
September 22, 2025 

Why Mylonakis earth pressure equations are NOT theoretical lower bound solutions 
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1. Introduction 

 

Because Mylonakis earth pressure equations (Mylonakis et al. (2007)) do not satisfy the equation of 

equilibrium, they can not be interpreted as theoretical “lower bound solutions.” They may be lower 

bound, but we cannot know it theoretically. We only know it experimentally (or from experience). It 

is not appropriate to say it is “inherently” conservative. It is also not appropriate to say they are 

“solutions,” because they are not solutions of any differential equations. There are three reasons why 

Mylonakis earth pressure equations do not satisfy the equation of equilibrium; one of them is explicitly 

stated in their paper, but two of them are not stated and it is difficult for the readers to notice. This 

document will explain why theoretical lower bound solutions must satisfy the equation of equilibrium 

and why Mylonakis earth pressure equations do not satisfy the equation of equilibrium.  

 

2. Why theoretical lower bound solutions must satisfy the equation of equilibrium? 

 

The lower bound theorem can be derived from the principle of virtual work. In the following, first, the 

principle of virtual work will be reviewed. Then the lower bound theorem will be reviewed. 

 

2.1 The principle of virtual work 

 
Assume a stress field 𝜎𝜎𝑖𝑖𝑖𝑖 that satisfies the equation of equilibrium 

 
𝜎𝜎𝑖𝑖𝑖𝑖,𝑗𝑗 + 𝜌𝜌𝑏𝑏𝑖𝑖 = 0                                 (1) 

 

and a displacement field 𝑢𝑢𝑖𝑖 that satisfies the equation of compatibility 

 

𝜀𝜀𝑖𝑖𝑖𝑖 = 1
2
�𝑢𝑢𝑖𝑖,𝑗𝑗 + 𝑢𝑢𝑗𝑗,𝑖𝑖�.                               (2) 

 
The stress field 𝜎𝜎𝑖𝑖𝑖𝑖 and the displacement field 𝑢𝑢𝑖𝑖 can be completely independent. We do not require 

that they are connected with a constitutive equation. Multiplying Equation (1) with 𝑢𝑢𝑖𝑖, integrating 

over a volume and applying Gauss's law yields 

 



∫ 𝜌𝜌𝑏𝑏𝑖𝑖𝑢𝑢𝑖𝑖𝑑𝑑𝑑𝑑𝑉𝑉 = −∫ 𝜎𝜎𝑖𝑖𝑖𝑖,𝑗𝑗𝑢𝑢𝑖𝑖𝑑𝑑𝑑𝑑𝑉𝑉 = −∫ �𝜎𝜎𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖�,𝑗𝑗
𝑑𝑑𝑑𝑑𝑉𝑉 + ∫ 𝜎𝜎𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖,𝑗𝑗𝑑𝑑𝑑𝑑𝑉𝑉                     

= −∫ 𝜎𝜎𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖𝑛𝑛𝑗𝑗𝑑𝑑𝑑𝑑𝑆𝑆 + ∫ 𝜎𝜎𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖,𝑗𝑗𝑑𝑑𝑑𝑑𝑉𝑉 = −∫ 𝑡𝑡𝑖𝑖𝑢𝑢𝑖𝑖𝑑𝑑𝑑𝑑𝑆𝑆 + ∫ 𝜎𝜎𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑉𝑉 .       (3) 

 

For the final term, we used the Cauchy equation 

 
𝑡𝑡𝑖𝑖 = 𝜎𝜎𝑖𝑖𝑖𝑖𝑛𝑛𝑗𝑗                                     (4) 

 

and the symmetry equation 

 
 𝜎𝜎𝑖𝑖𝑖𝑖 = 𝜎𝜎𝑗𝑗𝑗𝑗.                                     (5) 

 

From Equation (3) we obtain 

 

∫ 𝑡𝑡𝑖𝑖𝑢𝑢𝑖𝑖𝑑𝑑𝑑𝑑𝑆𝑆 + ∫ 𝜌𝜌𝑏𝑏𝑖𝑖𝑢𝑢𝑖𝑖𝑑𝑑𝑑𝑑𝑉𝑉 = ∫ 𝜎𝜎𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑉𝑉 .                     (6) 

 

Equation (6) is called the principle of virtual work. A similar relation can be established for a 

displacement rate field 𝑢̇𝑢𝑖𝑖: 

 

∫ 𝑡𝑡𝑖𝑖𝑢̇𝑢𝑖𝑖𝑑𝑑𝑑𝑑𝑆𝑆 + ∫ 𝜌𝜌𝑏𝑏𝑖𝑖𝑢̇𝑢𝑖𝑖𝑑𝑑𝑑𝑑𝑉𝑉 = ∫ 𝜎𝜎𝑖𝑖𝑖𝑖𝜀𝜀𝑖̇𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑉𝑉 .                     (7) 

 

2.2 Lower bound theorem 

 
Hill (1948) assumed that, for a plastic strain rate 𝜀𝜀𝑖̇𝑖𝑖𝑖

𝑝𝑝  defined at a point on a yield surface in a stress 

space, the rate of plastic work done by the stress 𝜎𝜎𝑖𝑖𝑖𝑖 corresponding to this point is greater than or 

equal to the rate of plastic work done by any stress 𝜎𝜎𝑖𝑖𝑖𝑖∗  within the yield surface: 

 
𝜎𝜎𝑖𝑖𝑖𝑖𝜀𝜀𝑖̇𝑖𝑖𝑖

𝑝𝑝 ≥ 𝜎𝜎𝑖𝑖𝑖𝑖∗ 𝜀𝜀𝑖̇𝑖𝑖𝑖
𝑝𝑝 .                                (8) 

 

This is called the maximum plastic work principle. Figure 1 shows a conceptual diagram showing 
Hill’s assumption. Hill’s assumption holds if the material is convex and 𝜀𝜀𝑖̇𝑖𝑖𝑖

𝑝𝑝  follows the associated 

flow rule. From now on, let us assume that the material is convex. 

 



 
Figure 1 Conceptual diagram showing the Hill’s assumption 

 

 
Figure 2 Soil wedge 

 
Now let us consider a domain (e.g., a soil wedge as shown in Figure 2) with a stress field 𝜎𝜎𝑖𝑖𝑖𝑖 and a 

plastic strain rate 𝜀𝜀𝑖̇𝑖𝑖𝑖
𝑝𝑝  and assume that the domain belongs to either of the following two domains: 

Domain I, where 𝜀𝜀𝑖̇𝑖𝑖𝑖
𝑝𝑝 = 0 (if the material behaves as a rigid body, this applies) 

Domain II, where the stress 𝜎𝜎𝑖𝑖𝑖𝑖 is on the yield surface and 𝜀𝜀𝑖̇𝑖𝑖𝑖
𝑝𝑝  is related to 𝜎𝜎𝑖𝑖𝑖𝑖 with the associated 

flow rule. In addition, let us consider another stress field 𝜎𝜎𝑖𝑖𝑖𝑖∗   which satisfies the equation of 

equilibrium everywhere in the domain and within the yield surface. Then, Equation (8) holds 

everywhere in the domain. By integrating both sides of Equation (8) and applying Equation (7), we 

obtain 

 



∫ 𝑡𝑡𝑖𝑖𝑢̇𝑢𝑖𝑖
𝑝𝑝𝑑𝑑𝑑𝑑𝑆𝑆 ≥ ∫ 𝑡𝑡𝑖𝑖∗𝑢̇𝑢𝑖𝑖

𝑝𝑝𝑑𝑑𝑑𝑑𝑆𝑆                            (9) 

 

because the self-weight vanishes. The surface integral must be taken along 𝑆𝑆1, 𝑆𝑆2 and 𝑆𝑆3 (Figure 

2). However, the traction vanishes for 𝑆𝑆1 and the displacement rate vanishes for 𝑆𝑆2. Consequently, 

the integral along 𝑆𝑆3 remains: 

 

∫ 𝑡𝑡𝑖𝑖𝑢̇𝑢𝑖𝑖
𝑝𝑝𝑑𝑑𝑑𝑑𝑆𝑆3 ≥ ∫ 𝑡𝑡𝑖𝑖∗𝑢̇𝑢𝑖𝑖

𝑝𝑝𝑑𝑑𝑑𝑑𝑆𝑆3 .                          (10) 

 
This gives the lower bound theorem for the earth pressure. If we can come up with a stress field 𝜎𝜎𝑖𝑖𝑖𝑖∗  

which satisfies the equation of equilibrium everywhere in the domain and within the yield surface, the 

associated traction 𝑡𝑡𝑖𝑖∗ gives the lower bound solution. 

 

It should be noted that, for an active case, the traction vector and the displacement rate vector are 

pointing different directions. Therefore, the absolute value of the earth pressure is smaller than the 

lower bound solution. For a passive case, the opposite applies. 

 
In conclusion, for a lower bound solution, the stress field 𝜎𝜎𝑖𝑖𝑖𝑖∗  must satisfy the equation of equilibrium 

everywhere in the domain. 

 

3. Why Mylonakis earth pressure equations do not satisfy the equation of equilibrium? 

 

The remainder of the document will explain why Mylonakis earth pressure equations do not satisfy 

the equation of equilibrium. To begin with, the Kötter equations will be reviewed.  

 

3.1 Kötter equations 

 

In the remainder, the convention changes from “tension positive” to “compression positive”, that is, 

𝜎𝜎 and 𝜏𝜏 are positive if they are acting in the direction shown in Figure 3. In Figure 3, 𝜎𝜎1 and 𝜎𝜎3 

are principal stresses (𝜎𝜎1 > 𝜎𝜎3 ). If we consider the equilibrium of the element, we can obtain the 

following equations: 

 



 

Figure 3 Sign convention (𝜎𝜎 and 𝜏𝜏 are positive if they are acting in this direction) 

 

𝜎𝜎 = 𝜎𝜎1+𝜎𝜎3
2

+ 𝜎𝜎1−𝜎𝜎3
2

cos 2𝜃𝜃                              (11) 

𝜏𝜏 = 𝜎𝜎1−𝜎𝜎3
2

sin 2𝜃𝜃                                 (12) 

 

or 

 

𝜎𝜎 = 𝑝𝑝 + 𝑞𝑞 cos 2𝜃𝜃                                 (13) 

𝜏𝜏 = 𝑞𝑞 sin 2𝜃𝜃                                    (14) 

 

with 

 

𝑝𝑝 = 𝜎𝜎1+𝜎𝜎3
2

                                    (15) 

𝑞𝑞 = 𝜎𝜎1−𝜎𝜎3
2

                                    (16) 

 

Let us consider a domain in the soil in which the stress field satisfies the equation of equilibrium and 

the Mohr circle touches the yield surface everywhere as shown in Figures 4 and 5. In Figure 5, 𝑧𝑧 

denotes the vertical axis. The major principal stress 𝜎𝜎1 is acting on a plane which is rotated clockwise 

by an angle of 𝜆𝜆  from the plane where 𝜎𝜎𝑧𝑧  is acting. The failure surfaces 𝑆𝑆1  and 𝑆𝑆2  are rotated 

clockwise and counterclockwise, respectively, from the direction of 𝜎𝜎1 by an angle of 𝜋𝜋 4⁄ − 𝜙𝜙 2⁄ . 

The angle between 𝑆𝑆1 and the 𝑥𝑥 axis is denoted by 𝜃𝜃. From these configurations, we have: 

 

𝜆𝜆 = 𝜋𝜋
4
− 𝜃𝜃 + 𝜙𝜙

2
                                    (17) 

 



 
Figures 4 Mohr’s circle 

 

 
Figures 5 Principal stresses and failure surfaces 

 

and 

 

𝜎𝜎𝑥𝑥 = 𝑝𝑝 − 𝑞𝑞 cos 2𝜆𝜆                                 (18) 

𝜎𝜎𝑧𝑧 = 𝑝𝑝 + 𝑞𝑞 cos 2𝜆𝜆                                 (19) 



𝜏𝜏𝑥𝑥𝑥𝑥 = 𝑞𝑞 sin 2𝜆𝜆.                                   (20) 

 

It should be noted that 𝜆𝜆 and 𝜃𝜃 can be functions of 𝑥𝑥 and 𝑧𝑧.  

 

Because the stress field satisfies the equation of equilibrium and the Mohr circle touches the yield 

surface everywhere, we have: 

 

𝜕𝜕𝜎𝜎𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜏𝜏𝑥𝑥𝑥𝑥
𝜕𝜕𝜕𝜕

= 0                                   (21) 

𝜕𝜕𝜏𝜏𝑥𝑥𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜎𝜎𝑧𝑧
𝜕𝜕𝜕𝜕

= −𝛾𝛾                                  (22) 

𝑞𝑞 = 𝑐𝑐 cos𝜙𝜙 + 𝑝𝑝 sin𝜙𝜙,                                (23) 

 

where 𝛾𝛾 denotes the unit weight. From now on, we will obtain differential equations in terms of 𝑝𝑝 

and 𝜃𝜃. Using Equations (18) – (20) and using 

 

cos 2𝜆𝜆 = sin(2𝜃𝜃 − 𝜙𝜙)                                 (24) 

sin 2𝜆𝜆 = cos(2𝜃𝜃 − 𝜙𝜙)                                 (25) 

 

we obtain 

 

𝜎𝜎𝑥𝑥 = 𝑝𝑝(1− sin𝜙𝜙 sin(2𝜃𝜃 − 𝜙𝜙))− 𝑐𝑐 cos𝜙𝜙 sin(2𝜃𝜃 − 𝜙𝜙)                  (26) 

𝜎𝜎𝑧𝑧 = 𝑝𝑝(1 + sin𝜙𝜙 sin(2𝜃𝜃 − 𝜙𝜙)) + 𝑐𝑐 cos𝜙𝜙 sin(2𝜃𝜃 − 𝜙𝜙)                  (27) 

𝜏𝜏𝑥𝑥𝑥𝑥 = (𝑐𝑐 cos𝜙𝜙 + 𝑝𝑝 sin𝜙𝜙) cos(2𝜃𝜃 − 𝜙𝜙).                       (28) 

 

Substituting Equations (26) – (28) into Equations (21) – (22) yields 

 

(1− sin𝜙𝜙 sin(2𝜃𝜃 − 𝜙𝜙)) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 2(𝑐𝑐 cos𝜙𝜙 + 𝑝𝑝 sin𝜙𝜙) cos(2𝜃𝜃 − 𝜙𝜙) 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
                  

+ sin𝜙𝜙 cos(2𝜃𝜃 − 𝜙𝜙) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 2(𝑐𝑐 cos𝜙𝜙 + 𝑝𝑝 sin𝜙𝜙) sin(2𝜃𝜃 − 𝜙𝜙) 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 0        (29) 

sin𝜙𝜙 cos(2𝜃𝜃 − 𝜙𝜙) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 2(𝑐𝑐 cos𝜙𝜙 + 𝑝𝑝 sin𝜙𝜙) sin(2𝜃𝜃 − 𝜙𝜙) 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
                       

+(1 + sin𝜙𝜙 sin(2𝜃𝜃 − 𝜙𝜙)) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 2(𝑐𝑐 cos𝜙𝜙 + 𝑝𝑝 sin𝜙𝜙) cos(2𝜃𝜃 − 𝜙𝜙) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝛾𝛾   (30) 

 



From now on, we will introduce curvilinear coordinates 𝑠𝑠1 and 𝑠𝑠2 along the failure surfaces 𝑆𝑆1 and 

𝑆𝑆2 (both upward positive). The relations between the coordinates are 

 

𝜕𝜕
𝜕𝜕𝑠𝑠1

= cos𝜃𝜃 𝜕𝜕
𝜕𝜕𝑥𝑥

+ sin𝜃𝜃 𝜕𝜕
𝜕𝜕𝑧𝑧

                              (31) 

𝜕𝜕
𝜕𝜕𝑠𝑠2

= − sin(𝜃𝜃 − 𝜙𝜙) 𝜕𝜕
𝜕𝜕𝑥𝑥

+ cos(𝜃𝜃 − 𝜙𝜙) 𝜕𝜕
𝜕𝜕𝑧𝑧

                        (32) 

 

which is equivalent to 

 

𝜕𝜕
𝜕𝜕𝑥𝑥

= 1
cos𝜙𝜙

�cos(𝜃𝜃 − 𝜙𝜙) 𝜕𝜕
𝜕𝜕𝑠𝑠1

− sin𝜃𝜃 𝜕𝜕
𝜕𝜕𝑠𝑠2
�                         (33) 

𝜕𝜕
𝜕𝜕𝑧𝑧

= 1
cos𝜙𝜙

�sin(𝜃𝜃 − 𝜙𝜙) 𝜕𝜕
𝜕𝜕𝑠𝑠1

+ cos𝜃𝜃 𝜕𝜕
𝜕𝜕𝑠𝑠2
�.                         (34) 

 

Applying Equations (33) – (34) into Equations (29) – (30) yields 

 

(cos(𝜃𝜃 − 𝜙𝜙) − sin𝜙𝜙 sin𝜃𝜃) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠1

− 2(𝑐𝑐 cos𝜙𝜙 + 𝑝𝑝 sin𝜙𝜙) cos𝜃𝜃 𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠1

                        

+(− sin𝜃𝜃 + sin𝜙𝜙 cos(𝜃𝜃 − 𝜙𝜙)) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠2

− 2(𝑐𝑐 cos𝜙𝜙 + 𝑝𝑝 sin𝜙𝜙) sin(𝜃𝜃 − 𝜙𝜙) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠2

= 0        (35) 

(sin(𝜃𝜃 − 𝜙𝜙) + sin𝜙𝜙 cos𝜃𝜃) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠1

− 2(𝑐𝑐 cos𝜙𝜙 + 𝑝𝑝 sin𝜙𝜙) sin𝜃𝜃 𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠1

                           

+(cos𝜃𝜃 + sin𝜙𝜙 sin(𝜃𝜃 − 𝜙𝜙)) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠2

+ 2(𝑐𝑐 cos𝜙𝜙 + 𝑝𝑝 sin𝜙𝜙) cos(𝜃𝜃 − 𝜙𝜙) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠2

= −𝛾𝛾 cos𝜙𝜙    (36) 

 

From equations (35) and (36) we obtain the Kötter equations: 

 

cos𝜙𝜙 𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠1

− 2(𝑐𝑐 cos𝜙𝜙 + 𝑝𝑝 sin𝜙𝜙) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠1

= −𝛾𝛾 sin(𝜃𝜃 − 𝜙𝜙)                  (37) 

cos𝜙𝜙 𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠2

+ 2(𝑐𝑐 cos𝜙𝜙 + 𝑝𝑝 sin𝜙𝜙) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠2

= −𝛾𝛾 cos𝜃𝜃.                    (38) 

 

 

It should be noted that there are two equations.  

 



3.2 Logarithmic stress fan 

 

Let us consider Kötter equations for 𝑐𝑐 = 0 and 𝛾𝛾 = 0: 

 

cos𝜙𝜙 𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠1

− 2𝑝𝑝 sin𝜙𝜙 𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠1

= 0                           (39) 

cos𝜙𝜙 𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠2

+ 2𝑝𝑝 sin𝜙𝜙 𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠2

= 0.                           (40) 

 

Let us assume that the direction of 𝑠𝑠1 rotates with 𝛽𝛽 as shown in Figure 6: 

 

𝜃𝜃 = 𝜃𝜃0 + 𝛽𝛽.                                  (41) 

 

 

Figure 6 Logarithmic stress fan 

 

The direction of the principal axis rotates accordingly. In this case, the logarithmic spiral expressed as 

 

𝑟𝑟 = 𝑟𝑟0𝑒𝑒𝛽𝛽 tan𝜙𝜙                                  (42) 

 

can reside along the 𝑠𝑠2 axis and can be a candidate for a failure surface. This can be shown as follows. 

If we consider a small increment 𝑑𝑑𝑑𝑑 at an arbitrary point on the spiral, the increment of the distance 

from O is 



 

𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = tan𝜙𝜙 𝑟𝑟0𝑒𝑒𝛽𝛽 tan𝜙𝜙𝑑𝑑𝑑𝑑 = tan𝜙𝜙 𝑟𝑟𝑑𝑑𝑑𝑑.                   (43) 

 

On the other hand, the increment of the coordinate 𝜉𝜉 (shown in Figure 6) is 𝑟𝑟𝑟𝑟𝑟𝑟. Therefore, the angle 

between the spiral and the 𝜉𝜉 axis is 𝜙𝜙. Therefore, the angle between the spiral and the 𝑠𝑠1 axis is 

𝜋𝜋 2⁄ − 𝜙𝜙, which shows that the spiral is parallel to the 𝑠𝑠2 axis.  

 

Let us go back to the Kötter equations. Noting that 

 

𝑑𝑑𝑠𝑠2 = 𝑑𝑑𝑑𝑑
sin𝜙𝜙

= 𝑟𝑟
sin𝜙𝜙

𝑑𝑑𝑑𝑑                                (44) 

 

the latter of the two Kötter equations, Equation (40), can be written as 

 

cos𝜙𝜙 𝜕𝜕𝜕𝜕
𝜕𝜕𝛽𝛽

+ 2𝑝𝑝 sin𝜙𝜙 = 0.                               (45) 

 

This constitutes a differential equation which must be satisfied by the mean stress 𝑝𝑝. The solution is 

 

𝑝𝑝 = 𝑝𝑝0𝑒𝑒−2𝛽𝛽 tan𝜙𝜙.                                  (46) 

 

This means that, for the failure to actually occur along the spiral, the mean stress 𝑝𝑝 must change along 

the spiral as a function of 𝛽𝛽 as shown in Equation (46). This condition is considered in the Mylonakis 

equations (Equation (8) in Mylonakis et al. (2007)). However, the former of the two Kötter equations, 

Equation (39), is not considered in their paper. Another fact to be noted here is that, in the logarithmic 

stress fan, the amount of principal axis rotation between A and B equals to the angle AOB. 

 

  



3.3 There is no space for the “fan” 

 

In the Mylonakis equations, Zone A (near the surface) and Zone B (near the wall) are in different stress 

statuses (Figure 7) and they are connected with the logarithmic stress fan. However, they did not 

mention where is the boundary between the zones and the fan. In addition, they did not mention where 

they evaluated the mean stress in Zone A (in their notation, 𝑆𝑆𝐴𝐴 ). According to my study, 𝑆𝑆𝐴𝐴  was 

evaluated just behind the wall (the red circle in Figure 7).  

 

 

Figure 7 Zone A (near the surface) and Zone B (near the wall) 

 

𝜎𝜎𝛽𝛽 → 𝑆𝑆𝐴𝐴 → 𝑆𝑆𝐵𝐵 → 𝜎𝜎𝜔𝜔 
Figure 8 Steps to evaluate 𝜎𝜎𝜔𝜔 

 

Figure 8 shows the steps to evaluate 𝜎𝜎𝜔𝜔 in Mylonakis et al. (2007). From left to right, Equations (5) 

(10) and (8) in their paper are used. The depth of the red circle from the surface can be evaluated as 

 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ = 𝜉𝜉 sin𝜔𝜔 tan𝛽𝛽 + 𝜉𝜉 cos𝜔𝜔 = 𝜉𝜉 sin𝜔𝜔 sin𝛽𝛽+cos𝜔𝜔cos𝛽𝛽
cos𝛽𝛽

= 𝜉𝜉 cos(𝜔𝜔−𝛽𝛽)
cos𝛽𝛽

.          (47) 

 

From this equation and Equation (4a) in Mylonakis et al. (2007), we have 

 
𝜎𝜎𝛽𝛽 = 𝛾𝛾 ∙ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ ∙ cos2 𝛽𝛽 = 𝛾𝛾𝛾𝛾 cos(𝜔𝜔 − 𝛽𝛽) cos𝛽𝛽.                (48) 

 

From this equation and Equations (5) (10) and (8) in Mylonakis et al. (2007), we have 



 

𝜎𝜎𝜔𝜔 = 𝛾𝛾𝛾𝛾 cos(𝜔𝜔 − 𝛽𝛽) cos𝛽𝛽 �1∓sin𝜙𝜙 cos(Δ2∓𝛿𝛿)
1±sin𝜙𝜙 cos(Δ1±𝛽𝛽)� exp(∓2𝜃𝜃 tan𝜙𝜙).              (49) 

 

Integrating along the soil-wall interface yields 

 

𝑃𝑃 = 1
cos𝛿𝛿 ∫ 𝜎𝜎𝜔𝜔𝑑𝑑𝑑𝑑

𝐻𝐻 cos𝜔𝜔⁄
0 = 1

2
cos(𝜔𝜔−𝛽𝛽) cos𝛽𝛽
cos𝛿𝛿 cos2𝜔𝜔

�1∓sin𝜙𝜙 cos(Δ2∓𝛿𝛿)
1±sin𝜙𝜙 cos(Δ1±𝛽𝛽)�exp(∓2𝜃𝜃 tan𝜙𝜙)𝛾𝛾𝐻𝐻2.     (50) 

 

Comparing this equation with Equation (11) in their paper, we obtain 

 

𝐾𝐾𝛾𝛾 = cos(𝜔𝜔−𝛽𝛽)cos𝛽𝛽
cos𝛿𝛿 cos2𝜔𝜔

�1∓sin𝜙𝜙 cos(Δ2∓𝛿𝛿)
1±sin𝜙𝜙 cos(Δ1±𝛽𝛽)� exp(∓2𝜃𝜃 tan𝜙𝜙).                (51) 

 

This equation coincides with Equation (12) in their paper.  

 

In conclusion, the stress status in Zone A is evaluated just behind the wall (the red circle in Figure 7). 

There is no space for the fan. Zones with different stress statuses are directly connected. Therefore, 

the stress field in Mylonakis et al. (2007) cannot satisfy the equation of equilibrium. 

 

3.4 Failure to satisfy one of the two Kötter equations 

 

Equations (5) in their paper follows the latter of the two Kötter equations, Equation (40). However, 

the stress field does not satisfy the former of the two Kötter equations, Equation (39). In fact, in their 

stress field, the direction of the principal stress is fixed along the 𝑠𝑠1 axis, at least at the boundaries 

(𝜕𝜕𝜕𝜕 𝜕𝜕𝑠𝑠1⁄ = 0 ). However, the mean stress changes linearly (p.965 of their paper) (𝜕𝜕𝜕𝜕 𝜕𝜕𝑠𝑠1⁄ ≠ 0 ). 

Therefore, one of the two Kötter equations is not satisfied. This is the second reason why the stress 

field in Mylonakis et al. (2007) cannot satisfy the equation of equilibrium. 

 

3.5 Neglection of gravity acting on the “fan” 

 

Equations (5) in their paper follows Equation (40) in this document, which does not consider the unit 

weight of the soil in the fan. This is the third reason why the stress field in Mylonakis et al. (2007) 

cannot satisfy the equation of equilibrium. This fact is explicitly mentioned in Mylonakis et al. (2007).  

 

4. Conclusion 



 

The conclusion was already written at the beginning of this document. 
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