潜湾空港技術研究所 資料

TECHNICAL NOTE

OF

THE PORT AND AIRPORT RESEARCH INSTITUTE

No.1321 June 2016

海面処分場における杭基礎の適用性

-未処理廃棄物地盤における打設実験と杭周面透水試験-

渡部	要一
水谷	崇亮
金子	崇
増門	孝一

国立研究開発法人 海上・港湾・航空技術研究所

National Institute of Maritime, Port and Aviation Technology, Japan 目

次

1. はじめに 4 2. 杭打設の条件設定 4 2.1 試験杭1 6 2.2 試験杭2 6 2.3 試験杭3 6 2.4 試験杭4 6 2.5 試験杭5 6 3. 杭打設の施工状況 6 3.1 試験杭1 6 3.2 試験杭2 6 3.3 試験杭3 6 3.4 試験杭4 7 3.5 試験杭5 7 4. 杭周面の透水試験 7 5. まとめ 9 謝辞 9 参考文献 9 付録-1 杭打設実験の詳細図面 11 付録-2 試験杭施工状況の記録 14 (1) 試験杭1 14 (2) 試験杭3 19 (4) 試験杭4 19 (4) 試験杭4 19 (4) 試験杭4 19 (4) 試験杭4 21 (5) 試験杭4 21	要 旨	3
2. 杭打設の条件設定 4 2.1 試験杭1 6 2.2 試験杭2 6 2.3 試験杭3 6 2.4 試験杭4 6 2.5 試験杭5 6 3. 杭打設の施工状況 6 3. 杭打設の施工状況 6 3.1 試験杭1 6 3.2 試験杭2 6 3.3 試験杭3 6 3.4 試験杭4 7 3.5 試験杭5 7 4. 杭周面の透水試験 7 5. まとめ 9 謝辞 9 参考文献 9 付録-1 杭打設実験の詳細図面 11 付録-2 試験杭施工状況の記録 14 (1) 試験杭1 14 (2) 試験杭3 19 (4) 試験杭4 21 (5) 試験杭5 21	1. はじめに	4
2.1 試験杭1 6 2.2 試験杭2 6 2.3 試験杭3 6 2.4 試験杭4 6 2.5 試験杭5 6 3. 杭打設の施工状況 6 3. 礼打設の施工状況 6 3. 礼試験杭1 6 3.2 試験杭2 6 3.3 試験杭3 6 3.4 試験杭4 7 3.5 試験杭5 7 4. 杭周面の透水試験 7 5. まとめ 9 謝辞 9 参考文献 9 付録-1 杭打設実験の詳細図面 11 付録-2 試験杭5 14 (1) 試験杭1 14 (2) 試験杭2 17 (3) 試験杭3 19 (4) 試験杭4 19 (5) 試験杭5 14 (5) 試験杭5 24	2. 杭打設の条件設定	4
2.2 試験杭2 6 2.3 試験杭3 6 2.4 試験杭4 6 2.5 試験杭5 6 3. 杭打設の施工状況 6 3. 杭打設の施工状況 6 3.1 試験杭1 6 3.2 試験杭2 6 3.3 試験杭3 6 3.4 試験杭4 7 3.5 試験杭5 7 4. 杭周面の透水試験 7 5. まとめ 9 謝辞 9 参考文献 9 付録-1 杭打設実験の詳細図面 11 付録-2 試験杭応工状況の記録 14 (1) 試験杭1 14 (2) 試験杭2 17 (3) 試験杭3 19 (4) 試験杭4 21 (5) 試験杭5 24	2.1 試験杭1	6
2.3 試験杭3 6 2.4 試験杭4 6 2.5 試験杭5 6 3. 杭打設の施工状況 6 3.1 試験杭1 6 3.2 試験杭2 6 3.3 試験杭3 6 3.4 試験杭4 7 3.5 試験杭5 7 4. 杭周面の透水試験 7 5. まとめ 9 謝辞 9 参考文献 9 樹辞 9 付録-1 杭打設実験の詳細図面 11 付錄-2 試験杭施工状況の記録 14 (1) 試験杭1 14 (2) 試験杭5 17 (3) 試験杭3 19 (4) 試験杭4 21 (5) 試験杭5 21	2.2 試験杭2	6
2.4 試験杭4 6 2.5 試験杭5 6 3. 杭打設の施工状況 6 3.1 試験杭1 6 3.2 試験杭2 6 3.3 試験杭3 6 3.4 試験杭4 7 3.5 試験杭5 7 4. 杭周面の透水試験 7 5. まとめ 9 謝辞 9 参考文献 9 付録-1 杭打設実験の詳細図面 11 付録-2 試験杭施工状況の記録 14 (1) 試験杭1 14 (2) 試験杭5 14 (4) 試験杭1 19 (4) 試験杭4 21 (5) 試験杭5 21	2.3 試験杭3	6
2.5 試験杭5 6 3. 杭打設の施工状況 6 3.1 試験杭1 6 3.2 試験杭2 6 3.3 試験杭3 6 3.4 試験杭4 7 3.5 試験杭5 7 4. 杭周面の透水試験 7 5. まとめ 9 謝辞 9 参考文献 9 付録-1 杭打設実験の詳細図面 11 付録-2 試験杭施工状況の記録 14 (1) 試験杭1 14 (2) 試験杭3 19 (4) 試験杭4 21 (5) 試験杭5 21	2.4 試験杭4 ······	6
3. 杭打設の施工状況 6 3.1 試験杭1 6 3.2 試験杭2 6 3.3 試験杭3 6 3.4 試験杭4 7 3.5 試験杭5 7 4. 杭周面の透水試験 7 5. まとめ 9 謝辞 9 参考文献 9 付録-1 杭打設実験の詳細図面 11 付録-2 試験杭施工状況の記録 14 (1) 試験杭1 14 (2) 試験杭2 17 (3) 試験杭3 19 (4) 試験杭4 21 (5) 對於於4 21	2.5 試験杭5 ······	6
3.1 試験杭1 6 3.2 試験杭2 6 3.3 試験杭3 6 3.4 試験杭4 7 3.5 試験杭5 7 4. 杭周面の透水試験 7 5. まとめ 9 謝辞 9 参考文献 9 付録-1 杭打設実験の詳細図面 11 付録-2 試験杭施工状況の記録 14 (1) 試験杭1 14 (2) 試験杭2 17 (3) 試験杭3 19 (4) 試験杭4 21 (5) 試験杭5 21	3. 杭打設の施工状況	6
3.2 試験杭2 6 3.3 試験杭3 6 3.4 試験杭4 7 3.5 試験杭5 7 4. 杭周面の透水試験 7 5. まとめ 9 謝辞 9 参考文献 9 付録-1 杭打設実験の詳細図面 11 付録-2 試験杭施工状況の記録 14 (1) 試験杭1 14 (2) 試験杭2 17 (3) 試験杭3 19 (4) 試験杭4 21 (5) 試験杭5 24	3.1 試験杭1	6
3.3 試験杭3 6 3.4 試験杭4 7 3.5 試験杭5 7 4. 杭周面の透水試験 7 5. まとめ 9 謝辞 9 参考文献 9 付録-1 杭打設実験の詳細図面 11 付録-2 試験杭施工状況の記録 14 (1) 試験杭1 14 (2) 試験杭2 17 (3) 試験杭3 19 (4) 試験杭4 21 (5) 試験杭5 24	3.2 試験杭2	6
3.4 試験杭4 7 3.5 試験杭5 7 4. 杭周面の透水試験 7 5. まとめ 9 謝辞 9 参考文献 9 付録-1 杭打設実験の詳細図面 11 付録-2 試験杭施工状況の記録 14 (1) 試験杭1 14 (2) 試験杭2 17 (3) 試験杭3 19 (4) 試験杭4 21 (5) 試除抗5 21	3.3 試験杭3	6
3.5 試験杭5 7 4. 杭周面の透水試験 7 5. まとめ 9 謝辞 9 参考文献 9 付録-1 杭打設実験の詳細図面 11 付録-2 試験杭施工状況の記録 14 (1) 試験杭1 14 (2) 試験杭2 17 (3) 試験杭3 19 (4) 試験杭4 21 (5) 試験杭5 24	3.4 試験杭 4 ······	7
4. 杭周面の透水試験 7 5. まとめ 9 謝辞 9 参考文献 9 付録-1 杭打設実験の詳細図面 11 付録-2 試験杭施工状況の記録 14 (1) 試験杭1 14 (2) 試験杭2 17 (3) 試験杭3 19 (4) 試験杭4 21 (5) 試験杭5 24	3.5 試験杭5	7
5. まとめ 9 謝辞 9 参考文献 9 付録-1 杭打設実験の詳細図面 11 付録-2 試験杭施工状況の記録 14 (1) 試験杭1 14 (2) 試験杭2 17 (3) 試験杭3 19 (4) 試験杭4 21 (5) 試除抗5 24	4. 杭周面の透水試験	7
謝辞 9 参考文献 9 付録-1 杭打設実験の詳細図面 11 付録-2 試験杭施工状況の記録 14 (1)試験杭1 14 (2)試験杭2 17 (3)試験杭3 19 (4)試験杭4 21	5. まとめ	9
参考文献 9 付録-1 杭打設実験の詳細図面 11 付録-2 試験杭施工状況の記録 14 (1)試験杭1 14 (2)試験杭2 17 (3)試験杭3 19 (4)試験杭4 21 (5)試験杭5 24	謝辞	9
付録-1 杭打設実験の詳細図面 11 付録-2 試験杭施工状況の記録 14 (1) 試験杭1 14 (2) 試験杭2 17 (3) 試験杭3 19 (4) 試験杭4 21 (5) 試験杭5 24	参考文献	9
付録-2 試験杭施工状況の記録 14 (1) 試験杭1 14 (2) 試験杭2 17 (3) 試験杭3 19 (4) 試験杭4 21 (5) 試験杭5 24	付録−1 杭打設実験の詳細図面	11
(1) 試験杭1 14 (2) 試験杭2 17 (3) 試験杭3 19 (4) 試験杭4 21 (5) 試験杭5 24	付録−2 試験杭施工状況の記録	14
(2) 試験杭2 17 (3) 試験杭3 19 (4) 試験杭4 21 (5) 試験杭5 24	(1) 試験杭1	14
(3) 試験杭3 19 (4) 試験杭4 21 (5) 試験杭5 24	(2) 試験杭2	17
 (4) 試験杭4	(3) 試験杭3	19
(5) 試除計5 24	(4) 試験杭4	21
(5) 品质为1.5	(5) 試験杭5 2	24
付録-3 杭先の水中カメラ観察	付録−3 杭先の水中カメラ観察	27
付録-4 施工時の水位観測	付録−4 施工時の水位観測	30
付録-5 遮水層粘土の圧密・透水・変形特性	付録-5 遮水層粘土の圧密・透水・変形特性	32

Applicability of piled foundation at confined disposal facilities in coastal area – in situ demonstration for pile-driving and impermeable performance at untreated wastes ground–

Yoichi WATABE*¹ Takaaki MIZUTANI*² Takashi KANEKO*³ Koichi MASUKADO*⁴

Synopsis

Locations of confined waste disposal facilities in coastal area generally have a great potential in land use for logistics, factories, commercial facilities, leisure facilities, and so on; however, most of them have not effectively used, because leakage of contaminated groundwater is concerned when piles are driven through the soft clay layer which takes a role as hydraulic barrier. In this study, applicability of piled foundations to the confined waste disposal facilities was examined through a series of field tests to demonstrate the performance of impermeability around piles in the clay layer (hydraulic barrier) when the piles are driven under a high level of construction management and quality control. The site conducted the field tests was reclaimed since the late 1970s with non-incineration wastes such as raw trash, plastic, vinyl, metal, concrete fragments. From the field tests, the following conclusions were obtained. When a steel pipe pile is driven by casing method (using hammer grab) or inner excavation method (using both auger and hammer grab), the tip of the pile didn't bring a waste into the clay layer and high-performance impermeability around the pile was confirmed. Note here that a hammer grab was necessary to remove the wastes/soils, particularly concrete fragments, from inside of the casing/pile. When a steel pipe pile is driven by hydraulic hammer, the tip of the pile brought a large amount of wastes into the clay layer, even though a hammer grab was used to remove the wastes from inside of the pile, resulting in low-performance impermeability around the pile. When a PHC pile, which has a thick pipe wall and a small inner diameter, was driven by inner excavation method (using auger), pile driving was terminated because inside of the pile was completely clogged by fine soils clinging to the auger.

Key words: Confined disposal facility in coastal area, pile, clay, hydraulic barrier

^{*1} Director of Geotechnical Engineering Department

^{*2} Head, Foundation Group

^{*3} Researcher, Soil Mechanics and Geo-environmental Engineering Group

^{*4} Tokyo Port Office, Kanto Regional Development Bureau, Ministry of Land, Infrastructure, Transport and Tourism Port and Airport Research Institute, 3-1-1 Nagase, Yokosuka, 239-0826 Japan

Phone : +81-46-844-5053 Fax : +81-46-844-4577 e-mail: watabe@ipc.pari.go.jp

海面処分場における杭基礎の適用性

- 未処理廃棄物地盤における打設実験と杭周面透水試験-

渡部要一¹⁾·水谷崇亮²⁾·金子 崇³⁾·增門孝一⁴⁾

要 旨

海面処分場は、廃棄物を排出する大都市の港湾内に設置されている場合が多く、物流用地、工場 用地、レジャー施設用地等として利用価値の高い場所に位置しているにもかかわらず、実際には、 土地利用に伴う遮水工への影響が懸念され、土地利用がほとんど行われていない実情がある.本研 究では、適切な施工方法と施工管理・品質管理によって、杭周面にける遮水性が保持されることを 実証し、海面処分場の土地利用(跡地利用のみならず、供用中の暫定利用を含む)の促進を図るた めの基本技術を確立することを目的に、実際の処分場において各種工法により杭の打設実験ならび に杭周面の透水試験を行い、処分場における杭基礎の適用性について検討した。対象とした処分場 は1970年代後半から埋立てが開始されており、杭打設実験実施位置周辺には、生ゴミ、プラスチッ ク、ビニール、金属、コンクリートガラなど、焼却処理されていない雑多な種類の廃棄物が混在し て埋め立てられていた。一連の実験結果から、以下の知見が得られた。ケーシング併用による二重 管方式で打設した鋼管杭と中掘工法で打設した鋼管杭では、杭先に絡まった廃棄物の連れ込みはほ とんど見られず、かつ、高い遮水性が得られた、油圧ハンマによる打撃工法で打設した鋼管杭では、 漏水があることを示唆する試験結果が得られ、遮水工に関する環境省令を満足しいなくなる可能性 が高いと判断された. 摩擦低減のための膨張性の塗布剤を使用した鋼管杭では, 塗布材を使用しな い鋼管杭よりもやや良好な遮水性が得られることが示唆された.肉厚であるが故に内径が小さく, 内部をハンマグラブで掘削・除去できない PHC 杭は、打設中に先端が閉塞し、杭の打設を途中で終 了せざるを得なかった.

キーワード:海面処分場,杭,粘土層,遮水

〒239-0826 横須賀市長瀬3-1-1 国立研究開発法人 海上・港湾・航空技術研究所 港湾空港技術研究所 電話:046-844-5053 Fax:046-844-4577 e-mail:watabe@ipc.pari.go.jp

¹⁾ 地盤研究領域長(兼 土質研究グループ長)

²⁾ 地盤研究領域基礎工研究グループ長

³⁾ 地盤研究領域土質研究グループ研究官

⁴⁾ 国土交通省関東地方整備局東京港湾事務所

1. はじめに

海面処分場は大都市の海面を埋め立てて造成されるこ とから、大都市の臨海部の土地として高度利用すること ができれば、その利用価値はきわめて高くなる. 立地は 良いのに埋立てが終わった廃棄物処分場で土地利用が進 まない理由の一つに、構造物基礎に用いられる杭基礎の 技術が確立されていないことが挙げられる. 大都市の処 分場は湾内に位置することが多く、軟弱な海成粘土層を 底面遮水層としているため、立体的な建造物を建設して 土地を高度利用するためには杭基礎が必用となる. しか しこの場合、杭基礎が軟弱層を貫通することから、保有 水の漏水が懸念され、実際には高度利用は進んでいない のが実情である.

既往の研究成果¹⁾によると、小規模な実験室レベルの 研究において、廃棄物を模した砂の層を貫通して下部の 粘土層まで杭を打設した場合、廃棄物の連れ込みがあり 得るが、杭先端形状や打設方法の工夫によりこれを防ぐ ことができること²⁾、遮水性に対する影響はほとんどな いことが確認されている^{2), 3), 4), 5)}.また、杭と粘土との境 界面での透水性に基づいて、遮水性が確保されることが 実験的に確かめられている^{6), 7), 8), 9), 10, 11).}

実地盤の工事実績を見てみると、遮水工となるケーシ ングに囲まれ、かつ、廃棄物が取り除かれた、いわば「処 分場ではない空間」を創出してから、そこに本杭を打設 する三重管工法の例(図-1)がある程度である.確実な 施工を実現できることから、東京ゲートブリッジのよう な大規模工事において三重管工法が採用されたこと¹²⁾に は合理的な理由があると言えるが、きわめて高価である が故に、比較的小規模な工事においては、もっと実用的 な杭基礎の施工技術・品質管理技術が待たれている状況 にある.

本研究では、東京湾にある実際の海面処分場(中央防 波堤外側処分場、図-2)における現地実証実験として、 杭基礎打設による遮水層への影響を杭周面透水試験によ って評価し、杭打設実験によって得られた施工面での知 見、ならびに、杭周面の透水実験から得られた知見を取 りまとめた.当該処分場は1970年代後半に埋立てが開始 されており、杭打設実験実施位置周辺には、生ゴミ、プ ラスチック、ビニール、金属、コンクリートガラなど、 焼却処理されていない雑多な種類の廃棄物が混在して埋 め立てられている.焼却灰を中心に埋め立てている近年 の処分場に比べ、杭の打設が困難なものになると考えら れるが、最も施工が困難な部類に入ると予想される当該 処分場で実施する実験は、処分場における杭基礎の適用 性を判断する上で安全側の判断が得られるはずである.

2. 杭打設の条件設定

実際に構造物を構築する際には、杭が遮水層を貫通し て支持層まで達することが想定されるが、運用中の処分 場での試験施工であるため、遮水層を貫通して杭を打設 する許可を得ることは難しい.また、遮水層を貫通させ てしまうと、その遮水性を簡易に調べる手段がなく、そ の評価が難しくなってしまう.一方、杭が遮水層の途中

図-1 東京ゲートブリッジにおける三重管方式の杭の概念 図

図-2 東京湾中央防波堤外側処分場で実施した杭打設実験の実施位置図(Google earthより)

で止まっている場合,図-3に概念図を示すように,杭内 部を排土して杭内の水位を周囲より低下させることによ

(a)

図-3 透水試験の概念図

り透水試験を実施して、杭と遮水層粘土との付着による 界面の遮水性を容易に評価できる.

そこで、本研究での試験杭は遮水層を貫通させず、遮 水層への根入れ長を4.4m(一部の試験杭では3.9m)とし た. これは、事前の地盤調査結果に基づき、杭先端から 遮水層下端まで5.5m以上を確保することを考えた条件 設定である(付録-1を参照). 遮水層の透水係数は 2×10⁻⁷cm/s以下であり,構造を規定する基準類^{13),14)}に照 らして, 試験杭の打設が処分場の遮水性に与える影響が ないようにした. すなわち, 透水係数が2×10⁻⁵cm/s以下 の地層が5m以上,あるいは浸透時間で規定される遮水性 能がこれと同等以上の地層が十分に確保できるように, さらに、地層に多少の不陸(ここでは0.5mを想定)があ っても大丈夫なように設定したもので,透水係数に2オー

表-1 試験杭と打設および掘削方法

	試験杭1	試験杭2	試験杭3	試験杭4	試験杭5
打設工法	ケーシング併用 中掘圧入工法	中掘圧入工法	中掘圧入工法	ハンマ打撃工法	ハンマ打撃工法
杭の種類	鋼管杭 800mm	鋼管杭 1000mm	PHC (SC) 杭 800mm	鋼管杭 1000mm	鋼管杭 1000mm 塗布剤塗布 (杭先端から8m内外 両面)
廃棄物の 掘削方法	全周回転掘削 ケーシング 1200mm ハンマーグラブ	中掘り掘削 ハンマーグラブ	中掘り オーガ掘削	ハンマーグラブ	ハンマーグラブ
粘土の 掘削方法	オーガ掘削& ハンマーグラブ	オーガ掘削& ハンマーグラブ	オーガ掘削	ハンマーグラブ	ハンマーグラブ

※試験杭4,5は内側に先端補強バンドを設置する

図-4 試験杭の施工条件.実際の施工位置に対応して描いているため,試験杭の順番に注意

図-5 オーガースクリュによる中掘りとハンマーグラブ による土砂排出の概念図

ダーの余裕があることから,かなり安全側の設定になっている.

試験杭の施工条件は以下に示す5種類(試験杭1~試験 杭5)とした(**表-1**, **図-4**). オーガースクリュによる掘 削とハンマーグラブによる掘削は, **図-5**のような概念図 で説明できる. 杭と粘土との付着が良くなるように, 杭 先端外側には先端補強バンドを取り付けないことにした. また, 中掘工法で施工する杭については, オーガースク リュを使った掘削の障害にならないように, 内側の先端 補強バンドも取り付けないこととした. ただし, ハンマ 打撃工法で施工する杭については, 杭の先端を破損しな いように先端補強バンドが必要であることから, 遮水性 能に影響しないように内側に補強バンドを溶接すること にした.

2.1 試験杭1

直径1200mmのケーシングを全旋回させながらハンマ ーグラブで土砂を掘削・排出して,遮水層への根入れ長 1mまで打設した後,ケーシング内部に直径800mmの鋼管 杭(先端補強バンドなし)を中掘圧入工法で打設した. 杭を粘土層に根入れ長4.4m(ケーシングの根入れ長1.0m を差し引くと実質3.4m)まで打設した後,杭とケーシン グの間に砂を充填しながらケーシングを引き抜き,杭内 部の水位を下げて杭周面の透水試験を実施した.

2.2 試験杭2

直径1000mmの鋼管杭(先端補強バンドなし)を中掘 圧入工法で根入れ4.4mまで打設し,杭周面の透水試験を 実施した.

2.3 試験杭3

直径800mmのPHC杭を中掘圧入工法で打設したが,掘 進不能となり打設を断念した.

2.4 試験杭4

直径1000mmの鋼管杭(内側に先端補強バンド)を油 圧ハンマによる打撃工法で打設した.杭内部の廃棄物を 除去後,粘土層への根入れ4.4m(当該地点は粘土層が薄 いと判断されたため実際は3.9m)分も油圧ハンマにより 打設し,杭周面の透水試験を実施した.

2.5 試験杭5

先端から8mについて内外両面に摩擦低減のための塗布 剤を塗った直径1000mmの鋼管杭(内側に先端補強バン ド)を油圧ハンマによる打撃工法で打設した.杭内部の 廃棄物を除去後,粘土層への根入れ4.4m分も油圧ハンマ により打設し,杭周面の透水試験を実施した.

抗打設の施工状況

各試験杭の施工状況を以下に取りまとめた(詳細は付 録-2を参照).

3.1 試験杭1

ケーシング先端に付いている掘削用のビットによって、 コンクリートガラなどが介在した地盤であっても、回転 圧入によって掘進可能であった.このことはケーシング を併用せずに打設した他の試験杭の先端がコンクリート ガラに当たって施工が大変であったことと対照的である. カメラ観察の結果、ハンマーグラブによる掘削で廃棄物 はほぼ除去できていて(ただし、微細なプラスチック片 がわずかに落ちていた)、ケーシング先端に大きなゴミ (梱包用プラスチックバンドやプラスチック袋など)は 連れ込まれていないことが確認できた(**付録-3**を参照).

3.2 試験杭2

中掘用のオーガースクリュでは、コンクリートガラな どが介在した地盤に当たり掘進不能となったり、廃棄物 を除去できなかったり、さらには、杭内の水で流されて しまうために砂質土を排出することができなかったりし た.また、粘土であっても排出する効率が悪く、先端が 閉塞してしまうこともあった.このため、ハンマーグラ ブを併用する掘削に切り替えた.カメラ観察の結果、ハ ンマーグラブによる掘削で廃棄物はほぼ除去できていた が、杭先端に梱包用プラスチックバンドと思われるもの が1本だけ確認された(**付録-3**を参照).

3.3 試験杭3

オーガを杭先端より約2.5m先行させて掘進したが、約

7.0m打設後掘進不能となり, 杭打ちを断念した. コンク リート杭は断面積が大きいため押込み抵抗力が大きいこ と,内径が小さいためにオーガースクリュが土砂と廃棄 物で絡み閉塞することに加え,内径が小さいことはハン マーグラブを使えず,結果として障害物を除去できない ことから,掘進不能と判断した.

3.4 試験杭4

杭先が約A.P. -8.0mより深くなるとコンクリートガラ の影響により,打込みが困難な状況となったが,打撃を 与え続けることにより,なんとか所定の深さまで打設で きた.杭内部に入っている廃棄物はハンマーグラブを用 いて排出した(写真-1,写真-2).しかしながら,杭内部 をカメラ観察した結果,多数の廃棄物片が杭底に残って いることが確認された(付録-3を参照).

3.5 試験杭5

杭打設時の状況は試験杭4と同様の結果であったが,後 述するように,杭周面の遮水性は試験杭4よりも改善され ており,塗布材の効果が確認された.

4. 杭周面の透水試験

杭周面の遮水性に関する検討をするために、杭内部の 土砂を完全に取り除いた状態にして、杭内部の水位を周 辺の水位より約2m低く設定して透水試験を実施した. 試 験開始から5週間は水位差2.0m, それ以降は水位差2.5m と設定したが、杭内部の水位上昇によって設定値よりも 小さくなったり、あるいは、降雨(特に2015年9月8~10 の豪雨)で周辺地下水位が上昇したことによって設定値 よりも大きくなったりしている.計測項目は、杭周辺の 地下水位すなわち廃棄物層の保有水の水位と杭内部の水 位の時間変化である.稼働中の廃棄物処分場内であるこ とから, 廃棄物層の保有水位は管理されていて, 所定の 水位を越えるとポンプで排水が行われるようになってい るが、降雨が多いと一時的に保有水位が上昇する傾向が 見られた.連続的な水位計測となるように自記録式水圧 計をケーブルで吊り下げて設置し、定期的にデータを回 収するとともに、データがドリフトしていないかを確認 するため、ロープ式水位計によって手計測も実施した.

計測された水位の時間変化を図-6にまとめた. 杭の根入れ長L(m),水頭差H(m)の下で時間 Δt (s)の間に水位が Δh (m)上昇するものとし,杭周面の漏水を杭部分にあった地盤の透水に置き換えて,透水係数 $k = (L\Delta h)/(H\Delta t)$ を求めた(図-3bを参照).

写真-1 ハンマーグラブによる廃棄物の排出

写真-2 排出された廃棄物の例

$$k = \frac{L}{H} \cdot \frac{\Delta h}{\Delta t} = \frac{1}{i} \cdot \frac{\Delta h}{\Delta t} \tag{1}$$

ここで, iは動水勾配である.

杭の根入れ長4.4m,水頭差1.5mとした場合,基準省令 に書かれた透水係数の上限値1.0×10⁻⁵ cm/sに相当する水 位上昇は一日あたり0.00295mである.一日あたり 0.00295mの水位上昇は数日間経てばロープ式水位計に よる手計測でも十分に測定可能な値であり,施工時の遮 水性の確認方法として,同様の透水試験は有効であると いえる.換言すれば,1日で水位上昇が明瞭に確認できる ような状況にあった場合,遮水性が基準を満たさないと 判断できる(付録-4を参照).

試験杭2では,水位計測開始から数ヶ月間の水位変化は ほぼゼロであり,蒸発等のためか試験杭2では水位がわず かに低下する傾向すら読み取れた.全体としてはこのよ うな傾向にあるものの,計測開始から半年ほど過ぎた夏 期には,一時的に水位が上昇する傾向が見られた.電気

図-6 杭内水位低下による透水試験結果(試験杭1,2,4,5の比較)

計測でも手計測でも同様に見られたことから,実際に水 位が上昇したと考えられる.その理由については明らか ではないが,夏場に水温が上昇したために体積が膨張し た可能性(水の熱膨張率は2.1×10⁻⁴K⁻¹)のほか,ちょ うどその時期(6~10月)に実験施設近傍において約2m の盛土工事があったために,粘土地盤の沈下にともなっ てネガティブフリクションによって杭が連れ込まれ,相 対的に杭が若干貫入されたために杭内部に粘土が入り込 み,あるいは,杭底の粘土から圧密による排水があり, その分だけ水位が上昇した可能性が考えられる.このよ うに,試験杭2については,透水係数を評価することがで きないほどに透水係数が小さいことを確認できた.遮水 層の透水係数が2.0×10⁻⁷m/s程度であったことから考え ると,遮水性が十分に発揮されていれば,蒸発による水 位低下が浸透による水位上昇に勝ることになる.

試験杭1では,若干の水位上昇が見られたものの十分に 基準省令を満足する遮水性が得られている.しかしなが ら,遮水層の透水係数が2.0×10⁻⁷ m/s程度であったこと からすると,試験杭1では遮水性がやや低下している可能 性も指摘できる.試験杭2で見られたように蒸発分も加味 すれば,遮水性はもっと低下している可能性すらある. 遮水層への根入れ部分の上部1mでケーシングを引き抜 いて周囲を砂に置き換えたため,実質的な根入れ長が試 験杭2よりも1m短かったことが原因の一つに挙げられる. 加えて,ケーシング内が排土された状態で杭を打設した ため,杭が動揺してケーシング底部で杭から粘土が剥離 し,ケーシング引き抜きの際に投入した砂が剥離した空 間内に入り込んで水みちになった可能性も考えられる. なお,試験杭2で透水係数を評価できないほどに遮水性が 良いことを考えると,試験杭1でも根入れがもっとあれば 試験杭2と同様に良好な遮水性が得られることを期待で きる.

試験杭4は水位上昇が速く,基準省令に対応する透水係 数1.0×10⁻⁵ m/s相当よりも透水係数が大きかったことか ら,遮水性が不十分であることがわかる.遮水層上面の 不陸により,試験杭4では遮水層への根入れ長が他の杭よ りも0.5mほど短い3.9mであったが,その影響では説明で きないほどに低い遮水性しか得られなかった. 試験杭5での計測結果は,基準省令と照らし合わせれば, それをぎりぎり満足する遮水性能を有していると判断さ れる.なお,遮水性が良好な試験杭2において,杭内部の 水が蒸発する影響が見られたことを考慮すると,基準省 令を満足しなくなる恐れもある.

試験杭4や試験杭5における遮水性能の低下は,杭の周 面と遮水層の粘土との付着が不十分であることが原因で あり,梱包用プラスチックバンドなどのひも状のものや プラスチック製やビニル製の袋などの廃棄物が杭先端に 引っかかって連れ込まれたことなどに起因していると考 えられる.ただし,試験杭5は,塗布剤により廃棄物の連 れ込み防止を図ったために,試験杭4に比べてやや良好な 試験結果が得られた可能性がある.また,塗布剤の膨張 が,杭と周面地盤との境界面での遮水性を改善している ことが示唆される結果でもある.一方で,杭先端で実施 したカメラ観察では,試験杭5も試験杭4と同様に杭先に 多くの廃棄物が連れ込まれている様子が確認された(付 録-3を参照)ことから,ここで得られた両者の遮水性の 違いは,廃棄物の種類の違いなど評価が難しい要因の影 響を受けた結果である可能性もある.

5. まとめ

ケーシングにより二重管方式で打設した試験杭1と中 掘工法で打設した試験杭2では,杭先に絡まった廃棄物の 連れ込みは見られず,いずれも基準省令に示された遮水 性能を満足する遮水性能が得られた.特に試験杭2の透水 試験では,漏水量が少なすぎて透水係数が評価できない ほどの高い遮水性が得られた.一方,油圧ハンマによる 打撃工法で打設した試験杭4と試験杭5では,杭先端のゴ ミの連れ込み量が多く,結果として漏水量も多くなった. なお,摩擦低減のための膨張性の塗布剤を使用した試験 杭5では,塗布材を使用しない試験杭4よりも良好な遮水 性が得られた.

これらの打設実験や透水試験の結果から判断すると, 海面廃棄物処分場における杭の打設に関して,以下の知 見が得られた.

試験杭1のように、ケーシングを併用する杭の打設では、ケーシングを遮水層に少し根入れした状態において、ハンマーグラブを用いるなどしてケーシング内部から廃棄物や土砂を排出・底浚いした後、水中カメラでケーシング先端の状態を観察して廃棄物の取り残しがないことを確認する必要がある。この状態で問題がなければ、本杭を打設しても廃棄物の連れ込みはないことは明らかであるが、遮水層の途中

まで杭を打設した状態で、念のため透水試験を実施 して遮水性を確認するなど、施工管理・品質管理が 行われることが望ましい.

- 2) 試験杭2のように、中掘圧入工法での施工については、 適切な施工管理を行えば,海面廃棄物埋立処分場に おいて適用可能であり、十分な遮水性が期待できる. 遮水層にある程度根入れした状態でハンマーグラブ 等を使って排土・底浚いし, 杭内の廃棄物や土砂を きれいに排出した後,水中カメラで杭先端の状況を 観察して廃棄物の取り残しや杭先端での廃棄物の巻 き込みがないことを確認する.また,杭内部の水位 を周辺の水位より下げて透水試験を実施して遮水性 を確認する.このように、廃棄物が連れ込まれてい ないことの確認と, 遮水性の確認の両面からの施工 管理・品質管理がきわめて重要である. なお, 梱包 用プラスチックバンドのような強度のある長い廃棄 物が杭先端に引っかかって連れ込まれた場合、ハン マーグラブではこれを取り除けない可能性があるこ とに留意が必要である.
- 3) 試験杭3のように、内径が小さな杭では、杭内部の廃 棄物や土砂を排出することが難しく、施工が困難で ある。
- 4) 試験杭4と試験杭5のように、油圧ハンマを使った打 撃工法での杭打設は、杭先端での廃棄物の連れ込み が著しく、海面廃棄物処分場での適用は不適と判断 される。

(2016年1月25日受付)

謝辞

本研究を実施するにあたり,国土交通省港湾局,国土 交通省関東地方整備局,東京都港湾局・環境局から多大 なご協力をいただいた.また,実験計画立案では,菊池 喜昭氏(理科大),小田勝也氏(みなと総研),平尾隆行氏 (中電コンサルタント),服部 晃氏(日本触媒),竹本 誠氏(中電コンサルタント)を中心とする研究準備会メ ンバー,杭打設実験の施工では,辻北智志氏(東洋建設) らを中心とする施工関係者から,また,管理型海面処分 場の早期安定化及び利用高度化技術に関する委員会(事 務局:みなと総研)の委員・関係者から多くのアドバイ スをいただいた.関係各位に感謝の意を表します.

参考文献

 菊池喜昭,森脇武夫,勝見 武,平尾隆行,蔦川 徹, 服部 晃,岡本功一,山田耕一,佐々木広輝:管理 型海面廃棄物処分場に打設する基礎杭が底面遮水基 盤に与える影響,港湾空港技術研究所資料, No.1252, 2012.

- 福田賢二郎,上田正樹,杉原広晃,渡部要一:海面 管理型処分場の遮水基盤への基礎杭打設の影響,第 39回地盤工学研究発表会,pp.2267-2268,2004.
- 平尾隆行, 蔦川 徹, 眞田一磨, 森脇武夫, 服部 晃, 岡本功一: 杭基礎打設による海面処分場の底面遮水 工に与える影響(短期的現象)の考察, 第44回地盤 工学研究発表会, pp.1907-1908, 2009.
- 4) 蔦川 徹,森脇武夫,岡本 拓,服部 晃,岡本功一, 渡辺修士,平尾隆行,眞田一磨:杭基礎打設時の表 面処理が海面処分場の底面遮水工に与える影響(短 期的影響),第20回廃棄物資源循環学会研究発表会, pp.403-404,2009,.
- 5) 蔦川 徹,森脇武夫,服部 晃,岡本功一,平尾隆行, 眞田一磨:杭基礎打設による海面処分場の底面遮水 工に与える短期的影響(杭先端部)の考察,第21回 廃棄物資源循環学会研究発表会,pp.483-484,2010.
- 6) 嘉門雅史,勝見 武,濱田 悟,乾 徹:廃棄物埋立 地盤における杭打設が粘土層の遮水性能に及ぼす影 響の評価に関する研究,第39回地盤工学研究発表会, pp.2265-2266,2004.
- 7) 嘉門雅史,濱田 悟,勝見 武,乾 徹,杭打設による粘土層の遮水性能への影響に関する実験的研究,京都大学防災研究所年報,第47号, B-21, pp.133-142,2004.
- 嘉門雅史,勝見 武,乾 徹,濱田 悟:鋼管杭打 設粘土地盤と杭境界面における漏水量とその評価, 材料 別冊,第54巻,第11号,pp.1100-1104,2005.
- 9) 冨士暁士,勝見 武,嘉門雅史,乾 徹: 改良型透水試験装置を用いた鋼管杭-粘土境界面における透水量の評価,第7回環境地盤工学シンポジウム, pp.281-286,2007.
- (10) 菊池喜昭, 橋爪秀夫: 杭周辺地盤の透水性に関する 室内透水試験, 第6回環境地盤工学シンポジウム, pp.217-224, 2005.
- 11) 菊池喜昭, 菅野高弘: 海面廃棄物処分場の遮水基盤 を貫通する杭の施工可能性に関する研究, 地盤工学 会誌, pp.28-29, 2008.
- 片山廣明, 手塚博治, 山下公平: 廃棄物処分場にお ける三重管基礎杭, 橋梁と基礎, pp.43-46, 2008.
- 13)総理府・厚生省令:一般廃棄物の最終処分場及び産業廃棄物の最終処分に係る技術上の基準を定める命令,1998年改正.
- 14) 港湾空間高度化センター:管理型廃棄物埋立護岸設計・施工・管理マニュアル(改訂版),2008.

付録-1 杭打設実験の詳細図面

東京湾中央防波堤外側処分場において実施した杭の打 設実験の断面詳細図を付録図-1.1に、ボーリング調査に よって得られた試料の写真と柱状図をそれぞれ付録写真 -1.1と付録図-1.2に、また、杭打設実験の準備工として施 工したジオテキスタイルを使った砕石盛土の詳細図を付 録図-1.3にそれぞれ示す. 杭は, 下杭, 中杭, 上杭で構 成されており,地層構成を考慮し,杭打設や杭内カメラ 観察の作業性を考慮してそれぞれの長さを設定した. 試 験杭1は本杭打設前にケーシング内をカメラ観察したの で、中杭と上杭に分けず、一本もの(ここでは上杭と称 している)とした. 試験杭3については、下杭と中杭は PHC杭であるが、上杭は透水試験とは関係ないのでSC杭 で準備した(PHC杭が打設不能となったため、結果的に は使わなかった). いずれのいずれの杭も, 打設完了後に 杭頭をA.P.+9.10mで切断して高さを揃えて透水試験を 実施した.一連の現地施工を終え、透水試験を継続して いる現場の状況を付録写真-1.2に示す.

付録写真-1.1 ボーリングコア写真(試験杭1近傍)

付録図-1.2 ボーリング柱状図

付録写真-1.2 透水試験実施中の現地状況

付録-2 試験杭施工状況の記録

(1) 試験杭1

試験杭1の施工記録を付録表-2.1,付録図-2.1にとりま とめた.施工時の状況や判断を以下に項目別に記述する.

(a) 掘削土砂

ハンマーグラブによる杭内部からの掘削土の推移 (A.P. -7m~-11mの範囲)を付録写真-2.1に示す. 廃棄 物層から粘土層に変化していく様子がわかる.

(b) カメラ観察による廃棄物除去の確認

11/8に1回目の水替えを実施し、11/10にカメラ観察を 実施した(付録-3を参照).底面は確認できたが、濁りに より鋼管(ケーシング)を確認できなかった.このとき、 浮泥が沈降する様子が見られたので、鋼管杭と地盤との 境界を確認するためには、浮泥の沈降を待ってそれをポ ンプで吸い上げることが必要であると判断した.そこで、 翌11/11に再度2回目の水替えを行い、浮泥をポンプで除 去した後、再度カメラ観察を実施したところ、ケーシン グと底面の境界を確認することができた.カメラ観察は、 ケーシングの東西南北の4か所において実施した.いずれ もケーシングと地盤の境界において、廃棄物の連れ込み は確認されなかったが、ケーシングの際に数cmのプラス チック片が落下していた(**付録-3**を参照).

(c) 鋼管杭 800mmの建込み

ケーシング掘削後,ケーシングを敷鉄板にプレートを 介して溶接により沈下を防止しており,その内側に打設 する鋼管杭はケーシングに対して沈下防止となるプレー

【試験杭(1)】			
ケーシング掘削	AP -10.00 mまで	全回転型φ1,200mm、ハンマーグラブ	11月7日
	AP -12.03 mまで	全回転型φ1,200mm、ハンマーグラブ 掘削完了	11月8日
水位確認・調整	AP +2.350 m	地下水位 ±1.0m AP.+1.68m	11月8日
1回目水替え工		水槽4槽、ポンプ2	11月8日
杭内廃棄物除去確認		杭内カメラ観察	11月10日
2回目水替え工		水槽4槽、ポンプ2	11月11日
杭内廃棄物除去確認		杭内カメラ観察	11月11日
試料採取	AP -12.03 m	サンプリング(AP12.03~AP12.83)	11月12日
水位確認・調整		地下水位 +1.0m	11月12日
鋼管杭打設 �800mm 打撃工法	AP -13.03 m	鋼管圧入	11月13日
鋼管内掘削	AP -13.03 m	アースオーガ φ700	11月13日
		杭内土砂0.7m あり 透水試験用にグラブで撤去	
試料採取 2深度分実施	AP -13.03 m	サンプリング(AP13.03~AP13.83)	11/14-11/15
		サンプリング(AP14.03~AP14.83)	11月15日
		渡部領域長より 続けて2本採取可能。(11/13)	
水位確認・調整		地下水位 +1.0m	11月15日
鋼管杭打設 �800mm 打撃工法	AP -14.03 m	鋼管圧入	11月15日
鋼管内掘削	AP -14.03 m	アースオーガ φ700	11月15日
	1.41m,0.708m3	杭内土砂1.41m あり 透水試験用にグラブで撤去	
水位確認・調整		地下水位 +1.4m	11月15日
鋼管杭打設 �800mm 打撃工法	AP -15.43 m	鋼管圧入	11月15日
鋼管内掘削	AP -15.43 m	アースオーガ φ700	11月15日
	3.13m,1.573m3	杭内土砂3.13m あり 透水試験用にグラブで撤去	
ケーシング引抜き			11月18日
埋戻し		ケーシングと鋼管の間	11月18日
杭内土砂掘削	AP -15.43 m	φ800 ハンマーグラブ	11月19日
水位確認・調整	AP +2.160 m	地下水位 AP.+1.76m	
水位調整	AP +0.700 m	排水(地下水位 +1.675m)	11月26日
1回目杭内水位観測		水頭差 0.975m	11月26日
水位調整	AP -0.310 mまで	排水(地下水位 +1.660m)	11月27日
2回目杭内水位観測		水頭差 1.97m	11月28日]

付録表-2.1 試験杭1の施工記録のまとめ

付録図-2.1 試験杭1の施工概況

付録写真-2.1 試験杭1からの掘削土. A.P. -7m (左端) からA.P. -11m (右端) までの推移

トを事前に溶接しておいた. 鋼管杭 800mmの下杭と上 杭を継いだ後にこれを建て込むと,自重のみで所定の深 度(貫入量1m×2回,1.4m×1回で設定)まで自沈した.ケ ーシングと鋼管杭の間の埋戻しをケーシング引抜き時に 実施するため,鋼管杭がケーシング内で揺れて遮水層を 乱してしまわないように,鋼管杭には鉄筋によるスペー サを溶接しておいた.

オーガ掘削は,杭先端深度に合わせて1m掘進を2回, 1.4m掘進を1回実施したが,いずれも掘進量に対して約7 割の残土量(高さ)が確認された.この結果,当初計画 していたオーガ掘削では,掘削土が杭内に大量に残るた め,後続して計画した水位観測試験が実施できないこと がわかった.そこで,オーガ掘削後に,ハンマーグラブ で底浚い掘削する計画に変更した.しかし, 800mmの ハンマーグラブはあまり普及しておらず,機材の調達に 時間がかかり,現場への搬入は11/19となった.試験杭1 ではケーシングの1m分の根入れが短く,ボイリングの危 険があったために最終掘削後にのみ水位観測試験を実施 する計画であったので,ハンマーグラブによる杭内掘削 よりも,その後のオーガによる掘進,サンプリング,お よびケーシング引抜きまでの作業を先行させた.

(d) ケーシングの引抜き

杭打設後にケーシングを引き抜く必要があるが,再生 砂により埋戻しを実施した状態で引き抜くと,鋼管杭が とも上がりする可能性が懸念された.一旦とも上がりし てしまうと,杭と周面粘土層との摩擦が切れてしまい, とも上がりを止めることが困難になると予想されること から,以下の手順で施工することにした. ケーシングは2m~6m長のものを継いで深さ22mまで 掘進したので,順次引き抜いて切り取るケーシング分だ け砂で埋め戻した(埋戻しの高さはレッドで計測・管理 した).ケーシングの引き抜きには、ケーシング引抜き専

手順	深度	備考(参考)	1		
【試験杭(2)】			1		
鋼管杭打設 ϕ 1,000mm 中堀工法					
下杭打設完了	AP -2.50 mまで	先端に障害物があり、これ以深打設 不可	11		
	AP -3.50 mまで	ハンマーグラブによる障害物(コンガラ)撤去	11		
	4.1m、3.2m3	ハンマグラブ撤去数量	11		
	AP -6.60 mまで	アース-オーガーのみによる先行削孔	11		
中杭 継杭 打設	AP -8.65 mまで	アースオーガ φ900 掘削深度はAP8.65mまで	11		
		一度、オーガースクリュウ引上げ	11		
水位確認・調整		地下水位 ±1.0m	11		
鋼管杭打設 中掘工法	AP -9.65 mまで	オーガー掘削 無回転引上げ			
		土砂で栓をした状態、先端で負圧の発生のおそれあり。	11		
鋼管杭打設 中堀工法	AP -11.65 mまで	オーガー掘削 正回転引上げ 底に4m以上残る			
	4.3m、3.38m3	ハンマーグラブによる土砂撤去	11,		
水位確認・調整	AP2. 4m>2. 8m	水中ポンプ	11,		
1回目 水替え工		廃棄物層の除去確認のため、濁水から清水に水替え	11,		
杭内廃棄物除去確認		杭内カメラ観察 見えない	11,		
2回目 水替え工		試験杭(1)にならい1日後の水替えを実施	11,		
杭内廃棄物除去確認		杭内カメラ観察	11,		
1回目 試料採取	AP -11.65 m	サンプリング(AP-11.65m~AP-12.45m)	11)		
水位確認・調整		地下水位 +1.0m			
鋼管杭打設 φ1,000mm	AP -12.65 mまで	鋼管中掘圧入	11,		
鋼管内掘削	AP -12.65 mまで	オーガー掘削	11,		
	0.95m,0.745m3	ハンマーグラブによる土砂撤去	11,		
水位調整	AP 0.70 mまで	排水(地下水位 +1.71m)	11,		
1回目杭内水位観測		水頭差 1.01m ~11/16まで	11)		
2回目 試料採取	AP -12.65 m	サンプリング(AP-12.65m~AP-13.45m)	11,		
水位確認・調整		地下水位 +1.0m	11,		
鋼管杭打設 ϕ 1,000mm	AP -13.65 mまで	鋼管中掘圧入	11,		
鋼管内掘削	AP -13.65 mまで	オーガー掘削	11,		
	1.45m,1.14m3	ハンマーグラブによる土砂撤去	11,		
水位調整	AP 0.725 mまで	排水(地下水位 +1.71m)	11,		
2回目杭内水位観測		水頭差 0.985m ~11/19 AM9:00まで	11月		
3回目 試料採取	AP -13.65 m	サンプリング(AP-13.65m~AP-14.45m)	11,		
水位確認・調整		地下水位 +1.4m	11,		
鋼管杭打設 ϕ 1,000mm	AP -15.05 mまで	鋼管中掘圧入	11,		
鋼管内掘削	AP -15.05 mまで	オーガー掘削	11,		
	1.25m,0.981m3	ハンマーグラブによる土砂撤去	11,		
水位調整	AP +1.510 mまで	排水(地下水位 +1.65m)	11,		
3回目 水替え工		試験杭(1)にならい1日後の水替えを実施	11,		
4回目 水替え工			11,		
杭内廃棄物除去確認		杭内カメラ観察	11,		
水位調整	AP +2.200 mまで		11,		
水位調整	AP +0.630 mまで	排水(地下水位 AP+1.67m)	11F		
3回目杭内水位観測		水頭差 1.04m ~11/28	11,		
水位調整	AP -0.380 mまで	排水(地下水位 AP+1.635m)	11月		
4回目杭内水位観測		水頭差 2.02m ~11/29 了	11月		

付録表-2.2 試験杭2の施工記録のまとめ

付録図-2.2 試験杭2の施工概況

用のパワージャッキを使用した.また,ケーシング引抜 き中に鋼管杭が沈下してしまわないように,沈下防止用 のプレートを逐次盛替えながらケーシングの引抜き作業 を実施した.

(2) 試験杭2

試験杭2の施工記録を付録表-2.2,付録図-2.2にとりま とめた.施工時の状況や判断を以下に項目別に記述する.

(a) コンクリートガラ等の障害物に対する施工

コンクリートガラなどの層を掘削した状況を付録図 -2.3で説明する.図中①の状況において、下杭打設完了 直前に継杭のためにスクリューヘッドの高さ調整(オー ガースクリュを30cm程度下げる)を実施中、杭打機がリ バウンドしてしまう、オーガーヘッドが滑る、または、 スクリューヘッドの刃先が何かに引っ掛かり電圧の異常 上昇等が発生してオーガースクリュを貫入できなくなる などの状態が発生した.その原因として、一般には、小 さなガラが少量しかなければ、オーガで掘り進むことが できることから、コンクリートガラや大きな転石等があ る程度の範囲で広く分布していると考えられた.このよ うな状況に対処するため、ハンマーグラブにより杭内と 先端部を掘削することにした.ボーリング記事に「GL. -13m (A.P. -6.45m) よりガラが漸減する」とあったこと を考慮し, A.P. -6.45mまで先行してハンマーグラブで撤 去することにした.

図中②では、掘削前に杭内に3.1m分の土砂(廃棄物) が入った状態から始め、廃棄物に含まれていたコンクリ ートガラも撤去した.しかしながら、杭先端より1.0m(A.P. -3.50m)までは撤去できたものの、その後は孔壁が崩れ て掘削が進捗しなくなった(廃棄物を排出しても先に進 まなくなった)ため、ハンマーグラブによる先行掘削を 中止した.ハンマーグラブを使っても、杭先端より下で、 かつ、杭の径よりも外側まで広がるガラの撤去は困難で あった.上述した試験杭1のケーシングでは、先端にある 切削用のビットで障害物を切断できたため、杭内に入っ た切断されたガラをグラブで撤去できた.しかし、試験 杭2の中掘り圧入用の鋼管杭はガラを切断して貫入する ことはできない構造であることに留意が必要である.

このような状況でも中杭11.1mを打設するために,図 中③のようにオーガによる先行削孔を4.1m実施した.先 行削孔後に押し込むことが可能となり,図中④のように 中杭の打設を完了した.その際,オーガは杭先端よりス クリューヘッド分となる1.10mまで先行させることを許 容したが, 無回転引き上げを実施するA.P.-8.65mより深 くは先行させないこととした.

(b) 掘削方法

廃棄物層と遮水層との境界を確認しながら杭を所定 の深さまで打設する状況を付録図-2.4で説明する. 廃棄 物層の下面と遮水層(粘土層)の上面との境界を確認す るために,図中の④の状態から,当初はオーガ掘削で無 回転引き上げを実施することを計画した.しかしながら, 図中の⑤に示すように,鋼管内に廃棄物が詰まってオー ガースクリュが先端まで達しない状況となり,所定の深 さまで残り1m程度を残し,鋼管杭を圧入できない状況と なってしまった.そこで,中掘工法で使う杭打ち機のホ ッパー(自重や内部の土砂を含め約10tある)を自由落下 させて鋼管杭に打撃を与えることによって所定の深度 (A.P. -9.65m)までの打設を完了した.

この後,地層境界を確認するために無回転引上げを開 始したところ、図中の⑥に示すように、スクリューヘッ ド先端から5m程度までの範囲において、廃棄物と土砂 (細粒分が多い) がスクリュに絡み付き, 鋼管内が閉塞 した状態になってしまった.この状態でオーガースクリ ュを引き上げると、 杭先端に負圧が作用するため、 水み ちができるなど好ましくない状態となってしまう. 杭内 の水位は掘削前A.P. +2.61mから掘削後A.P. +2.65mで、水 位はすぐに回復していた.また,杭内の土砂の高さはA.P. -6.25mであり、杭先にまだ3.4mの土砂が残っていた. 上 述のように負圧が杭先に作用すると、水みちを作ってし まう可能性が高いと判断されたため、無回転引き上げは 実施しないこととした. そこで, A.P.-11.65mまでオーガ による中掘圧入を行い、オーガは常に正回転(掘削土を 排出する方向に回転)を続けて停止させないことにした. また,オーガースクリュを杭先よりも先行させないこと, スクリューヘッドの先端はA.P. -11.65mより以浅とする こと、再度鋼管内が閉塞した状態になった時は、オーガ を逆回転させて土砂を落とし、ハンマーグラブで掘削す ることにした.

このような判断によって、粘土についてはオーガース クリュにより排出できたが、粘性のない砂や廃棄物のほ とんどは、水とともに杭内に落下し、オーガースクリュ では引き上げることができなかった.所定の深度A.P. -11.65mまで杭を打設してオーガ掘削を完了したとき、杭 内の土砂の高さはA.P. -7.31mで、約4.3mの土砂が杭内に 残っていたため、これについてはハンマーグラブにより 排出した.

付録図-2.4 廃棄物層と遮水層との境界付近における打 設・掘削状況

付録図-2.3 障害物状況図

(c) カメラ観察による廃棄物除去状況の確認

杭内からの廃棄物除去の状況確認は,杭内に水中カメ ラを下ろして実施した.11/12に1回目の水替えを実施し, カメラ観察を試みた.ところが,底面は観察できたもの の,水の濁りにより鋼管の壁面や鋼管の杭先の状況を観 察できなかったため,11/13に2回目の水替えを実施した 後,再びカメラ観察をした.その結果,杭内の底面には, 粘土の塊,砕石,小さなゴミが確認された.鋼管の杭先 の際を観察したところ,西側にひも状のゴミを確認した ため,最終掘削完了時に改めてカメラ観察することにし た.

最終深度まで打設・掘削完了後,2回の水替えを実施 し、カメラ観察をした.掘削底面と鋼管の先端との境界 が鮮明に観察され、南西側において、梱包用プラスチッ クバンドのゴミが確認された(**付録-3**を参照).

(d) オーガ掘削とスクリューヘッドの状況

鋼管杭の床付け時,2回の1m掘進時,最終深度までの 1.4m掘進時に,オーガ掘削後の杭内の残土量(高さ)を レッド測量により計測したところ,掘進長とほぼ同量の 残土高さが確認された.このことから,オーガ掘削は, 粘土を排出したというよりも,粘土をほぐしたと表現し た方が適しているような状況になると示唆された.

(a) 廃棄物層掘削時

(c) 1回目掘進時(粘土層2m)

(b) 床付け時(粘土層1m)

(d) 2回目掘進時(粘土層3m)

マーグラブ掘削粘土

(e) 3回目掘進時(粘土層 4.4m)

付録写真-2.2 掘削時のスクリューヘッドの状況と排出土

スクリューヘッドを引き上げたときに、スクリューヘ ッドに付着してくる土砂の状況を付録図-2.5に示す.廃 棄物層掘削時,ならびに粘土層掘削時(床付け時,1m掘 進時×2回,最終深度までの1.4m掘進時)におけるスク リューヘッドの状況のほか,最終深度付近からハンマー グラブで掘削した遮水層粘土を示している.床付けの時 点では、スクリューヘッドにひも状のごみが多く絡み付 いていることが確認されたが、それ以降粘土層からはゴ ミは確認されず、廃棄物を掘削除去できていることが確 認された.

(e) 変更項目

試験杭1と試験杭2の施工状況・観察状況を踏まえて, それ以降に施工した試験杭では,以下のように施工方法 を変更することにした.すなわち,杭内部からの廃棄物 や土砂の排出に,オーガースクリュを無回転で引上げる ことを試みたが,杭内に残った廃棄物と土砂により鋼管 内が閉塞した状態となってしまい,引き上げ時に先端に 著しい負圧が発生して,遮水層を乱してしまう恐れがあ ることがわかった.このような状況を避けるため,オー ガ掘削は常に正回転で行い,無回転引上げは実施しない ことにした.また,途中での引上げも実施しないことと

(a) 正回転状態 付録写直-

:状態 (b) 逆回転状態
付録写真-2.3 特殊スクリューヘッド

した.後述する試験杭4と試験杭5では,当初の計画では, 廃棄物層をハンマーグラブで掘削,遮水層の先端部(3m) をオーガ掘削する予定であったが,上述の経験を踏まえ て,すべてハンマーグラブで掘削することに変更した. なお,カメラ観察のための準備で行う水替えは2回行うこ ととし,細粒分を沈降させて浮泥としてポンプ排出する ため,1回目と2回目の水替えは1日あけて十分な沈降時間 を確保することとした.

(3) 試験杭3

試験杭3の施工記録を付録表-2.3,付録図-2.5にとりま とめた.施工時の状況や判断を以下に項目別に記述する.

(a) PHC杭打設の準備

PHC杭は、現場への搬入前にJIS規格に対応した各種試 験を実施し、クラック・欠陥等がないことを確認した. また、PHC杭の先端には、杭と粘土との付着をよくする ために、フリクションカッタを設置しないことにした. このため、地盤表層にある約2.0mの砕石地盤すら中掘り 圧入できない恐れがあった.また、万一の際、クローラ クレーンによる吊り上げだけではPHC杭を引き抜けない 恐れがあったため、スクリュを逆回転すると突起が現れ、 その突起を杭先端に引っ掛けて杭打機を使って杭を引き 上げることができる特殊なスクリューヘッド(付録写真 -2.3)を準備した.

(b) PHC杭の打設状況

PHC杭の打設では、杭打機の正面方向と側面方向から 鉛直性を誘導しながら作業した.試験杭2での経験から、 オーガースクリュを2.5m先行削孔させて杭を圧入した が、途中で貫入が困難な状況になった.そこで、ベース マシン(三点杭打機)の自重を使って(付録図-2.6)、ベ ースマシンの前側が少し浮き上がる程度まで負荷をかけ たが貫入の進捗が悪く、3.5m貫入したところで、ベース マシンと反対側の原地盤と同程度の高さ(偏心したとき にモーメントが集中する位置)において、PHC杭に円周 方向のクラックが発生してしまった(付録写真-2.4).や

手順	深度	備考(参考)	
【試験杭(3)】			
PHC杭打設 ϕ 800mm 中堀工法			12月8
下杭打設	AP +4.600 m	アースオーガ φ500 掘削、圧入&打撃	12月8
		打設 3.5m オーガースクリュウ 2.5m先行	12月8
下杭引抜き			12月8
中杭打設	AP +2.900 m	アースオーガ φ500 掘削、圧入&打撃	12月8
		打設 5.2m オーガースクリュウ 2.5m先行	12月8
	AP +1.100 m	アースオーガ φ500 掘削、圧入&打撃	12月9
下杭引抜き			12月9

付録表-2.3 試験杭3の施工記録のまとめ

了

打設状況 12/8

引該ざ時のスクリュウ先端 12/8

引き抜き後の地盤状況(AL+2.90m) 12/9

付録図-2.5 試験杭3の施工概況

むを得ず、上述した引抜き用特殊ヘッドによりPHC杭を 持ち上げ、地盤との縁を切って(付着を切って)からク ローラクレーンで引き上げた.

上述のように、下杭にはクラックが発生してしまった ため、中杭として準備した杭を下杭として、再度PHC杭 の中掘圧入を試みることにした. 今回は, 先端閉塞を防 止するために、通常のスクリューヘッドを使うことにし た. スクリューヘッドを杭先端より最大2.5mまで先行さ せることにして打設したが、5m貫入した状態でそれ以上 の打設が不可能な状態になった. そこで, 杭打機のホッ パー(約9t)を使って杭頭に打撃を与え、打設の継続を

付録写真-2.4 PHC杭に発生したクラック

付録図-2.6 PHC杭の施工状況図

付録写真-2.5 杭内部の閉塞状態

試みたが、リバウンド量が20mm/回、貫入量2mm/回以下 となったので、これ以上の作業の継続は困難と判断し、 杭打ち作業を中断した.翌日、打設の継続を再開し、打 設開始時には貫入量が3.0mm/回であったが、最終的には、 1.8m打設したところで貫入量が約1.3mm/回となり、これ 以上の打設継続は不可能と判断した.中杭を下杭とした 今回の打設では通常のスクリューヘッドを使用したこと もあり、杭内部は閉塞していなかった.

(4) 試験杭4

試験杭4の施工記録を付録表-2.4,付録図-2.7にとりまとめた.施工時の状況や判断を以下に項目別に記述する.

(a) 杭の打設と掘削状況

打撃工法により施工するため,杭先端に大きな負荷が かかることから,先端補強バンドを取り付けることにし た.ただし,杭と粘土との付着を良くしなければならな いため,先端補強バンドは外側ではなく,内側に溶接し

付録写真-2.6 深度毎の掘削土砂. A.P. -7.75m (左上) からA.P. -12.76m (右下) までの推移

付録写真-2.7 遮水層からの掘削土砂. 廃棄物が混じっている.

付録図-2.8 打設深度に対する1打撃あたりの貫入量*S*,打 撃エネルギーEh,貫入量当たりに要したエネルギーEh/S の深度分布図

た. 杭の打設には,油圧ハンマNH-100(ラム重量10t) を用いた.打設エネルギーEhは,打設記録として得られ るラムの自由落下高さにラム重量を乗じて算出すること ができる.打設深度に対する1打撃あたりの貫入量*S*,打 撃エネルギーEh,貫入量当たりに要したエネルギーEh/S を付録表-2.5に示す.また,これを深度方向の分布図と して示したものを付録図-2.8に示す.

A.P. +1.00m~AP. -10.00mの掘削では、コンクリートガ ラが混じっていた. 杭内水位観測により透水試験を実施 するには、根入れ長を管理するために粘土層の上端を把 握する必要があった. そこで、ハンマーグラブによる掘

【試験杭(4)】			
鋼管杭打設 ϕ 1,000mm 打撃工法	AP -11.85 mまで		11/21-11/22
鋼管内掘削	AP -7.65 mまで	ハンマーグラブ AP.+1.0m~-7.65mまでガラあり	11月22日
水位調整	AP 1.75 mまで	地下水位 AP+1.86m	11月22日
鋼管内掘削	AP -11.85 mまで	ハンマーグラブ	11月24日
	AP -11.75 mまで	ハンマーグラブ 粘土確認できず。再打撃	11月24日
鋼管杭打設 ϕ 1,000mm 打撃工法	AP -13.25 mまで	油圧ハンマ打撃 実測 AP13.26m	11月24日
鋼管内掘削		ハンマーグラブ -12.76mで粘土層確認。	11月24日
水位確認・調整		地下水位 ±1.0m 以内	11月24日
1回目水替え工		水槽4槽、ポンプ2	11月25日
2回目水替え工		水槽4槽、ポンプ2	11月27日
杭内廃棄物除去確認		杭内カメラ観察	11月27日
1回目試料採取	AP -13.26 m	サンプリング(-13.26~-14.06)	11月27日
水位確認・調整		地下水位 +1.0m	11月28日
鋼管杭打設 ϕ 1,000mm 打撃工法	AP -14.25 mまで	油圧ハンマ	11月28日
鋼管内掘削	AP -14.25 mまで	ハンマーグラブ	11月28日
水位調整	AP +0.660 mまで	排水(地下水位 +1.635m)	11月28日
1回目杭内水位観測		水頭差 0.975m ~11/29 10:00AM	11月28日
2回目試料採取	AP -14.25 m	サンプリング(-14.25~-15.05)	11月29日
水位確認·調整		地下水位 +1.0m	11月29日
鋼管杭打設 ϕ 1,000mm 打撃工法	AP -15.25 mまで	油圧ハンマ	11月29日
鋼管内掘削	AP -15.25 mまで	ハンマーグラブ	11月29日
水位調整	AP +0.710 mまで	排水(地下水位 +1.715m)	12月1日
2回目杭内水位観測		水頭差 1.005m ~12/2 8:40AM	12月1日
3回目試料採取	AP -15.25 m	サンプリング(-15.25~-16.05)	12月2日
水位確認・調整		地下水位 +1.4mまで	12月2日
鋼管杭打設 ϕ 1,000mm 打撃工法	AP -16.65 m	油圧ハンマ	12月2日
鋼管内掘削		ハンマーグラブ	12月2日
水位確認·調整		地下水位 ±1.0m 以内	12月2日
3回目水替え工		水槽4槽、ポンプ2	12月4日
4回目水替え工		水槽4槽、ポンプ2	12月6日
杭内廃棄物除去確認		杭内カメラ観察	12月6日
水位調整	AP +0.710 m	排水(地下水位 +1.70m)	12月8日
3回目杭内水位観測		水頭差 0.99m	12月8日
水位調整	AP -0.430 mまで	排水(地下水位 1.55m)	12月9日
4回目杭内水位観測		水頭差 1.98m ~12/9 完了	12月9日 了

付録表-2.4 試験杭4の施工記録のまとめ

削土の土質の推移を見て、粘土層の深度を把握した.計 画したA.P. –11.85mまで鋼管杭を打設し、杭内を予定の A.P.–11.75mまで掘削しても粘土は現れなかった.既存ボ ーリングBOR.NO.25-4-11の粘土層の境界A.P. –12.25mを 基にA.P. –13.26mまで鋼管杭を再打撃し、内部をハンマー グラブで掘削した結果、A.P. –12.76mで粘土を確認できた. 最終打設時の鋼管先端から遮水層の下端(A.P.–22.15m) までの厚さを5.5m以上確保することを今回の実験の条 件としていたので、次段階以降の掘進と掘削深度を付録 表-2.6のように変更した.

ハンマーグラブによる掘削土を付録写真-2.6に示す. 廃棄物層から砂層を介して粘土層に推移していく様子が わかる.また,粘土層を掘削している間にも,掘削土に は常に廃棄物が混じっている状態であった(付録写真 -2.7).

(b) カメラ観察による廃棄物除去状況の確認

杭の先端深度がA.P.-13.26mの状態において,試験杭1 と試験杭2の経験を活かして2回の水替えを実施した後, 杭内の4方向(東西南北)の位置において水中カメラで観 察したところ,大量のゴミが確認されたことから,最終 掘削後に再度カメラ観察を実施することにした.

最終深度において2回の水替えを行った後,水中カメ ラで観察を行った結果,杭先端部と底面の境界に依然と

付録表-2.5 打設深度に対する1打撃あたりの貫入量S,打撃エネルギーEh,貫入量当たりに要したエネルギーEh/S(試験杭5 と試験杭4を併記)

試験杭(5)					試験杭(4)										
深度	貫 入 量	土層区分	貫入量毎の 打撃回数	1打毎の 貫入量S	ラム落 下高	打撃エネ ルキ [・] -Eh	Eh/S	深度	貫入 量	土層区分	貫入量毎の 打撃回数	1打毎の 貫入量S	ラム落 下高	打撃エネ ルギーEh	Eh/S
(m)	(m)		(回)	(m)	(m)	(kJ)	(kJ/m)	(m)	(m)		(回)	(m)	(m)	(kJ)	(kJ/m)
0.0								0.0 -1.0	1.0	砕石	67	0.015	0.18	18	1206
								-2.0	1.0	砕石	56	0.018	0.36	36	2016
-6.5	6.5	砕石、廃棄 物層	285	0.023	0.18	18	789	-2.5	0.5	砕石、廃棄 物層	47	0.011	0.18	18	1692
-7.0	0.5	廃棄物層	42	0.012	0.36	36	3024	-7.0	4.5	廃棄物層	260	0.017	0.36	36	2080
								-8.5	1.5	廃棄物層	65	0.023	0.72	72	3120
-11.5	4.5	廃棄物層	15	0.300	0.54	54	180								
								-12.2	3.7	廃棄物層	162	0.023	0.9	90	3941
-14.0	2.5	廃棄物層	73	0.034	0.72	72	2102	-13.5	1.3	廃棄物層	44	0.030	1.08	108	3655
-14.8	0.8	廃棄物層	285	0.003	0.36	36	12825	-14.5	1.0	廃棄物層	43	0.023	0.72	72	3096
-16.5	1.7	廃棄物層	231	0.007	0.54	54	7338	-16.5	2.0	廃棄物層	301	0.007	0.72	72	10836
								-17.0	0.5	廃棄物層	85	0.006	0.9	90	15300
								-17.5	0.5	廃棄物層	55	0.009	0.72	72	7920
								-19.0	1.5	廃棄物層	50	0.030	0.9	90	3000
-20.0	3.5	廃棄物層	378	0.009	0.72	72	7776	-19.85	0.85	廃棄物層	360	0.002	0.36	36	15247
-20.7	0.7	廃棄物、 砂、粘性土 層	26	0.027	0.54	54	2006	-21.3	1.45	廃棄物、 砂、粘性土 層	51	0.028	0.36	36	1266
-21.7	1.0	粘性土層	51	0.020	0.18	18	918	-22.3	1.0	粘性土層	45	0.022	0.18	18	810
-22.7	1.0	粘性土層	58	0.017	0.18	18	1044	-23.3	1.0	粘性土層	50	0.020	0.18	18	900
-24.1	1.4	粘性土層	114	0.012	0.18	18	1466	-24.7	1.4	粘性土層	73	0.019	0.18	18	939

して廃棄物が確認された.これらの廃棄物は杭先に巻き 込まれた状態で連れ込まれている廃棄物であると考えら れ、梱包用のプラスチックバンドやビニル類が多く、木

片も見られた(付録-3を参照).

(5) 試験杭5

試験杭5の施工記録を付録表-2.7,付録図-2.9にとりま とめた.施工時の状況や判断を以下に項目別に記述する.

(a) 塗布剤

塗布作業を行う業者が杭メーカの工場敷地内に入る ことが許可されなかったため,杭打設を行う現地にて塗

付録表-2.6 施工深度の変更

施工段階	深度	粘土層厚	備考
	A.P. (m)	(m)	
床付け	-13.26m	0.50m	A.P12.76mにて
			粘土確認
1回目掘進	-14.25m	1.49m	
2回目掘進	-15.25m	2.49m	
3回目掘進	-16.65m	3.89m	遮水層厚5.5m確保
(最終深度)			

付録表-2.7 試験杭5の施工記録のまとめ

手順	深度	備考(参考)	
【試験杭(5)】			
塗布剤塗布		下杭内外面(杭先端から8mの範囲)	11/20-11/22
鋼管杭打設 ϕ 1,000mm 打撃工法	AP -6.00 m		11月24日
浸水 (塗布剤膨潤)		24h	
鋼管杭打設 ϕ 1,000mm 打撃工法	AP -11.94 mまで	油圧ハンマ打設	11月27日
鋼管内掘削	AP -11.94 mまで	ハンマーグラブ 粘土をAP11.64mで確認	11月28日
鋼管杭打設 ϕ 1,000mm 打撃工法	AP -12.64 mまで	油圧ハンマ打設	11月28日
	AP -12.64 mまで	ハンマーグラブ	11月28日
水位確認・調整		地下水位 ±1.0m	11月29日
1回目水替え工		水槽4槽、ポンプ2	11月29日
2回目水替え工		水槽4槽、ポンプ2	12月1日
杭内廃棄物除去確認		杭内カメラ観察	12月1日
1回目 試料採取	AP -12.64 m	サンプリング(AP12.64~-13.44)	12月1日
水位確認・調整		地下水位 +1.0m	12月1日
鋼管杭打設 ϕ 1,000mm 打撃工法	AP -13.64 m	油圧ハンマ打設	12月2日
鋼管内掘削	AP -13.64 m	ハンマーグラブ	12月2日
水位調整	AP +0.730 mまで	排水(地下水位 +1.735m)	12月2日
1回目杭内水位観測		水頭差 1.005m ~12/3 10:15AM	12月2日
2回目 試料採取	AP -13.64 m	サンプリング(AP13.64~-14.44)	12月3日
水位確認・調整		地下水位 +1.0m	12月3日
鋼管杭打設 ϕ 1,000mm 打撃工法	AP -14.64 m	油圧ハンマ打設	12月3日
鋼管内掘削	AP -14.64 m	ハンマーグラブ	12月3日
水位調整	AP +0.660 mまで	排水(地下水位 +1.675m)	12月4日
2回目杭内水位観測		水頭差 1.015m ~12/5 8:40AM	12月4日
3回目 試料採取	AP -14.64 m	サンプリング(AP14.64~-15.44)	12月5日
水位確認・調整		地下水位 +1.4m	12月5日
鋼管杭打設 ϕ 1,000mm 打撃工法	AP -16.04 m	油圧ハンマ打設	12月5日
鋼管内掘削	AP -16.04 m	ハンマーグラブ	12月5日
水位確認・調整		地下水位 ±1.0m 以内	12月5日
3回目水替え工		水槽4槽、ポンプ2	12月5日
4回目水替え工		水槽4槽、ポンプ2	12月8日
杭内廃棄物除去確認		杭内カメラ観察	12月8日
水位調整	AP +0.510 m	排水(地下水位 +1.555m)	12月9日
3回目杭内水位観測		水頭差 1.04m	12月9日
水位調整	AP -0.500 mまで	排水(地下水位 +1.515m)	12月10日
4回目杭内水位観測		水頭差 2.015m ~12/11 了	12月10日 丁

打動表記篇(12/24,12/27)

付録図-2.9 試験杭5の施工概況

1.4m (1943) (12/2) 1.4m (1943) (12/2)

1000/12/1011 10:00010-002/02

(a) A.P. -12.64m

(c) A.P. -14.64m

(b) A.P. -13.64m

(d) A.P. -16.04m

付録写真-2.9 粘土層掘進時の掘削土の状況

布作業を実施した.塗布剤の保管や作業時の換気,作業 者の資格など,管理上の留意事項を以下にまとめる.

- ・塗布剤のこぼれ,漏洩,発散を防止するため,堅固な 容器に入れて換気の良い場所に保管した.
- ・杭内における塗布作業では、プッシュプル型(片側送 気、反対側吸気)の換気が必要である.
- ・屋内や坑内で有機溶剤を扱う際は,有機溶剤作業主任 者を配置するとともに,作業者には特別教育を受講さ せる.

塗布作業場所には、送風機による換気が必要であるが、 風がないと周辺にシンナーの様な揮発性の臭いが拡散し てしまい、作業者以外の人もガスを吸ってしまうなど、

付録表-2.8	施工深度の変更
---------	---------

施工段階	深度 A.P. (m)	粘土層厚 (m)	備考
床付け	-12.64m	1.00m	A.P. –11.64mにて粘土を確認
1回目掘進	-13.64m	2.00m	
2回目掘進	-14.64m	3.00m	
3回目掘進(最終)	-16.04m	4.40m	遮水層厚6.11mを確保

周辺へ悪影響を与える可能性があることに留意が必要で ある. 固まる前に垂れて塗りムラができてしまうため, 塗布剤を一度に多く・厚く塗りすぎてはいけない.また, 雨の日の作業では,ビニルシートなどで屋根を作り,雨 が当たらないようにする必要がある.一方,鋼管杭の内 側に塗布するときは,送風機による換気が必要であるが, 風で塗布剤が飛び散ることがあるので,留意が必要であ る. なお,今回の作業では,杭の内側,外側の両面に1 日あたり1層,3日間にわたり計3層を塗り重ねた.

(b) 杭の打設と掘削状況

試験杭4と同様に,鋼管の内側に先端補強バンドを設置した.打設深度に対する1打撃あたりの貫入量*S*,打撃 エネルギー*E*h,貫入量当たりに要したエネルギー*E*h/Sを 付録表-2.5に,また,これを深度方向の分布図としたも のを付録図-2.8に示した.

試験杭5でも,試験杭4と同様に粘土層の上端深度をハ ンマーグラブにより掘削して確認した.計画した A.P.-11.94mまで鋼管杭を打設し,杭内掘削を実施した結 果AP.-11.64mで粘土を確認できた.これに合わせて,杭 先端深度・掘削深度の設定を付録表-2.8のように変更し た.

ハンマーグラブによる掘削土を付録写真-2.8に示す. 廃棄物層から砂層を介して粘土層に推移していく様子が わかる.これより下にある粘土層を掘削している間にも, 掘削土には常に廃棄物が混じっている状態であったこと から(付録写真-2.9),廃棄物が連れ込まれていたことが わかる.

(c) カメラ観察による廃棄物除去状況の確認

杭の先端深度がA.P. -12.64mの状態において,2回の水 替え後,杭内の4方向(東西南北)の位置において水中カ メラ観察を実施したが,大量のゴミが確認されたため, 最終掘削後に再度カメラ観察を実施することにした.な お,1回目の観察では,カメラを下ろしていくと,廃棄物 が多くてカメラが杭先端まで下がらない状況であった.

最終深度において、2回の水替え後に水中カメラ観察 を行った. 杭先端部と底面との境界に沿って廃棄物が連 れ込まれていることが確認された. 他の杭に比べると、

付録写真-2.8 深度毎の掘削土砂. A.P. -8.14m (左上) からA.P. -12.59m (右下) までの推移

プラスチックやビニル製の袋状のゴミが多いと感じられた(付録-3を参照).

付録-3 杭先の水中カメラ観察

杭内の廃棄物除去状況を確認するために、水中カメラ による観察を行った. 掘削したままでは杭内の水の濁り が激しく,視界不良となるため,カメラ観察の前に杭内 の水を清水で置換えておく必要がある.水替えの方法に は,場所打ち杭のスライム処理のやり方を適用した(付 録図-3.1).使用した主な施工機材を付録表-3.1に,その 配置を付録図-3.2に示す.

杭の先端位置から管内水を浮泥とともに吸い上げ,杭 頭より清水を供給することで水替えを行い,排水の色の 変化により水替え完了を判断した.水替え直後は濁りが あるためカメラ観察できないことや,1回目の水替え後, 時間が経過すると浮泥が沈殿して杭(試験杭1ではケーシ

付録図-3.1 水替え工の概要図

/+得主 21 水共らに田いた地村---慶

可求なつ、「小白えに用いた陵州一見							
施工機械	規格	数量	備考				
リモポンプ	4インチ	1台	排水用				
配管	100mm	28m	リモポンプ用				
水中ポンプ	4インチ	1台	注入用				
水槽	$42m^3$	2槽	清水用と濁水用				
	35m ³	2槽	清水用と濁水用				
発電機	90KVA	1台					
クローラクレ	60KVA	1台	ハンマーグラブ掘				
ーン			削機械				
給水車	80t						
バキューム車	$4m^3$	1式	濁水の処理用				

ング)と杭先の地盤との境界が不明瞭になることがわかったため,カメラ観察前に水替えを2回実施することにした.2回目の水替えでは,1回目の水替え後に沈殿した浮泥を吸い上げることが目的でもあるため,沈降に十分な時間を確保できるように,2回目の水替えは1回目の水替えの翌日以降に実施することにした.必要水量として,場所打ち杭の場合と同様に杭内水量の2倍程度(試験杭1では径が大きなケーシングが対象となるので25m³,試験杭2,4,5では21m³)と計画していたが,実際には,排水の濁りがなくなるまでには計画よりも多くの水量を必要とした(最初に実施した試験杭1では60m³で終了としたが,他の試験杭では十分な水替えのため100m³使った).

水替えを行った際に実施した水質試験の結果を付録 表-3.2に示す.なお,使用した清水は全ての杭に対して 同一箇所から購入した水を使用したため,初回(試験杭1) のみ水質試験を実施した.

杭内の水を清水で置換えた後,杭内の掘削底面を水中 カメラにより観察した.杭が廃棄物(ゴミ)を連れ込ん でいるかどうかを確認することが観察目的となるため, 杭の先端部において東西南北の4方向にカメラを密着さ

	付録表-3.2 水替	え時の	水質検	查結果	
試験杭	試験	単位	清水	濁水	置換水
試験杭1	水素イオン濃度	PH	7.7	8.3	8.0
	有機体炭素TOC	mg/L	6.2	34	4.6
	電気伝導率EC	mS/m	74.0	241	69.0
	濁度		4.8	335	10.7
試験杭2	水素イオン濃度	PH	-	8.3	7.8
	有機体炭素TOC	mg/L	-	39	7.2
	電気伝導率EC	mS/m	-	239	76.3
	濁度		-	—	22.8
試験杭4	水素イオン濃度	PH	-	8.3	7.7
	有機体炭素TOC	mg/L	-	220	5.8
	電気伝導率EC	mS/m	-	392	74.3
	濁度		-	—	19
試験杭5	水素イオン濃度	PH	_	7.9	7.8

mg/L

mS/m

濁度

有機体炭素TOC

電気伝導率EC

92

118

4.9

72.6

32

付録写真-3.1 カメラ観察画像(試験杭1施工時のケーシング先端部)

付録写真-3.3 カメラ観察画像(試験杭2の2回目)

せて撮影した.各試験杭において得られた撮影画像を以下に示す.

(1) 試験杭1

ケーシング先端部で撮影した水中カメラ観察画像を 付録写真-3.1に示す. 微細なプラスチック片と思われる 廃棄物がわずかに観察されたが, 廃棄物をきわめて良好 に除去できていることが確認できた.

(2) 試験杭2(1m根入れ時)

杭先端が粘土層に1m根入れされた状態での杭先端部 における水中カメラ観察画像(1回目観察画像)を付録写 真-3.2に示す.わずかではあるが,廃棄物が取り切れず に残されていることが確認できた.

(2') 試験杭2(4.4m根入れ時)

杭先端が粘土層に4.4m根入れされた状態での杭先端 部における水中カメラ観察画像(2回目観察画像)を付録 写真-3.3に示す. 廃棄物はほぼ取り切れているが,杭先 端に巻き込まれて連れ込まれた梱包用プラスチックバン ドが1本だけ残されていた.

付録写真-3.4 カメラ観察画像(試験杭4の1回目)

付録写真-3.5 カメラ観察画像(試験杭4の2回目)

(3) 試験杭4 (0.5m根入れ時)

杭先端が粘土層に0.5m根入れされた状態での杭先端 部における水中カメラ観察画像(1回目観察画像)を付録 写真-3.4に示す. 杭先端に大量の廃棄物が残っている様 子を確認できる.

(3') 試験杭4(3.9m根入れ時)

杭先端が粘土層に3.9m根入れされた状態(最終深度) での杭先端部における水中カメラ観察画像(2回目観察画 像)を付録写真-3.5に示す.0.5m根入れ時よりも廃棄物 が減ってはいるが,杭先端にはまだ大量の廃棄物が残っ ている様子を確認できる.

(4) 試験杭5(1m根入れ時)

杭先端が粘土層に1m根入れされた状態での杭先端部 における水中カメラ観察画像(1回目観察画像)を付録写 真-3.6に示す. 試験杭4と同様に大量の廃棄物が残ってい る様子を確認できる. なお, 試験杭5の杭先に残っている 廃棄物は, 他の杭と比べるとプラスチックやビニルの袋 状の廃棄物が多いのが特徴である.

付録写真-3.6 カメラ観察画像(試験杭5の1回目)

付録写真-3.7 カメラ観察画像 (試験杭5の2回目)

(4') 試験杭5(4.4m根入れ時)

杭先端が粘土層に4.4m根入れされた状態(最終深度) での杭先端部における水中カメラ観察画像(2回目観察画 像)を付録写真-3.7に示す.粘土を掘り進めても,依然 として大量の廃棄物が残っている様子を確認できる.

付録-4 施工時の水位観測

杭打設後に本格的に実施した透水試験については、本 文中で記述しているが、ここでは、施工中に実施した水 位観測の結果について取りまとめる. 杭周辺の地下水位 は廃棄物層内にあり、施工範囲のほぼ中央地点に設置し た観測井(付録図-1.1を参照)で水位を計測した.水位 は間隙水圧計により10分間隔で計測したほか、手動式水 位計によっても計測した.

手動式水位計による測定結果を付録図-4.1に示す.一 方,間隙水圧計による水位計測では,上述の手動式水圧 計の計測値により初期値を設定し,10分間隔で計測した. 試験杭2における1回目の杭内水位観測時に,手動式水位 計では水位変化が観測されないにもかかわらず,間隙水 圧計のデータは変化し,両者に乖離が見られた.そのた め,間隙水圧計のデータは毎週2回(月曜と木曜)手動式 の計測値に合わせて補正することにした(付録図-4.2). 間隙水圧計の計測値にドリフトが現れる理由は明らかで はないが,今回の計測では間隙水圧計のコード延長が 100m程度と長く,計測方法に限界があったことも考えら れる.

各試験杭の杭内水位観測は、パイピングの危険などを 事前に検討しておき、安全を見込んで付録表-4.1の条件 で実施した.上述のように、間隙水圧計による地下水位 観測ではドリフト等により著しい誤計測が生じることが わかったため、以降は、手動式水位計により、0h、1h、3h、 6h、24h(以降は24hごと)に計測することにした.手動式 水位計で計測した水位計測結果を付録図-4.3に示す.周 辺の地下水位はA.P. -1.7m前後にあり、これよりも1mま たは2mを水位を下げて透水試験を実施した.付録図-4.3 において、水位を下げている部分が透水試験に該当する が、24hの杭内水位観測結果として、試験杭1および試験 杭2では水位上昇は観測されなかったが、試験杭4や試験 杭5においてわずかな水位上昇が見られた. 杭内土砂の掘削後の地盤の高さについて,その経時変 化をレッドで測定した. 杭の底の地盤表面は水平ではな く凹凸があるため,レッドの測定位置により異なる深度 が得られ.また,浮泥があるなど,柔らかい地盤では測 定する作業員により計測結果が多少異なった.

試験杭1は,ゴミがないことは遮水層に1m根入れした ケーシング内部で確認済みのため,他の杭とは異なり最 終深度掘削後にカメラ観察を実施する必要がなく,水替

付録図-4.1 手動式水位計による地下水位測定結果

※丸印の位置で手動式水位計の計測結果に合うように補正 付録図-4.2 間隙水圧計による地下水位測定結果の補正

付録図-4.3 試験杭の内水位観測結果図

	1回目		2回目		3回目		4回目	
	杭内深度	水位差	杭内深度	水位差	杭内深度	水位差	杭内深度	水位差
	A.P. (m)	$\Delta h(m)$						
試験杭1	-15.43m	1.0m	-15.43m	2.0m				
試験杭2	-12.65m	1.0m	-13.65m	1.0m	-15.05m	1.0m	-15.05m	2.0m
試験杭3								
試験杭4	-14.26m	1.0m	-15.25m	1.0m	-16.65m	1.0m	-16.65m	2.0m
試験杭5	-13.64m	1.0m	-14.64m	1.0m	-16.04m	1.0m	-16.04m	2.0m

付録表-4.1 杭内設定水位(水位差:地下水位と杭内の水位の差)

付録表-4.2 杭内の地盤面の深さ

	試験杭(1)					試馴	負杭(2)				
	測定日	杭天端 A.P.(m)	深さ (m)	先端深度 A.P.(m)	備考	3	則定日	杭天端 A.P.(m)	深さ (m)	先端深度 A.P.(m)	備考
	11月19日	9.10	24.55	-15.45	床付け時	1	1月20日	9.10	24.25	-15.15	床付け時
	12月3日	9.14	24.47	-15.33			12月3日	9.14	24.27	-15.13	
	12月4日	9.14	24.47	-15.33			12月4日	9.14	24.27	-15.13	
	12月5日	9.14	24.47	-15.33			12月5日	9.14	24.27	-15.13	
	12月6日	9.14	24.47	-15.33			12月6日	9.14	24.27	-15.13	
1	12日10日	910	24 48	-15.38		1	2日10日	9 1 0	24 19	-15.09	

試験杭(4)

HANNEL DUC 17				
測定日	杭天端 A.P.(m)	深さ (m)	先端深度 A.P.(m)	備考
12月2日	9.10	25.9	-16.8	床付け時
12月3日	9.14	25.94	-16.8	
12月4日	9.14	25.9	-16.76	
12月5日	9.14	25.9	-16.76	
12月6日	9.14	25.82	-16.68	
12月10日	9.10	25.8	-16.7	

えを実施していなかった.そのため,浮泥が厚く沈降・ 堆積している可能性が高く,実際,レッドを少し上下さ せるだけで測定結果が5cm~10cmも深くなるような状況 であった.計測された地盤面の深さの一覧を付録表-4.2 に示す.また,経時変化を図にしたものを付録図-4.4に 示す.

付録-5 遮水層粘土の圧密・透水・変形特性

遮水層を構成する粘土層について,固定ピストン式シンウォールサンプラーで採取した不攪乱試料を用いて圧 密試験を実施し,圧密・透水特性を調べた.試験結果を まとめたものを**付録表-5.1**に示す.定ひずみ速度載荷に よる圧密試験 (JIS A 1227) と段階載荷による圧密試験 (JIS A 1217) を実施した.

圧密試験の結果として、(a) 初期含水比w₀, (b) 初期間 隙比e₀, (c) 圧縮指数C_c, (d) 圧密降伏応力p_cの深度分布 を付録図-5.1に示す. 深度20.8m付近で他よりもやや低塑 性な土の結果が得られているが,他は含水比が90%程度

	計時夕	土粒子 密度	初期 含水比	初期 間隙比	湿潤 密度	乾燥 密度	飽和度	圧縮 指数	圧密降 伏応力
	1 11.6天一	ρ₅ (g/cm³)	₩0 (%)	e ₀	ρt (g/cm³)	ρ _d (g/cm³)	S _{r0} (%)	Cc (最急勾配)	p _c (kPa)
	4-11-T1 (20.30m∼20.70m)	2.694	86.9	2.353	1.502	0.804	99.6	1.022	206
定ひ	4-11-T1 (20.30m∼21.10m)	2.694	75.3	2.001	1.573	0.898	101.3	0.621	117
ずみ	4-11-T2 (21.50m∼22.05m)	2.673	91.8	2.539	1.449	0.756	96.7	1.115	223
	4-11-T3 (23.50m~24.30m)	2.690	90.8	2.475	1.477	0.774	98.7	0.859	170
	4-11-T1 (20.30m∼20.70m)	2.694	84.9	2.315	1.503	0.813	98.8	0.921	156
段階	4-11-T1 (20.30m∼21.10m)	2.694	70.8	1.934	1.568	0.918	98.5	0.649	123
載荷	4-11-T2 (21.50m∼22.05m)	2.673	89.6	2.431	1.477	0.779	98.5	1.069	200
	4-11-T3 (23.50m∼24.30m)	2.690	89.6	2.481	1.465	0.773	97.1	0.831	140

付録表-5.1 遮水層の圧密特性

付録図-5.1 供試体の初期条件と圧密試験結果の深度分布: (a) 初期含水比w₀, (b) 初期間隙比e₀, (c) 圧縮指数C_c, (d) 圧密 降伏応力p_cの深度分布

と高く, 圧縮指数C_cが0.9~1.2の比較的高塑性な土の特徴 が現れた結果となっている.有効土被り圧σ'_wが150kPa 程度であることを考えると, 圧密降伏応力p_cは同等もし くはそれよりわずかに大きい程度であり,ほぼ,正規圧 密状態にあるといえる.なお,深度20.8m付近では,低 塑性であるために試料が乱れやすかったと考えられ,圧 密降伏応力は過小に評価されている可能性がある.

圧縮曲線を付録図-5.2に示す. 圧密降伏応力を挟んで, 過圧密領域と正規圧密領域の2つの直線で近似できるバ イリニアな関係にある. 自然堆積粘土では,年代効果に より発達した土の構造が壊れていくために圧密降伏直後 に急激な間隙比の減少が生じ,圧密降伏後に逆S字型の 曲線が得られることが知られている(特に定ひずみ速度 圧密試験の結果).しかし,今回の試験結果にはそのよう な挙動は見られず,むしろ練り返した後にモールドで圧 密して作製した再構成試料のような挙動となっている. これは,もともと海底の浅いところに堆積していた粘土 層であるが,約16mもの廃棄物層が埋め立てられた結果, 粘土層が大きな圧力で圧密され,年代効果の影響がほと んど現れていないためであると考えられる.

圧密係数*C*。と圧密圧力*p*の関係を**付録図-5.3**に示す. 一 般に過圧密領域での大きな値と正規圧密領域での小さな 値とに分けられ,両者はそれぞれほぼ一定値になる. 今 回の試験結果においてもそのような傾向を読み取ること ができるが,過圧密領域と正規圧密領域の圧密係数の差 はあまり大きくはない.正規圧密においても圧密係数は 100cm²/dayよりも十分に大きな値が得られており,圧密 が比較的速やかに生じる粘土であることが分かる.

透水係数と圧密圧力の関係を付録図-5.4に示す.透水 係数kは間隙比eの関数であると説明されていることと対応して、過圧密領域ではほぼ一定値、正規圧密領域では 圧密圧力の増加とともに減少している. 圧密降伏応力付近の透水係数が原位置の透水係数に近い値であると考えられるが、 7×10^{-8} cm/sから 3×10^{-7} cm/sの範囲にあり、いずれも基準省令(環境省令)に規定された遮水基盤として要求される 1×10^{-5} cm/s以下(層厚は5m以上)を十分に満足する遮水層であることが分かる.

原位置応力状態でまで応力経路を誘導した後,圧縮試 験を行う再圧縮三軸圧縮試験CUC,伸張試験を行う再圧 縮三軸伸張試験CUEを実施した.試料の含水比と湿潤密 度,せん断試験時の強度として主応力差qの最大時,なら びに応力比q/p'の最大時の主応力差の値を付録表-5.2に とりまとめた.

三軸試験で得られた応力~ひずみ関係を**付録図-5.5**の 左図に示す. 圧縮側の破壊ひずみε_fは1.3%と小さく,そ

付録図-5.3 圧密圧力と平均圧密圧力の関係(log c_v-log p 曲線)

付録図-5.4 透水係数と平均圧密圧力の関係(log k-log p 曲線)

の後、ひずみ軟化が見られる.一方、伸張側はひずみ硬 化傾向にあり、主応力差の絶対値が最大となるときの破 壊ひずみɛr¦は12.9%と大きい.伸張側は、破壊ひずみを過 ぎると急激に主応力差が減少するように見えるが、局所 的な変形が発生したためである.

三軸試験で得られた応力経路を付録図-5.5の右図に示

付録図-5.5 三軸試験結果: 左図は応力~ひずみ関係, 右図は応力経路

す.原位置から採取した不攪乱試料のうち,正規圧密状 態にある粘土でよく見られる挙動を示している.伸張側 の応力経路の最後の部分で急激な軟化が見られるが,応 力~ひずみ関係(付録図-5.5の左図)において見られた 急激なひずみ軟化に対応している.すべり線が発生して 局所的にくびれが生じたためであり,通常のデータ整理 方法では,くびれた部分の断面積が局所的に小さくなっ たにもかかわらず,供試体の一様な変形を仮定した過大 な計算上の面積で応力を算出していることから,主応力 差を著しく過小に評価するようになったことが原因であ り,このような特異な挙動はその土の本来の挙動を反映 したものとはいえない.

付録表-5.2 三軸試験彡	条件と試験結果
---------------	---------

		深度(標高-A.P.)			
		No.1-2 (13.03~13.88m)			
		CUC	CUE		
	w. (%)	81.59	80.50		
	w ₀ (70)	81.	05		
供試体の	$a \left(a/am^{3} \right)$	1.529	1.527		
状態	$p_{\rm t}$ (g/cm)	1.52	28		
	$a_{1}\left(a/am^{3}\right)$	0.842	0.846		
	$\rho_{\rm d}$ (g/cm)	0.844			
	q (kPa)	163.655	-117.314		
q 最大	p′(kPa)	96.009	46.716		
	Δu (kPa)	33.43	-10.96		
	$\varepsilon_{\rm f}$ (%)	1.3	-12.9		
	q/p'	1.84	-2.51		
q/p' 最大	q (kPa)	131.202	-117.314		
	p′(kPa)	71.335	46.716		
	Δu (kPa)	45.98	-10.96		
	ε_{f} (%)	7.4	-10.4		

圧密非排水三軸試験(CU試験, σ'v=150kPa, K=0.5)

港湾空港	b技術研究所資料 No.1321
	2016.6
編集兼発行人	国立研究開発法人海上・港湾・航空技術研究所
発 行 所	港 湾 空 港 技 術 研 究 所 横 須 賀 市 長 瀬 3 丁 目 1 番 1 号 TEL. 046(844)5040 URL. http://www.pari.go.jp/
印刷所	株式会社シーケン

Copyright © (2016) by MPAT

All rights reserved. No part of this book must be reproduced by any means without the written permission of the President of MPAT

この資料は、海上・港湾・航空技術研究所理事長の承認を得て刊行したものである。したがって、 本報告書の全部または一部の転載、複写は海上・港湾・航空技術研究所理事長の文書による承認を 得ずしてこれを行ってはならない。

