.276 3.6232
15 1. 396 34. 407 6.331 3. 893 0.184 5, 4348
3
T2 (052642 )
kx  npt—gpt g
" N
oL e A e sz 1578 0-2.767)
an g (nz—-—_) 12 z
12
Fg _Fg (i)
Co _—k.'«c : H

It is caused by the fact that
three straight lines are used to represent the f{«, H/I)min vs Hf! relationship.

in the figure there is scattering of plotted points.
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5 2.0

10
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Fig.~-12. Relationship between n, and parameter Hfz.

Parameter Fg/c, is plotted against =/H on Fig. 13. The figure implies that
for a proposed embankment the length of side slope corresponding to an assigned
factor of safety is readily obtained for given values of ¢, % and gq.

When a foundation has the uniform strength ¢, i.e. z/H=0, Fgfc, becomes
5.52. This is the well known value for the factor of bearing capacity. In such
a case the embankment may stand even with the vertical face, provided that it is
supported by some kind of wall against collapse.

H ¢ is zero, the parameter Fg/co becomes infinite. Therefore we have to use
the other expression for the side slope length .

Substituting H=0 and A=1!/s into equation (21) we get

1
3 — . [
dnd—n=0 Soon=g

From equation (22), using A=%'; for Hfnx=0, we obtain

1
=G (i)az i7e
2/ T12
x:%. F (23)

Note, however, the sector angle « of the most critical slip circle becomes zero as
shown in Fig. 6. This implies that this case is the extreme limit of the analysis
of this kind.
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2-5. Position of the most critical circle

Position of the slip circle is determined by the chord length and the sector
angle. In section 2-2 it was found that the sector angle 2z of the most critical
circle was readily obtained for a given chord length 2/ and the shear strength
parameters ¢, and & In Fig. 6 the angle « is plotted against the parameter HfI
which is equal to H/noz.

When we obtain the x value for a given combination of ¢, &, ¢ and F, we
know at the same time the #»; value from Fig. 12. Therefore we can obtain the
value of H/ﬂux, hence the sector angle of the circle.

As for a geometry of the most critical slip circle, the depth of the circle may
be most important in practical problems. Because if soil stratum is shallow .
relative to the geometry of the embankment, we can not apply the slip circle

analysis.
Depth D of the most critical slip circle is given as;
D=R(1—cos )
P . (24)
sin
Then
D/H= nx . ]ﬂ (25)

o sin &
For a given value of Fg/c,, values of 7zy and z/H can be obtained from Fig. 12
and Fig. 13 respectively. With these two values the angle can be found cor-
responding to the value of Hfnyx from Fig. 6. Then we can calculate the value
of D/H by equation (25).

Table-3 Calculation of depth of the critical slip circle

1 Z 3 4
Fg _E() ,,0() H L9 D 4 (1y from Fig. 13
<o H nx H .
| (2y from Fig. 12
10 2.0 0,76 0.658 0.93 0.76 (3) from Fig. 6
20 9.4 0. 62 0.171 | 0.72 2.20 (4y DyH=TZ 1-Cose
H sine
30 18.8 | 0.58 0.092 0.63 3.54
40 28.6 0.57 0.061 0.57 4.80
50 38.8 0. 56 0.046 0.51 5. 67

These calculations are tabulated in Table 3, And the value of D/H is plotted
against the parameter Fgfc, on Fig. 14. The figure implies that for known values
of co, %k, ¢ and F the depth of the most critical slip circle can be obtained as a
proportion of H=c/k.
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Fig.-14. Relationship between parameters Fg/cp
and D/H for the critical slip circle.

Now we can see that if values of ¢y, %, ¢ and F' are given, the geometry of
the side slope and the most critical slip circle can be obtained as follows;

(a) the side slope length x from Fig. 13.

(by the chord length 2I=2nz of the circle from Fig. 12.

(c) the depth of the circle from Fig. 14.

If depth of the soil stratum considered is less than D which is given by Fig. 14,
above mentioned calculation does not hold any longer. In such a case we must
use a different type of analysis considering a squeezing phenomena or the equation
of earth pressure as done by Meyerhof(™ and Odenstad.®

2-6. Examples
(A) Find the factor of safety of an embankment against a circular slip failure.
Conditions are given in Fig. 15 (a).
g=(3") X (1.8%/n*) =5.4/5*
H=1.0/0.15=6.67m x/H=9/6.67=1.35

z=0=

From Fig, 13, Fg/cy value corresponding to x/H=1.35 is given as 8.8. Therefore

Fe8.8° —8.8X1.0X—— =163
q 5.4 .
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Fig.-15. Examples of using the design graph.

(B) Height of a proposed embankment is 5m. The unit weight of embankment
material is 1.8¢/m®. Find the shape of side slope for an assigned factor of safety
of 1.5. The shear strength of foundation soil is expressed as
cu=(1.04-0.15 2)t/m?
Length of side slope:—
g=(1.8%/n®) (5™)=9.0 t/n?
H=1.0/0.15=6.67™
Fgjco=1.5x9.0/1.0=13.5
From Fig. 13, x/H value corresponding to this value of Fg/c, is 4.0.
rfH=4 r=4H=267"
Position of the critical slip circle :—
Chord length 2/ is given as 2npxz. From Fig. 12, n, value corresponding to
H}x=6.67/26.7=0.25 is 0.695. Then
20=2x0.695x26.7=2x18.6=37.2™
Angle o of the critical circle is given by Fig. 6, and it is found 0.88 rad.
(50.5°) corresponding to the parameter H//=6.67/18.6=0.358.
Depth of the critical slip circle is given by Fig. 14 and D/H value correspond-
ing to the Fgfcy=13.5 is 1.25, then
D=1.25H=8.3m
The centre of the critical circle is located above the middle of the side slope.
The section of the embankment and the position of the critical slip circle are
shown in Fig. 15 (b).
Now let us check an accuracy of the design charts. The restoring moment
is given by equation (6) as
a [H
sinf -1

M =2k +i—cot rx]

0.88 6.67 1
—_ 3 —_ ==
=2x0,15x18.6% % sin?(0.88) L 18, 6+0 =8 cot(0.88)]

= 1,9111’-?’!’/77;,
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Referring to Fig. 15 (b) the disturbing moment is

5.25Y 26.7
)+

l)
X 9% (13.35—1652

M:;=9%5.25x% (18.6—- 3

=1,289"""™/n
: F=M,/M;=1,911/1,289=1.49
Therefore the error is 0.7% in the unsafe side. _
Note: The results of numerical computations performed as a check showed that
the psssible error was about +394.

§3. Comparison of Odenstad’s method and the methed in the present paper

These two methods have been derived by the same sort of analysis, i.e. By
the ¢=0 analysis using the circular slip surface. Only difference is in the assumed
shape of the embankment shoulder. Odenstad’s method gives the section of an
embankment with the vertical cut at the shoulder, height of which corresponds
to the load intensity of 5.52 co/F. 7

At first let us consider the case where ¢, is zero, and a load intensity of em-
bankment is g.

In Odenstad’s method, when g¢/¢; tends to be infinite in the case of infinite
depth of soil stratum, the parameter /e tends to be 1. ¢ is the measure of the
angle of a side slope and can be expressed as g/x in terms of the method described
in the present paper. Then we get, using general expression of %/F intead of %,

klcF=1 .. o=k/F

o=qglx x=q/o-=—Z—F

This expression for « is identical with equation (23).
Now numerical examples shall be shown. Let it be assumed that height of a
proposed embankment is 5m, the unit weight of embankment material is 1.8 z/m?.

sk Table-4 Comparison of Odenstad’s method and
(a) g the method in the present paper
(b) T=18YP —
F 1.0 1.5 2.0 4,0
A% X
o Ca =010+ 0.12) /2 Ah 3.1 2.1 1.5 0.8
%y Lo 13 35 62 195
T 14 40 76 243
1 5 14 - 48
{a By the method in the present paper g

(b) By the Odenstad's method

Fig. 16, Key sketch for the comparison of
Odenstad’s method and the method
in the present paper.



The shear strength of the foundation soil is expressed as;
c.=(1.040.12) t/m?
Sections of the embankment given by these two methods are shown in Table 4
for various factor of safety. The key sketch is shown on Fig. 16.
As seen in Table 4, Odenstad’s method gives an economical section for the
embankment, as far as the quantity of soil is concerned. In the case where the
construction space is restricted, i.e. length of the side slope is limited, Odenstad’s

concept is of practical importance.

§4. Ultimate bearing capacity of long footing

The previous analysis may be applied to the problem of the ultimate bearing
capacity of a long footing on the horizontal surface of a soil stratum. In the ¢=0
analysis the ultimate bearing capacity of a long footing is expressed as

Qult, =N, €0
where ¢; is the shear strength which is uniform with depth and N; is the bearing
capacity factor. If the slip circle analysis is used, the value of N, is 5.52.

Let us consider a footing of width L=2b and carrying a uniform load inten-
sity of p. The shear strength of the soil stratum is assumed to increase linearly
with depth. It is assumed that the slip surface always starts at the edge of the
footing. Also the footing is assumed to be sufficiently long to neglect the side
resistance against sliding.

Referring to Fig. 17, the disturbing moment is

My=2bp(y—b) (26)
where y>& from symmetry. The restoring moment is written from equation (11),
My= 2ky3(A+ BI;_I) @7)
4
G ok [}
! H \

)
DA R N A C
L=2b /]

D '/ C'U

Cu=Co + K% 4
y4

Fig.-17. Situation considered in the analysis of ultimate bearing capacity of long footing.
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For the condition of critical equilibrium, M,=M,, then we have

% p (y—b) =2ky3(A+B§)

_k ¥ H
=% y—b(A—t—B;) =
Introducing a new parameter #=y/b, equation {28) is written as,
2
o AL BHD)
t—1
2
—p.p AL D) ijf”” (29)
where m=H{b and ¢>1. '
The minimum value of p is obtained from the condition that
o9p kb 2 _ . _
- ——(t_1)2[2At + (Bm—3A)t—2Bm)=0 (30

For z=1% and t—co, the » value becomes infinite as seen from equation (29), then
the p value becomes minimum for the ¢ value which is given by

t=‘£%4 ? -—(Bm-—BA)i«/(Bm—SA)z—}- 16ABm}
=4*1;1{(3A—-—Bm)+ «/(T3A—Bm)2+16ABm} (31)

£>1
The calculation proceeds as follows;

(a) Evaluate equation (31) by substituting varibus values of m=H/b for the
three cases of the combination of the constants A and B,
(b) Sustitute the z value into equation (29), which gives the ultimate bearing
capacity as a ratio to the value of Zb.
These calculations are tabulated in Table 5.

Table-5 Values of ¢ and parameter p/kb
057%50.2 olzg%so.s O.ngl—l

m | # m|op m | _p
moyt : kb mo ot : kb moy ot : 7
o |1.50 |o 2,25 g.é 1.634 8’%&1 g.ggg 1.5 1.762 | 0.85 12.210

.6 |1.686 | 0. X

0.1]1.581|0.06| 3.147 o8l 178|047 gowr | 2 |[1795] 112 15012
0.2 | 1.636 | 0.12 4.016 1.0 | 1.744 | 0.57 g, 230 2.5) 1. 820 1.38] 17.803
I : ' 1.2 | 1.765 | 0,68 | 10.438 3 |1.839 | 1.63 20.587
0.3 |1.677 | 0.18 | 4.871 1.4 | 1.783 1 0.79 | 11.641 5 | 1887 265 31 684

10 ) 1,935 | 5.18 59.338
20 | 1,965 | 10.20( 114,571

m= 50 *| 1,985 | 25.2 | 280,192
m H 100 | 1.992 | 50.1 | 556, 201
7= 200 | 1.996 (100  1108.203
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Here it must be noted again that constants A and B depend on the value of
Hiy=FI]bt.

As seen in Table 5, the ¢ value lies between 1.5 and 2.0, hence the v value,
which is the half length of the chord of the critical circle, lies between 1.5b and
2b. This leads to the parameter H/I, as defined in section 2-2, being written as

H H 1 H 1 H
By =5=15"2"2 " %
As stated in section 2-2, the boundary wvalues of FH/I for which the constants A
and B are specified are 0 to 0.2, 0.2 to 0.8 and 0.8 to infinity. When H/b is
larger than 1.6, all values of "Il/y are larger than 0.8. And when Hjb is smaller
than 0.3, all values of H/y are smaller than 0.2. .

In Fig. 18 the value of p/kb, which is appropriate to the values of constants
A and B, is plotted against the value of F/b. As seen in the figure p/kb is an
approximately linear function of H/b, and can be represented

PplE6b=3.68-+5.52H/b. for H/b>0.8
In Fig. 19 the relationship between p/kb and H/b is shown for the /b value
smaller than 1.

If we represent the non-linear part of the p/kb versus F/b relation by a
straight line which connects points A and B (See Fig. 19), the error is about 7%
at maximum on conservative side. However in the interest of simplicity this
small error would be justifiable.

10
125 -
. l
Tee / pd B
p 7 g 5 ///
b ’/4? ‘ ///
‘o/ 4
50 - Q\* o
/ . &
A
' 2
s L :
] |
o 4] 02 04 06- 03 - 10
4] 1y o 5 e H
&
Fig.-18. Relationship between parameters Fig.-19. Sectional approximation of p/kb
pikb and Oyb at the condition of vs Hfb relationship.

critical equilibrium.
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Finally we may express the parameter p/kb by following linear equations:

plkb=3.68+5.522

B Hib=0.8
=‘2.25+6.64%. Hib<0.8

(32)

Therefore we have the expressions for the ultimate bearing capacity ;
p=3.68kb+5.52kH

=1,84%2L+5.52¢

Pp=2.25kb+6.942H

=1.13%L+6.94¢co

HIL>0.4

HIL<0.4

(33)

(34)

When the shear strength is constant with depth, i.e. 2=0 and H becomes

infinite, the ultimate bearing capacity is written from equations {33) as,

P=5.52(.‘0

This value of the bearing capacity factor coincides with the well known value,

When ¢, is zero, i. e. H=0, we have from equation (34)
p=1.13kL

Now let -us consider the depth of a soil stratum for which equations (33) and
(34) are valid. '

" Referring to Fig. 17, the depth of the slip circle D is
D=R{1—cos a)
l—cos @

and

DIL=y/2b -

sin ¢

l—cos
sin @

(35)

(36)

For the critical slip circle, the value of »/6 is shown corresponding to the
value of H/b in Table 5. On the other hand angle a for the critical slip circle

Table-6 Calculaticn of depth of the critical slip circle
H H » O H ® D ®
b L b ¥ “ L
0 0 1.5 0 0 0
0. 0.25 1.68 0.298 0.8 0.355
1 0.5 1.73 0,578 0.9 0,418
2 1 1. 80 1.11 1.0 0.491
3 1.5 1. 87 1,60 1.04 0,535
4 2 1.88 2,13 1.07 0. 557

10 5 1.94 5.15 1,11 0, 600
20 10 1.95 10.25 1.15 0,631
co <0 2.0 oo 1. 165 0. 650
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is plotted on Fig. 6 against the value H//, which is equal to HJy (or m/t) in this
case. Therefore we can calculate the value of D/L by equation *(36) for values of
H/L=HJ2h. \ '

These calculations are_ tabulated in Table 6, and the depth of the critical slip
circle, as a ratio to the footing width, is plotted against the parameter H/L on

Fig. 20.

lim D =065

Hf = oo
L
0.6 / —
/’__
04 /
2..
L
0.2
0
0 2 . 4 G 3 10
' H
L

Fig.-20. Relationship between parameters /L and DjL for
the critical slip circle.

When a depth of soil stratum is smaller than D obtained from Fig. 20 cor-
responding to a given condition of ¢;, # and L, the above mentioned analysis does
not hold, and we mwust consider different type of failure such as squeezing failure.

Example
Load @=20¢/m is requested to be supported by a footing. The shear strength

of foundation soil is expressed as
cu=(1.5+0.12)t/m"
Find the necessary width of a footing for an assigned factor of safety of 2.0,
As a first trial we use equation (33) for the condition E/L>0.4.

J)=Q/L="I}: (1.84%L+5.52¢y)

20/L=%(1.84x0.1xL+5.52x1.5)

0.184 L2+ 8,281 —40=0 . L=4.4m

In this case,
H=1.5/0.1=15m,
H{L=15/4.4=3.4>0.4
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Therefore above calculation is valid.
Depth of the critical circle is given by Fig. 20.
H{L=15/4.4=3.41, D{L=0.59
D=0.59 - L=0,59x4.4=2.6m
Therefore when the depth of soil stratum is greater than 2.6 m, above calculation
is valid.

APPENDIX
Outline of Odenstad’s method

In his analysis Odenstad considered a soil stratum of thickness DD, underlain
by firm base and exhibiting a linear increase in shear strength with depth, i.e.
¢g at the surface becoming {co+A2D)* at the bottom of the stratum. He aimed to
find out the shape of a side slope for a proposed vertical embankment BB (See
Fig. 21) at the critical equilibrium condition. The ¢=0 method is applied to a
circular slip analysis.

.&;1
Cu
TN RN RN R T R IR W R R AR TR T

Fig.-21. Situation considered in the Odenstad’s method.

The embankment considered has a vertical face BC at the shoulder, as shown
in Fig. 21. The load corresponding to this vertical cut is 5.52 ¢, which is the
ultimate beaﬁng capacity on a soil stratum having a uniform strength of ¢. The
problem now is to find out the shape of the side slope, i.e. the slope of FC, for
the given embankment and the assumed soil strength characteristics.

*

In this analysis soil strength parameters ¢; and % should be taken as that divided by factor
of safety.
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At first the slip circle is considered to extend to the bottom of the stratum.
The circle is specified by the chord length 2/ and the sector angle 2. For geo-
metrical reasons following condition must hold, that is,

sin &
l—cosa (37)
The restoring moment is expressed as

=Dy

Mr= +aR - (Rdg)fu

=R. (R 200) ¢y
where ¢, is the average shear strength along the arc, and can be written

Zumcot AR (—a——cos a) - (38)

Using this expression for the average shear strength the restoring moment M, is

written as;
1——%
2M=-_=4( a 7 tana K (39)

L2 sinx ~ sin*a o

Considering the disturbing moment, it is assumed that the embankment
material has no shear strength, i.e. the vertical tension crack would develop in
the fill above the point at which the failure surface emerges from the foundation.

The maximum disturbing moment for the given slip circle can be found out
by shifting the centre position of the circle horizentally. In the case where slip
circle intersects the ground surface beyond the toe F (See Fig. 21), it can be
proved that the disturbing moment becomes a maximum when the area DEF and
ABCD are equal, For this situation the distance # between the shoulder and the
centre of the circle is obtained from

u=cl’[2g (40)
where o is a measure of the slope FC and is written as,
o= (g—5.52c0) /L (41)

The maximum disturbing moment M, is determined by
22l L2 (1-220)" (143859) L (2). (£) € )2' @)
Co
At the condition of critical equilibrium Mr-_—Md, then from equations (39) and (42)
k 2
1 5. 526‘0) ( 16. 566‘0) ( (?)
E(l q (le)
<o
i in aa— ED
=f_(li1§oosca)2~ |r(l-—cgcss o)t Slf(llft_ciff;a ) 001]

(43)
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The maximum value of o occurs when the right hand side of equation (43) be-
comes minimum. As seen it is a function of « only. Therefore trom the condition,

SLA ) e e 2

l—cos

05—

0.286

150
X
a
N SN N S N N SN R SN SR NN T S B
552 10 15 20
%

Fig.-22. Design graph of side slope of embankment—relationship
between parameters %/e and g/c, (by 8. Odenstad).
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the following expression is obtained,

i=235ina—-a(1+25casa) ) @—1—2 1 2 ) (44)
€a {(1—cos «@)? o sinax 1—cosqa

By calculating the value of « for any given combination of D, g, % and ¢, from

Fig.-23. Graph showing geometry of the slip circle with change
of parameter gfcy (by S. Odenstad).
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equation (44), and subsituting it into equation (43), the maximum value of & is
obtained corresponding to these values of independent variables. The results of
repeating these calculations are shown on Fig. 22, where the parameter kfs is
plotted against the parameter gfc, for various values of % D,/c;. And the para-
meters kl/c, and D/l which specify the geometry of the critical slip circle are
plotted against the parameter g/e; on Fig. 23.

If the load ¢ is increased for a given combination of ¢, 2 and D,, the slope
of the side slope must become smaller for limiting equilibrium to be maintained,
i. e. klo becomes larger, and finally the position of the slip circle coincides with
the toe of the side slope. Beyond this state the further increment of load ¢ must
be applied over the whole range of the circle to maintain equilibrium. Therefore
no further increase in the disturbing moment is permissible, hence no more change
in the slope of the side slope.

On the other hand if the depth of the stratum becomes larger, the slip circle
corresponding to the critical equilibrium does not touch the bottom of the stratum.
This situation is also shown in Fig. 22, which is represented by the envelope of
the curves for each parameter k2Difc,. When =0, kfe tends to 1.%

Odenstead also examined the possibility that a plane slip surface might be
more critical than a slip circle. The equilif)rium of the soil mass for the entire
range of side slope dimension was studied for the condition of horizontal sliding
by the ¢=0 method.

Lp
Co %
1l C A
cuD t l JG“'D
J'F TA D
D B
L +KkD T

Fig.-24. Sitnation considered in the analysis of plane slip surface
(by S. Odenstad).

As shown in Fig. 24 the forces considered are the active earth pressure .J,,

v can be expressed as ¢/x in terms of the analysis described in section 2. If the general
expression of %/F is used instead of 2,
kleF=1, o=k/F=qfx x=qF/k
This expression is identical with equation (23).
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the passive earth pressure Jp and the shearing resistance 7 along the bottom of
the soil mass. These three forces are expressed as;

Ji=qD~2v % (cot-LkD) D

_ : 45
Jp=2*/ 2 Cu+%k.D)D ( )
T=(cot+4D)Lp
From the condition that J,=.Jz+T, we have for equ111br1um
—_ 1 kD
ELp q/cu—4~/2 (l—l- o C_o) D ]
e kD ’ ‘o (46)
0 1+_ﬁ__
Co
2 [(kLp .. s
Putting aD{ =0, for minimum value of Ly, the depth D; of the most critical

slip surface is written as

f‘—\/?,‘/“ . _D_l (47>

The corresponding minimum width of the side slope depends on the depth Dy.
From equations (46) and (47), the minimum width is. obtained from

¥—2~/ (\/OJQ 4 3-1 (48)

o

This express1on for Lp is valid if the depth of the stratum [); is smaller than
Dy. If D;>DJ, the necessary width Lp is written by equation (46)

(49)

. Co
In Fig. 22 the shaded area represents the range in which the plane slip surface
is more critical than the slip circle. Therefore the relation between k/o and gfcg
is valid outside the shaded area.
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List of symbols

A, B: constants depending on value of HJI

Ay : pore pressure coefficient at failure

& & half width of footing

¢’ : cohesion intercept in terms of effective stress
< : average shear strength

ce : undrained strength at ground surface

¢y : undrained strength

D depth of slip circle below ground surface
D, thickness of soil stratum
D, critical depth for plane slip surface
F : factor of safety
H Co/k
Ja active earth pressure
Jp @ passive earth pressure
K : principal stress ratio
k : rate of change of ¢, with depth
L : width of footing
Lp horizontal length of side slope
I : hailf length of chord of slip circle
m : Hb
M, + disturbing moment
M, : restoring moment
N, bearing capacity factor
7 iz
P consolidation pressure, intensity of uniform load on footing
q intensity of embankment load
Guie, : ultimate bearing capacity
R radius of slip circle
T . sghearing resistance along bottom of soil mass
t :ovfb
% : distance between centre of slip circle and embankment shoulder
w weight of soil mass
horizontal length of slope, horizontal distance
distance between slope toe and centre of slip circle, distance between edge of
footing and centre of slip circle
depth below ground surface
: half of sector angle of slip circle
: Hix
: angle measured from vertical line
angle of shearing resistance in terms of total stress
angle of shearing resistance in terms of effective stress
inclination of side slope
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