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Why Mylonakis earth pressure equations are NOT theoretical lower bound solutions

Atsushi Nozu
1. Introduction

Because Mylonakis earth pressure equations (Mylonakis et al. (2007)) do not satisfy the equation of
equilibrium, they can not be interpreted as theoretical “lower bound solutions.” They may be lower
bound, but we cannot know it theoretically. We only know it experimentally (or from experience). It
is not appropriate to say it is “inherently” conservative. It is also not appropriate to say they are
“solutions,” because they are not solutions of any differential equations. There are three reasons why
Mylonakis earth pressure equations do not satisfy the equation of equilibrium; one of them is explicitly
stated in their paper, but two of them are not stated and it is difficult for the readers to notice. This
document will explain why theoretical lower bound solutions must satisfy the equation of equilibrium

and why Mylonakis earth pressure equations do not satisfy the equation of equilibrium.
2. Why theoretical lower bound solutions must satisfy the equation of equilibrium?

The lower bound theorem can be derived from the principle of virtual work. In the following, first, the

principle of virtual work will be reviewed. Then the lower bound theorem will be reviewed.
2.1 The principle of virtual work
Assume a stress field o;; that satisfies the equation of equilibrium
0;jj+pb;=0 )
and a displacement field u; that satisfies the equation of compatibility
&j = %(ui,j + uj,l-). 2)
The stress field o0;; and the displacement field u; can be completely independent. We do not require

that they are connected with a constitutive equation. Multiplying Equation (1) with u;, integrating

over a volume and applying Gauss's law yields



J.V pbiuidv = — J.V Uij,juidv = — J.V (aijui)‘jdV + J.V Uijui,jdV

= —fs aijuinde + fV O'l‘jui’jdV = —fs tiuidS + J.V O—ijgijdV' (3)

For the final term, we used the Cauchy equation

ti = O'ijnj (4)
and the symmetry equation
Oij = ji. (5)
From Equation (3) we obtain
J.S tiuidS + fV pbluldV = fV O-ijgijdV' (6)

Equation (6) is called the principle of virtual work. A similar relation can be established for a

displacement rate field ;:

£V 7

Jg tindS+ [, pbiidV = [, oy

2.2 Lower bound theorem

Hill (1948) assumed that, for a plastic strain rate éf’j defined at a point on a yield surface in a stress
space, the rate of plastic work done by the stress o0;; corresponding to this point is greater than or

equal to the rate of plastic work done by any stress o;; within the yield surface:
o'ijé.p. > gt éP. ®)
This is called the maximum plastic work principle. Figure 1 shows a conceptual diagram showing

Hill’s assumption. Hill’s assumption holds if the material is convex and &‘5 follows the associated

flow rule. From now on, let us assume that the material is convex.
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Figure 1 Conceptual diagram showing the Hill’s assumption
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Figure 2 Soil wedge

Now let us consider a domain (e.g., a soil wedge as shown in Figure 2) with a stress field g;; and a

p
ij

Domain I, where &‘5 = (0 (if the material behaves as a rigid body, this applies)

plastic strain rate &;; and assume that the domain belongs to either of the following two domains:

Domain II, where the stress o;; is on the yield surface and éf’j is related to o;; with the associated
flow rule. In addition, let us consider another stress field o;; which satisfies the equation of
equilibrium everywhere in the domain and within the yield surface. Then, Equation (8) holds
everywhere in the domain. By integrating both sides of Equation (8) and applying Equation (7), we

obtain



Jo tads = [, tfufds )

because the self-weight vanishes. The surface integral must be taken along S1, S2 and S3 (Figure
2). However, the traction vanishes for S1 and the displacement rate vanishes for S2. Consequently,

the integral along S3 remains:

Lt dS = [ tiulds. (10)

This gives the lower bound theorem for the earth pressure. If we can come up with a stress field o;;
which satisfies the equation of equilibrium everywhere in the domain and within the yield surface, the

associated traction t; gives the lower bound solution.

It should be noted that, for an active case, the traction vector and the displacement rate vector are
pointing different directions. Therefore, the absolute value of the earth pressure is smaller than the

lower bound solution. For a passive case, the opposite applies.

In conclusion, for a lower bound solution, the stress field o;; must satisfy the equation of equilibrium

everywhere in the domain.
3. Why Mylonakis earth pressure equations do not satisfy the equation of equilibrium?

The remainder of the document will explain why Mylonakis earth pressure equations do not satisfy

the equation of equilibrium. To begin with, the Kotter equations will be reviewed.
3.1 Kétter equations

In the remainder, the convention changes from “tension positive” to “compression positive”, that is,
o and 7 are positive if they are acting in the direction shown in Figure 3. In Figure 3, o; and o5
are principal stresses (g; > o03). If we consider the equilibrium of the element, we can obtain the

following equations:



04

Figure 3 Sign convention (o and 7 are positive if they are acting in this direction)

=%+%cosze (11)
7= %sinze (12)
or

o=p+qcos20 (13)
T = qsin26 (14)

with
p= % (15)
_ 01703 (16)

Let us consider a domain in the soil in which the stress field satisfies the equation of equilibrium and
the Mohr circle touches the yield surface everywhere as shown in Figures 4 and 5. In Figure 5, z
denotes the vertical axis. The major principal stress o7 is acting on a plane which is rotated clockwise
by an angle of A from the plane where o, is acting. The failure surfaces S; and S, are rotated
clockwise and counterclockwise, respectively, from the direction of ¢; by an angle of /4 — ¢ /2.

The angle between S; and the x axis is denoted by 6. From these configurations, we have:

1=2-g+2 (17)
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Figures 5 Principal stresses and failure surfaces
and
Oy =P —qcos2i (18)

o, =p +qcos2l (19)



Tz = q Sin 21 (20)

It should be noted that A and 8 can be functions of x and z.

Because the stress field satisfies the equation of equilibrium and the Mohr circle touches the yield

surface everywhere, we have:

00y | OTyy

™ + o, = 0 (21)

0Ty, , 00, _ _

T35, =7 (22)
q =ccos¢ +psing, (23)

where y denotes the unit weight. From now on, we will obtain differential equations in terms of p

and 6. Using Equations (18) — (20) and using

cos 21 = sin(26 — ¢) 249
sin 21 = cos(26 — ¢) 25
we obtain
0, = p(1 —sin ¢ sin(20 — ¢)) — c cos ¢ sin(26 — ¢) (26)
0, = p(1+ sin¢sin(20 — ¢)) + c cos ¢ sin(26 — ¢) 27
T, = (ccos ¢ + psin¢) cos(26 — ¢). (28)

Substituting Equations (26) — (28) into Equations (21) — (22) yields

(1 — sin¢ sin(20 — (i)))(;—z —2(ccos¢ + psing) cos(20 — ¢) %
+ sin ¢ cos(260 — ¢) Z—Z —2(ccos¢ + psin¢)sin(26 — d))g =0 (29)
sin ¢ cos(26 — ¢) Z—z — 2(ccos¢ + psin ¢)sin(20 — d))%

+(1 + sin ¢ sin(260 — ¢))Z_§ + 2(ccos ¢ + psin ¢) cos(26 — ¢)g =—-y (30



From now on, we will introduce curvilinear coordinates s; and s, along the failure surfaces S; and

S, (both upward positive). The relations between the coordinates are

d d . 3
P cos@a+sm962

2 . 2 2
Froe —sin(6 — ¢) -~ + cos(6 — ¢) -

which is equivalent to

a 1 3 . a
3 wose (cos(@ - q[))a—s1 — smBa)
a 1 . 3 3
%= coso (51n(9 — q[))a—s1 + cos@a—sz).

Applying Equations (33) — (34) into Equations (29) — (30) yields

(cos(@ — ¢) — sin ¢ sin 9)a—p —2(ccos¢ +psing) cos922
dsy ds1
+(—sin8 + sin ¢ cos(8 — ¢)):Tp —2(ccos¢ + psing)sin(6 — d))% =0
2 2
(sin(@ — ¢) + sin ¢ cos 9)%— 2(ccos¢ + psing) sineg
1 1

+(cos 6 + sin ¢ sin(6 — ¢)):Tp + 2(ccos¢ + psing) cos(8 — ¢) % = —ycos¢
2 2
From equations (35) and (36) we obtain the Kétter equations:

cos¢:—:—2(ccos¢ +psin¢>):—:= —y sin(6 — ¢)

cos¢:—i+2(ccos¢ +psin¢)%= —y cos#.

It should be noted that there are two equations.

31

(32)

(33)

(34

(33)

(36)

G7)

(38)



3.2 Logarithmic stress fan

Let us consider Kotter equations for ¢ =0 and y = 0:
op . ﬂ _
cos ¢ 75 2psin ¢ et 0 39)

cos¢:—i+2psin¢:—i=0. (40)

Let us assume that the direction of s; rotates with [ as shown in Figure 6:

0 =0, +p. (41)

s1

Figure 6 Logarithmic stress fan
The direction of the principal axis rotates accordingly. In this case, the logarithmic spiral expressed as
r =ryeftand (42)
can reside along the s, axis and can be a candidate for a failure surface. This can be shown as follows.

If we consider a small increment df at an arbitrary point on the spiral, the increment of the distance

from O is



dr = Z_;d/)’ = tan proeP NP dp = tan P rdp. (43)

On the other hand, the increment of the coordinate & (shown in Figure 6)is rdf. Therefore, the angle
between the spiral and the & axis is ¢. Therefore, the angle between the spiral and the s; axis is

/2 — ¢, which shows that the spiral is parallel to the s, axis.

Let us go back to the Kotter equations. Noting that

_d¢& _r
dSZ - sin¢g - sin ¢ dﬁ (44)
the latter of the two Kotter equations, Equation (40), can be written as
dp .
cosd)ﬁ + 2psing = 0. (45)

This constitutes a differential equation which must be satisfied by the mean stress p. The solution is
p = poe 2P 1n?, (46)
This means that, for the failure to actually occur along the spiral, the mean stress p must change along

the spiral as a function of 8 as shown in Equation (46). This condition is considered in the Mylonakis

equations (Equation (8) in Mylonakis et al. (2007)). However, the former of the two Kétter equations,

Equation (39), is not considered in their paper. Another fact to be noted here is that, in the logarithmic

stress fan, the amount of principal axis rotation between A and B equals to the angle AOB.




3.3 There is no space for the “fan”

In the Mylonakis equations, Zone A (near the surface) and Zone B (near the wall) are in different stress
statuses (Figure 7) and they are connected with the logarithmic stress fan. However, they did not
mention where is the boundary between the zones and the fan. In addition, they did not mention where
they evaluated the mean stress in Zone A (in their notation, S,). According to my study, S, was

evaluated just behind the wall (the red circle in Figure 7).
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Figure 7 Zone A (near the surface) and Zone B (near the wall)
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Figure 8 Steps to evaluate o,

Figure 8 shows the steps to evaluate o, in Mylonakis et al. (2007). From left to right, Equations (5)

(10) and (8) in their paper are used. The depth of the red circle from the surface can be evaluated as

_ . __ ssinwsinB+coswcosf . cos(w—p)
depth =¢&sinwtanff + cosw = ¢ cos B =¢ cos B 47)
From this equation and Equation (4a) in Mylonakis et al. (2007), we have
op =y - depth - cos® B = y¢ cos(w — ) cos B. (48)

From this equation and Equations (5) (10) and (8) in Mylonakis et al. (2007), we have



1Fsi (8,F5) -
o, = yécos(w — B)cosp [%] exp(+26 tan ¢). (49)

Integrating along the soil-wall interface yields

__ 1cos(w—p)cosf [1Fsin ¢ cos(A,F6)
T 2 cosbcos?w l1+sin¢ cos(A;+pB)

_ LIH/COS“’

o 0,d¢ ] exp(+26 tan ¢p)yH?. (50)

cosé
Comparing this equation with Equation (11) in their paper, we obtain

K = cos(w—pB)cosp [1$sin ¢ cos(A,F6)
Y ™ cosécos?w litsing cos(A+pB)

exp(+26 tan ¢). (51)

This equation coincides with Equation (12) in their paper.

In conclusion, the stress status in Zone A is evaluated just behind the wall (the red circle in Figure 7).
There is no space for the fan. Zones with different stress statuses are directly connected. Therefore,

the stress field in Mylonakis et al. (2007) cannot satisfy the equation of equilibrium.

3.4 Failure to satisfy one of the two Kotter equations

Equations (5) in their paper follows the latter of the two Kétter equations, Equation (40). However,
the stress field does not satisfy the former of the two Kétter equations, Equation (39). In fact, in their
stress field, the direction of the principal stress is fixed along the s; axis, at least at the boundaries
(06/ds, = 0). However, the mean stress changes linearly (p.965 of their paper) (dp/ds; # 0).
Therefore, one of the two Kotter equations is not satisfied. This is the second reason why the stress

field in Mylonakis et al. (2007) cannot satisfy the equation of equilibrium.

3.5 Neglection of gravity acting on the “fan”

Equations (5) in their paper follows Equation (40) in this document, which does not consider the unit
weight of the soil in the fan. This is the third reason why the stress field in Mylonakis et al. (2007)

cannot satisfy the equation of equilibrium. This fact is explicitly mentioned in Mylonakis et al. (2007).

4. Conclusion



The conclusion was already written at the beginning of this document.
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