1. はじめに

土構造物や基礎構造物などをはじめとする地盤工学における実証設計では、地震度に代表される地震動の種類、揃いの特性に基づく地震動設計の限界を改善することをねらって、耐震性能を考慮した設計体系の導入が提案されている。この設計体系では、土や地盤が変形するという力学的特徴を考慮して、これらの構造物が地震時における変形特性に影響を及ぼす特性を再検討し、それらを踏まえて耐震性能を考慮した新たな設計体系の構築を試みた。

2. 土構造物・基礎の地震被害例とその特徴

土構造物や基礎の地震被害例には種々のものがあるが、その一例として、直杭式構造の基礎の地震被害例を図-1に示す。1995年兵庫県南部地震における神戸港高浜橋の被害である。直杭式構造の標準的な設計では、柱根に加わる地震時慣性力を杭頂面に換算的に作用させ、地中埋設部への配筋を考慮して、杭に加わる曲げモーメントと応力の算定を行う。地震による地盤変位の作用を無視するという点において、多くの杭基礎の設計とも共通する。1995年兵庫県南部地震では、地中にゆるやかな土砂層が存在していたこともあって、標準的な設計で想定していたものとは異なる、杭埋設部に対して地盤変位が新たな負荷として作用する被害が生じた。

この事例からも理解されるところ、杭棧・構造物系の地震被害は、地盤条件によりその被害形態が著しく異なることが多い。また、土構造物や基礎の地震被害において、設計の観点を考慮した設計基準上から地質条件とされるのには、著しい変形であって、崩壊していないことが多い。したがって、このような構造物の耐震設計においては、地盤の耐震性に基づく従来の設計法よりも、構造物の変形や地盤応力状態に基づいて構造物の耐震性能を規定する設計法が適している。

3. 耐震性能設計の流れ

以上のとりまとめから明らかとなるように、土構造物や基礎の耐震設計においては、設計における重要な評価対象物として、地盤および構造物基礎の変形とこれに伴う構造物の変形および応力状態を設計パラメーターとして考慮した設計法の導入が必要である。その際に、設計地震動強さのレベルを適切に定義し、そのレベルに応じた許容被害程度を明確に規定する必要がある。設計地震動強さとしては、以下の2段階の耐震設計を設計基準として導入することが多い：

レベル1 地震動 (L1)：構造物の設計供用期間中に1
〜2度発生する確率を有する地震動
レベル2地震動（L2）：構造物の設計供用期間中に発
生する確率は低いが、大きな強度を有する地震動
L1およびL2の2者を用いる2段階設計法は、1）L1
に対して設計で設定したレベルの使用性能を確保し
2）L2に対する被害形態および被害程度を明確化すること
をねらいている。この2段階設計法は、L2に対する被
害程度規制を満たすものではL1に対する使用性能を確保
できない場合、あるいはL1に対する設計のものではL2
に対する耐震性能が確保できないなどの状況が想定され
る場合に用であり、世界のなかでは地震活動度の高い
レベルの地域がこれに該当する。我が国もこのような
高レベルの地震活動度の地域に属していると考えられ
る。特に注意したい点として、L2のような極端な地震動に
対する設計のためでは、これより低いレベルのL1地震動
に対する耐震性能照査において、L2に対するものよりも
厳しく設計したL1に対する被害程度規制が、自動的
に満たされる保証がない点がある。

許容被害程度、対象施設の利用形態・構造物システム全体としての機能確保などの諸条件を踏まえて規定し、表〜1に示すように、あらかじめ構造物と機能被害に
分け検討し、最終段階でこれらを総合的に判断して
許容被害程度を設定することにより、許容被害程度
の意味づけにおける混乱が避けることができると考えられる。

表〜1 耐震性能設計における許容被害程度

<table>
<thead>
<tr>
<th>許容被害程度</th>
<th>構造被害（直接被害）</th>
<th>機能被害（間接被害）</th>
</tr>
</thead>
<tbody>
<tr>
<td>被害程度Ⅰ</td>
<td>無被害ないし軽微な被害</td>
<td>機能維持ないし軽微な機能低下</td>
</tr>
<tr>
<td>被害程度Ⅱ</td>
<td>限定被害*</td>
<td>短時間の機能停止***</td>
</tr>
<tr>
<td>被害程度Ⅲ</td>
<td>著しい被害（被者失はしない）</td>
<td>長期間の機能停止ないし機能喪失</td>
</tr>
<tr>
<td>被害程度Ⅳ</td>
<td>削減****</td>
<td>機能喪失</td>
</tr>
</tbody>
</table>

* 人命や財産の保全、被災復活ないし緊急防災対策、有形物や危
険物取扱うなどの機能を果たす施設の場合に、上表に示す一
般的な項目が加え、これら施設持分の機能の観点からの許容被
害程度を考慮すべきである。

** 限定された被災者有なし発災状態。

*** 短期間の被災復旧完了までの機能喪失。

**** 建物構造物の建物の建物への影響を考慮する。

表〜2 耐震性能グレード S, A, B, C

<table>
<thead>
<tr>
<th>耐震性能グレード</th>
<th>設計</th>
<th>地震動</th>
</tr>
</thead>
<tbody>
<tr>
<td>レベル1（L1）</td>
<td>グレードS</td>
<td>被害程度Ⅰ</td>
</tr>
<tr>
<td></td>
<td>グレードA</td>
<td>被害程度Ⅱ</td>
</tr>
<tr>
<td></td>
<td>グレードB</td>
<td>被害程度Ⅲ</td>
</tr>
<tr>
<td></td>
<td>グレードC</td>
<td>被害程度Ⅳ</td>
</tr>
</tbody>
</table>

設計の基本

耐震性能グレード：S, A, B, C

解析手法
1. 積分解析
2. 動的解析
3. 物理解析

入力
地震動
地盤条件
構造物設計または構造物損傷

出力
破壊
破壊
（破壊波の発生の有無）

設計耐震性能の流れ

図〜2 耐震性能設計の流れ

February, 2003
論 文

S, A, B, C 以外の耐震性能を導入してもよい。一般に、
直列システムとして機能を果たす構造物系の場合には、
グレード A ないし B にグレードをそろえた設計が適当
な場合が多いと思われるのに対して、並列システムの場
合には、グレード S のような高グレード化のものもあり、
適宜導入していくことにより、全体として合理的な設計
が可能となるものと思われる。

2) 被害程度規準の設定：許容被害程度を変位、極
限応力状態、塑性率などの工学的パラメーターにより規
定する。これについては、「4. 被害程度規準」において
解説する。

3) 耐震性能照査：耐震性能照査は構造物の地震応
答解析結果として得られる工学的パラメーターを基に設
定した被害程度規準との比較により行う。仮に解析結果
が被害程度規準を満たさない場合には、原設計断面を
し现存構造物を改良する。設計変更としての地盤改良も
、この段階で必要となる。

4. 被害程度規準

前章で述べたとおり、耐震性能設計においては、許容
被害程度を、対象構造物の地震応答特性を考慮して、変
位、限界状態応力、ひずみ、塑性率などの工学的パラ
メーターにより規定する。これを被害程度規準という。
被害程度規準は、前章に示した表 1 に基づいて、対象
施設の利用形態、構造物群全体としての機能確保などの
諸条件も考慮しつつ、主に設計に関して高度の知識・技
術を有する専門家が主体となって設定するのがよいであ
う。例えば、重力式岸壁の被害程度規準の設定におい
ては、図 3 に示すような照査項目を設定し、それぞれ
の項目について、被害程度Ⅰ～Ⅳまでを設定することと
なる。

5. 耐震性能照査における解析法種別

耐震性能照査型設計における地震応答解析では、物構
造物や基礎の地盤時挙動を評価し、その結果があらかじ
め設定した被害程度規準を満たすか否かについて照査す
ることを目的とする。解析法の選定においては、それらの
耐震性能照査に適した解析法を選定する必要があり、
一般に、耐震性能グレードが高い施設には高度の解析手
法が必要となる。

地震危険度解析は、表層地盤の地震応答／液状化解析お
よび土構造物や構造物の基礎応答解析には種々のものがあ
る。これらの解析法は、例えば港湾構造物の場合、その
難易度および解析能力によって以下のようになされるべきである。

1) 簡易解析：滑動限界または弾性応答限界の概略
評価、および構造物の残留変位の概略オーダーの評価に
適した解析

2) 簡易動的解析：より広い適用性があり信頼性も
より高い。あらかじめ想定した被害形態のもとでの変位、
応力、塑性率、ひずみの評価が可能な解析

3) 動的解析：最も高度。地震時に発生する被害形
態および被害程度の評価が可能な解析

表 3 耐震性能グレードに応じた解析法種別

<table>
<thead>
<tr>
<th>解析法種別</th>
<th>耐震性能グレード</th>
</tr>
</thead>
<tbody>
<tr>
<td>簡易解析</td>
<td>Grade C</td>
</tr>
<tr>
<td>簡易動的解析</td>
<td>Grade B</td>
</tr>
<tr>
<td>動的解析</td>
<td>Grade A</td>
</tr>
<tr>
<td>凡例:</td>
<td>標準的設計ないし設計の最終段階に用いる</td>
</tr>
<tr>
<td>構造設計ないし世界でも地震活動が低く設計地震動が小さい場</td>
<td></td>
</tr>
</tbody>
</table>

各耐震性能グレードに対して最も適切と見られる解析
法種別を表 3 に示した。この表においては、耐震性能
グレードが高い構造物ほど高度の解析法が必要になると
いうことを基本としている。同表に示すとおり、より難
易度の低い解析法も、概略設計段階などでは用いるこ
のできる。

解析法の例としては、重力式岸壁の場合には、簡易解
析では難易度、簡易動的解析では剛体滑動解析または簡
易算定チャート、動的解析では非線形有限要素法、など
がある。

6. おわりに

土構造物や基礎の耐震性能設計は、土の極限荷重に
基づく既存の設計法の限界を改善することをねらったも
のである。このため、設計における主要な評価対象とし
て、地盤および構造物基礎の変形および耐久性を考慮し、
新しい解析法を適用する。その結果、設計段階において、
構造被害と機能被害をもたらすと仮定された形で
検討した上で最終的に総合的な被害程度を設定する点、
種々の解析法種別を耐震性能グレードなどを関連づけて
選定する点、など、土構造物や基礎の耐震設計に適する
と思われる要素を盛りこんだ点に特徴がある。

参考文献

1) SEAOC: Performance based seismic engineering of
buildings, Structural Engineers Association of California,
Sacramento, California, 1995.
2) PIANC: Seismic design guidelines for port structures,

(原稿受理 2002.10.30)