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ABSTRACT: A finite element modeling for liquefaction analysis, which is free from volume locking and
hourglass instability is proposed. Volume locking occurs under undrained condition or similar in the liquefaction
analysis, and hourglass instability occurs when excess reduced integration is employed to avoid volume locking.
Proposed method employs different numerical integration schemes for porewater and soil skeleton to build
element matrices: ordinary integration for soil skeleton and reduced integration for all other element matrices.
Numerical examples are made to evaluate effectiveness and accuracy of the proposed method by comparing
other existing methods. The proposed method is shown to be accurate and to be free from both volume locking
and hourglass instability. Finally, case study of liquefied ground is made to simulate Akita port damaged during
the 1983 Nihonkai-chubu earthquake, and succeeded to explain the damage.

1 INTRODUCTION

Many design specifications have employed concept of
performance-based design after the 1995 Hyogoken-
nambu (Kobe) earthquake in Japan. Liquefaction anal-
ysis is sufficient to predict onset of soil liquefaction
in many past design specifications, because remedial
measures are considered if liquefaction will occur. Itis
not enough, however, in the performance based design
because onset of liquefaction is allowed to occur if
expected functions of a structure are not lost. It indi-
cates that prediction of the behavior after the soil lig-
uefaction is required with high accuracy. Past blind
tests and bench mark calculation have shown, however,
that there exists many scattering in the existing com-
puter programs (see Yoshida, 1998, for example), and
that evaluated displacement especially scatters widely
(e.g., JSCE, 2003).

Two issues are at least to be considered in predicting
displacement after the soil liquefaction. The one is a
stress-strain model. Since state point comes very close
to failure line during liquefaction, slight difference of
stress by the analysis will result in large difference of
strains and displacements. The other is a finite element
formulation discussed in this paper.

Volume change of porewater is expected to be very
small in the liquefied soil during earthquakes because
porewater that flowed into or out of the soil elements
is very small as duration of earthquakes are very short.
A typical example is an undrained condition that has
frequently employed in the past liquefaction analyses.
Under the undrained condition, porewater does not
flow out of and flow in an element, or soil skeleton

behaves with porewater as one body, which will be
called as apparent soil element in this paper. Since
bulk modulus of water is much larger than that of soil
skeleton, Poisson’s ratio of the apparent soil element
is close to 0.5, or volume change hardly occurs.

Volume locking occurs if Poisson’s ratio is close
to 0.5 as pointed out by Yasuda et al. (1999) and
Yamada (2007), et al. It occurs because apparent stiff-
ness of finite element becomes very large, resulting
in very small displacement (see Yasuda et al., 1999,
for example, to grasp how it works). In the case of a
quadrilateral element under no volume change condi-
tion, for example, deformation into trapezoid shape, in
which there is no volume change in a whole element,
requires significant volume change in each integration
point to evaluate element stiffness matrix, but volume
change is prohibited by the constitutive model, which
result in very stiff element stiffness both for shear
and volume change. It hardly occurs in the ordinary
geotechnical problems, but it occurs in the liquefac-
tion analysis because volume change is not allowed in
apparent soil element although it is possible in only
soil skeleton.

Several methods have been proposed to avoid vol-
ume locking. Reduced Integration is the most popular
solution, in which reduced integration is made to
develop element stiffness matrix. Volume locking does
not occur if integration is made by means of the Gauss-
Legendre integration scheme by using quantities at
the center of a quadrilateral element where volume
change does not occur under a trapezoid shape defor-
mation. Some computer programs such as LIQCA
(LIQCA dev. Team, 2002) employed this method. Use
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of excess reduced integration such as this, however,
creates another problem which is usually called hour-
glass instability or zero-energy mode deformation.
Since volumetric strain is zero at the integration point
in the preceding case, a trapezoid shape deformation
is free to occur under zero energy, which is the rea-
son why it is called zero-energy mode. On the other
hand, the name of hourglass instability comes from
its shape; appearance of two deformed neighboring
elements looks like an hourglass.

Anti-hourglass stiffness has been proposed to avoid
hourglass instability, and some FE computer programs
employ it (Yoshida, 1993; Fukutake, 1997). Conceptto
add specially designed stiffness was proposed against
shear locking (Flanagan, 1981) related to the prob-
lem of beam bending. Various improvements have
been proposed on shear locking after that. Selective
Reduced Integration (SRI) method (Bathe, 1982), for
example, is one of the successful methods in this field,
in which deformation is separated into shear and vol-
ume change and excess reduced integration is made
only for shear deformation. Few researches were, how-
ever, made on volume locking, partly because there is
few materials that show no-volume change behavior,
except mixture such as soil particle and water treated in
this paper. Although phenomena are similar between
shear locking and volume locking, mechanisms are
different. In this paper, we propose a method to avoid
volume locking, and examine accuracy of the proposed
method through numerical example.

2  PROPOSED METHOD

In the liquefaction analysis, apparent Poisson’s ration
comes close to 0.5. In the undrained condition, which
is frequently employed in the liquefaction analysis
because porewater that goes out of or comes in an soil
element is very small, apparent bulk modulus (bulk
modulus of the mixture of soil particle and porewa-
ter), yields K + K,,/n, where K is bulk modulus of soil
skeleton, K, is that of water, and # is porosity. Since
K,, is much larger than K, Poisson’s ratio is large even
at the state before earthquakes; it is usually 0.45 or
larger. It becomes larger as shear modulus becomes
smaller because of generation of excess porewater
pressure or decease of effective confining stress.
Poisson’s ratio of soil skeleton is not so large; it
is about 0.3 (Kokusho, 1980). The large Poisson’s
ratio, therefore, comes as soil particles and porewa-
ter behave as one body. Partly because formulation
becomes much simpler when soil is treated as such a
way, past improvement on this problem is made only
on undrained condition; governing equation becomes
identical with that of total stress analysis by replac-
ing bulk modulus into that of mixture, K + K, /n.
One of the author apply anti-hourglass stiffness only

on soil skeleton (Yoshida, 1993), and succeeded to
consider drainage between soil elements as well as
undrained condition. According to this experience,
however, use of specially defined additional stiffness
(anti-hourglass stiffness) is inconvenient in practical
use, and a more convenient method is required.

Finite element formulations of Biot’s equation
(Biot, 1941) which deals with two phase material have
been proposed by many researchers (see JGS, 2007,
for past formulations, for example). These formula-
tions, however, does not tell how to solve the problem
discussed in this paper; most of them do not deal
with detailed numerical integration scheme required
to solve volume locking.

2.1 Governing equations

We start our governing equations from u-U formula-
tion, the most accurate formulation of Biot’s equation.
The overall equilibrium equation is

L' — pb+ (p — nyr)u + npr =0 )

It is noted that descriptions are made by, so-called,
Voigt form, and bold letters denote matrix or vector.
The variable u denotes displacement of soil skeleton,
U is that of porewater, p is density of soil (mixture of
soil particle and water), b is body force, oy is density of
water, and o is total stresses. The differential operator
L is introduced in calculating strain from displacement
in two-dimensional analysis as

_ | 9/ox 0 a/dy
LT—[ 0 /3y a/ax] @

Next, equilibrium equation of only porewater is
given by

n
n

Vp + ok (U — W) + pr i + %I’J —pb (3)
where p is excess porewater pressure, g is accelera-
tion of gravity, & is permeability, »n is porosity, and
V = {9/0x 9/dy} is differential operator. Finally,
continuity equation yields

m'e = T (U — i) + Kip ()

where m is a vector that works same with Kronecker’s
8 in the tensor expression; argument of m is unity
for normal component and is zero for shear compo-
nent. Excess porewater pressure p can be eliminated
from Equations (3) and (4) under the assumption that
K,, is not infinite, resulting in #-U formulation. The
bulk modulus of water K,, is usually assumed to be
infinite in the consolidation analysis. Infinite K,,,, how-
ever, result in infinite P-wave velocity in the dynamic
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problem, therefore, it is hardly used. This indicates
that u-U formulation is also an exact formulation of
Biot’s equation. These equations are resulted into a
finite element form as (see JGS (2007) for detailed

derivation)
M 0 ﬁ Cuu _CuU ﬁ
0 MY|\F + —cwT W g
K + Kuu KuU u Fu
+ [KuUT KUU:| {ﬁ} = {FU} ©)

where variable with upper bar indicates quantity that
belongs to a node. Displacement in an element can
be obtained by using displacement at all nodes and
interpolation function N* and NY as

u=Na, U=N'T (6)

where

M = /;/(N“)T(p —nps)N“dV . density of soil
skeleton

MY = / NUTn,ofNUdV : density of porewater
14

c" = /I;N”TpfgkflnzN“dV: influence of
viscosity on soil skeleton
cv = /I;N”Tp/gk’lnzNUdV: interaction of
viscosity
CcW = / NUT,ofgk_lnzNUdV: influence of
v
viscosity on porewater
K= -/;/ (LNY)TD(LN*)dV : element stiffness
of soil skeleton
/ (VTN”)T(I ny’ K (VINY)aV -
interaction of stiffness
KW =/(VTN“)T(1 — K, (VINDV :
4
interaction of stiffness
U= /V VINDYT K, (VINYYAY : element

stiffness of porewater

F' = / N“T(p — npy)bdV + f NIT ds
v N

+ / N“T(1 — n)TPdS : external force on soil
v
skeleton
FY :/NUTnTpdS—i—/ NUTnpfde: external
s v

force on porewater

T = —so’ : force on a face of soil skeleton

TP = —tp : force on a face of porewater

where s is a direction cosine matrix, t is a direction
cosine vector of the surface load, o’ is effective stress
vector and D is stiffness matrix of soil skeleton. Inte-
grals dV and dS indicate integral in an entire.

2.2 Integration scheme in element

In the formulation of Biot’s equation, it is natural to
model soil skeleton and porewater separately, and to
consider interaction between them in the FE modeling.
Integrations in an element are calculated by the Gauss-
Legendre integration. Stiffness matrix K, for example,
is calculated for a quadrilateral isoparametric element
in a two-dimensional problem as,

K= / (LNY)TD(LN*)dV
V

D;; (LN"); @)

2 2
=TS man]

i=1 j=1

where wj; is an weighting coefficient and subscripts
i and j indicates integration points. Number of inte-
gration points in one direction is two in Equation 7,
which is, therefore, called 2 point integration in the fol-
lowing although there is four integration points in an
element in the two-dimensional analysis. As explained
in the preceding, this integration causes volume lock-
ing under no-volume change condition or similar. In
order to avoid volume locking, we need to proceed a
more excess reduced integration, in which number of
integration point is one instead of two, and is usually
called one-point integration.

A simple two-dimensional problem is dealt with in
this paper, which uses quantities only in two dimen-
sions, and is different from plane strain or plane stress
condition. Then the stiffness matrix is divided into
shear deformation related term and the rest as

260 0 K—G Kg 0
D=|0 2G 0|+|K-G K¢ © (8)
0 0 G 0 0 0
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SRI against shear locking employs two-point integra-
tion to latter part (volume change term) and one-point
integration to former part (shear deformation term).
Therefore, we need to employ one-point integration to
the latter term and two-point integration to the former
term in order to avoid volume locking. This method is,
however, inconvenient in the liquefaction analysis in
which the consideration of dilatancy (volume change
associated with shear deformation) is indispensable;
constitutive model is not so simple as Equation (8).

Water is originally instable against hourglass defor-
mation because it does not have shear resistance, and
Poisson’s ratio of soil skeleton is far from no vol-
ume change deformation. Therefore, it is reasonable
to employ two-point integration for soil skeleton and
one-point integration for water. Then a new problem
appears; which integration scheme is to be employed
in the interaction term such as K, K«V, KUV, Cu,
C"YU, and CYY. As shown in the next section, we
suggest using one-point integration for all these inte-
grations; two-point integration is made only for K. It
means that deformation like hourglass mode is car-
ried only by soil skeleton, which is natural feature
because porewater does not resists against hourglass
deformation.

3 NUMERICAL EXAMPLE

Two numerical examples are made to show effective-
ness and accuracy of the proposed method. The first
example discuss accuracy of method, and the second
is an example for liquefaction analysis.

3.1 Choice of integration

There appears several element stiffness matrices in
the finite element formulation in Equation (5), and
numerical integration scheme on each matrix are of
our interest. Accuracy of each integration scheme is
evaluated in this sub-section by using a simple model.

3.1.1 Analyzed model

A simple rectangular element shown in Figure 1 is
used to examine accuracy of the finite element model-
ing scheme. In order to escape from factors that are
not related to the present problem, we apply hour-
glass force of Q (pair of two force couples) which
is also shown in Figure 1. Accuracy is examined by
comparing hourglass displacement § (deformation like
trapezoid shape shown in Figure 1) under the action of
hourglass force Q. Parameters used in the example are
also shown in the figure, where G is shear stiffness and
v is Poisson’s ratio of soil skeleton. Undrained condi-
tion (v = U) is also employed in order to make dis-
cussion simple, under which apparent Poisson’s ratio
of an apparent soil element becomes 0.499.

a=b=05m
0=1000kN

G =10000 kN/m?
v=0J3

K, =2.222 x 10° kN/m?
n=0.5

2b

v —

o | 2a
)

v

Figure 1. Rectangular model.

3.1.2 Beam analogy

Exact solution of the problem in Figure 1 is not known.
We employ beam analogy to obtain a solution that can
be compared with proposed method, because defor-
mation in Figure 1 looks like deformation of beam
under pure bending. If it is pure bending deformation,
moment-curvature relationship is obtained based on
Bernoulli-Euler theory, as

M = Elk )
where M is bending moment, £ is young’s modulus, /

is moment of inertia, and « is curvature. Equilibrium
condition in Figure 1 is

M =20b (10)

Then hourglass deformation is calculated as § =
bk, yielding § = 0.2308 m under the action of Q
1000 kN. It is noted that this is not exact solution
because bending deformation and hourglass deforma-
tion assumed here are a little different to each other.
The width 2a is, for example, infinitesimally small in
the beam theory whereas it is finite value in Figure 1,
top and bottom edges curves in the beam whereas
it is straight, and bending moment is caused by dis-
tributed load in the beam whereas it is caused by con-
centrated force at node. In other words, hourglass
deformation in Figure 1 is obtained by restraining the
bending deformation. Therefore, expected displace-
ment against hourglass deformation is smaller than the
displacement by the beam theory in Equation (9).

3.1.3 Element stiffness matrix
Parametric studies are made on the method of analysis
and method of integration in an element. Both one
phase (total stress) analysis and two phase analysis
are made.

In the total stress analysis, soil skeleton and pore-
water behave as one body in whole element, which is
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called an apparent element in the preceding. The inte-
gration of element stiffness matrix K is of interest in
this case. The governing equation is obtained by set-
ting bulk modulus to be K + K,,/n. The following 6
integration methods are investigated.

a. Two-point integration: Integration at two points.

b. Reduced Integration: Integration at one point.

¢. Reduced Integration with anti-hourglass stiffness:
Anti-hourglass stiffness (Flanagan, 1981) is added
to the stiffness obtained by one-point integration.

d. Selective Reduced Integration: Stiffness matrix is
divided into shear deformation component and vol-
ume change component, and two-point integration
is employed to the shear deformation component
and one-point integration to the volume change
component.

e. Selective Reduced Integration only for soil skele-
ton: Only soil skeleton is considered, and stiffness
matrix is evaluated by SRI method. This case is
made only to compare with other methods.

f. Two-point integration only of soil skeleton: Same as
before except that integration is made by two-point
integration.

Next, two phase material is modeled by u-U for-
mulation. The constraint of undrained condition is
given only at nodes as U = u in this formulation. In
this example, however, displacements become same in
whole elements because the same interpolation func-
tions are used for both soil skeleton and porewater. The
following cases are examined by changing integration
schemes.

a. Two-point integration: Integration at two points for
all matrices.

b. Reduced Integration: Integration at one point for
all matrices.

c. Proposed method: Two-point integration is used
only to stiffness matrix of soil skeleton K and one-
point integration to the rest.

d. Selective Reduced Integration: SR1 is applied only
to stiffness matrix of soil skeleton K and one-point
integration to the rest.

3.1.4 Results and discussion
Results of analysis are summarized in Table 1.

In the total stress analysis, displacement by two-
point integration is very small to be order of 1/100,
indicating the appearance of volume locking. As stiff-
ness matrix becomes singular in one-point integration
because no strain occurs at the center of an element
although is not a rigid 1 body deformation, displace-
ment cannot be obtained or infinite displacement is
expected in this case, therefore the result is shown as
‘infinite’ in the table. On the other hand, stable behav-
ior is obtained by introducing anti-hourglass stiffness,
and the result is close but a little smaller compared with
the beam theory. Volume locking does not occur when

Table 1. Results of analysis.

Type Method of integration 8 (m)

Beam theory 2.308 x 107!

Total stress 2 points 1.338 x 1073
RI Infinite
RI + anti-hourglass stiffness ~ 2.185 x 10!
SRI 2.000 x 107!
SRI (only soil skeleton) 2.000 x 107!
2 points (only soil skeleton) 1.556 x 107!
The number of
integration point
K Ku KuU KUU § (m)

u-U 2 2 2 2 1.338 x 1073

formulation 2 2 2 1 1.779 x 1073

(peronedir) 2 2 1 2 2.654 x 1073
2 2 1 1 5219 x 1073
2 1 2 2 1.779 x 1073
2 1 2 1 2.654 x 1073
2 1 1 2 5.219 x 1073
2 1 1 1 1.556 x 107!
1 2 2 2 1.350 x 1073
1 2 2 1 1.800 x 1073
1 2 1 2 2.700 x 1073
1 2 1 1 5.400 x 1073
1 1 2 2 1.800 x 1073
1 1 2 1 2.700 x 1073
1 1 1 2 5.400 x 1073
1 1 1 1 Infinite
SRI1 1 1 2.000 x 107!

*RI: Reduced Integration.
SRI : Selective Reduced Integration.

SRI is used because effect of volume change is eval-
uated at the center. In addition, hourglass instability
does not occur because shear deformation is evaluated
by four points in an element. Displacement by SRI
is close but a little smaller than that of anti-hourglass
stiffness. Both SRI for an apparent soil element and for
a bare soil skeleton gives the same displacement and
two-point integration for soil skeleton gives smaller
displacement than these cases. It may indicate that
volume locking may affect displacement even when
Poisson’s ratio is as small as 0.3.

In the two-phase analysis, there are several element
stiffness matrices related to interaction between soil
skeleton and water. If two-point integration is used for
matrices related to porewater (K,,,, K,v, Kyy), dis-
placements are remarkably small compared with the
displacement by beam theory as well as by total stress
analysis. On the other hand, if SRI is used for stiffness
matrix of soil skeleton with one-point integration to
matrices related to porewater, result is same as that of
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SRI in total stress analysis; SRI gives the same ele-
ment stiffness matrix both for total stress analysis and
u-U formulation. It indicates that proposed method
is appropriate and that calculation of the all matri-
ces related to porewater is to be integrated by excess
reduced integration to avoid volume locking.

Displacement by the proposed model is 22% smaller
than that of total stress analysis with SRI only for soil
skeleton. This indicates that element stiffness between
two-point integration and SRI are different. Since there
is no exact solution of this problem, it is meaningless
to continue discussion on accuracy more. What impor-
tant is that two displacements are of the same order as
the beam theory.

It is emphasized that proposed method has an
advantage in respect to the treatment than the SRI
because the problem on how to treat dilatancy is not
clear in the SRI method. It is also advantage of the pro-
posed method that it shows same results as ordinary
two-point integration when there is no water.

3.2  Application in liquefaction analysis

The 1983 Nihonkai-chubu earthquake caused signifi-
cant damage in Akita Port by soil liquefaction. A typi-
cal example of damage is shown in Figure 2; sheet pile
quay wall moved towards the sea and apron subsided.
Liquefaction analysis is made at this site.

3.2.1 Analyzed model
Figure 3 shows finite element mesh. It is same as lai
and Kameoka (1993). A sheet pile wall at the quay
wall and steel pipe pile for supporting pile is mod-
eled into beam element, and a tie rod is modeled to
a bar element. Dashpot is installed at the base of the
model so that incident wave can be considered. It is
also used along the lateral boundary and connected
to free fields at both ends. Water element is build by
the same method with other plane strain element, but
shear modulus is set zero.

A multi spring model (Towhata and Ishihara, 1985)
is used for constitutive model of soil skeleton; which

Figure 2.

Damage to apron of Gaiko district, Akita port.

Unit: mm

Sheet pile

Figure 3. Finite element mesh.

T T V=2

External force F
causing displacement u

Nonlinear spring

0 (ci-0\)2
(e-€0)/2

Rigid wall / F= {(6 :-1:(::) /2}
_ f ()2 }
u Y2

Figure 4. Schematic figure of multi-spring model.

is schematically shown in Figure 4. A hyperbolic
model is employed for stress-strain model of indi-
vidual spring. A generalized stress-dilatancy model
(Gutierrez, 1989)

sydée,
deyg = pde’ — =" (11)

m

is used in order to consider excess porewater genera-
tion, where &,, is volumetric strain due to dilatancy,
[ is stress ratio at phase transform, e is equivalent
strain, s;; and e;; are deviatric stress and strain, respec-
tively, o, is effective confining stress, and superscript
p indicates plastic component. This type of model,
however, is known to result in stable stress-strain
behavior after phase transform. Therefore, we need
another degrading mechanism.

At first, adegrading factor ZA4 is introduced such that

1/Z42—1

(12)

74 = <1 + (241 Zde)m)

and total volumetric strain due to dilatancy is expres-
sed as

eva =Y ZF (dva) (13)
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In the same manner, stress ratio at phase transform
sin ¢, is expressed as
sing), = sin ¢, + (sing™ —sing,,)(1 —Z4) (14
¢* is upper bound of ¢.

A recorded earthquake motion was obtained at
Akita port during the Nihonkai-chubu earthquake.
Duration of the record is about 80 seconds, in which
predominant part (20 seconds) shown in Figure 5 is
used in the analysis as input earthquake motion. Since
this wave is observed at the ground surface, it is treated
as outcrop motion, and a half of it is treated as incident
wave.

3.2.2 Properties and method of analysis

Mechanical properties of soil and other structural ele-
ments are set as shown in Tables 2 to 4, where p is
density, n is porosity. Both Gy and K, are shear and
bulk modulus, respectively, and are proportional with
square root of effective confining stress, and o,,, is

)
g 2
=1
.% 0
g-1
322
-3

10 15 20 25 30

Time (sec.)
Figure5. Predominantpartof observedrecord at Akita port.
Table 2. Mechanical properties of soil.
P Go Ko Oa

Material (m?) n  (KN/m?) (kN/m?) (KN/m?) sin oy
Sand1 1.8 0.8 33800 84500 50 0.602
Sand2 2.0 0.8 33800 84500 50 0.602
Sand3 2.0 0.8 72200 180500 110 0.656
Clay 1.5 0.8 74970 187430 140 0.629

Table 3. Liquefaction properties of sand.

Material  sing, ZF G* sin p*  ZA1  ZA2
Sand 2 0.469 0.5 1000 0.6 20 25
Sand 3 0469 0.1 1000 0.6 2 2.5
Table 4. Mechanical properties of structural element.
Material ~ p (m?®) E (KN/m?)  A(m) I(m3)
Sheer pile 7.5 2.06x10%  0.0306 0.00086
Pipe pile 7.5 2.06x10%  0.0058 0.000395
Tie rod 0 2.06x108  0.00159 0

reference strain at which Gy and K are defined. For
structural element, £ is Young’s modulus, and A and [
are cross-sectional area and moment of inertia per unit
length (1 m), respectively.

Initial stress is evaluated by setting coefficient of
earth pressure at rest is 0.5. In other words, initial
effective overburden stress o, is evaluated by o, =
[ p'dh and horizontal normal stress is evaluated by
multiplying Ky = 0.5.

Numerical integration is made by Newmark’s S
method, where time increment is 0.01 seconds. The
unbalanced force is carried into next time increment
so that total equilibrium is approximately holds.

The analysis is carried out under the undrained con-
dition, i.e., U = u.

3.2.3  Result of analysis and discussion
Displacement time history at the sheet pile and the
ground is shown in Figure 6. The sheet pile wall grad-
ually moves towards the sea, which yields about 0.3 m
at the end of the analysis, which is somewhat smaller
than observed displacement.

Figure 7 shows residual deformation pattern. Cen-
ter part of the apron subsided, which is similar to
Figure 2. However, settlement at steel pipe pile seems
small, whereas it settled more in actual situation in
Figure 2. If, however, steel pile was installed into
the non-liquefied ground, significant settlement is not
expected. It indicates that supporting ground of may

Displacement (m)
B

N A AVAVEVAWN

10 s 2
Time (sec.)
(a) Horizontal displacement at top of sheet pile wall

A
bl

30

n

o

>

o
T

Displacement (m)
o
B s
;

&
b

>

15 20 25 Y
Time (sec.)

(b) Vertical displacement of ground back to sheet pile

Figure 6. Displacement time history.

Figure 7. Residual deformation.
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Figure 8.

Residual excess porewater pressure ratio.

liquefy. However, as shown in Figure 8, supporting
ground does not liquefy in the analysis.

This disagreement may explain the reason why
displacement of quay wall is smaller than observed
displacement. If liquefaction occurs more deep near
the steel pile, rigidity in horizontal direction becomes
much smaller than evaluated in this analysis. In other
words, horizontal stiffness of steel pipe constrains
horizontal displacement of quay wall towards the sea.

Finally, liquefaction occurs in “sand 2” in figure 3
at the back of the sheet pile quay wall, but “sand 3”
does not liquefy. On the other hand, at the front of the
quay wall, “sand 3” liquefies. This can be explained
by considering that initial stress is smaller at the front
of the quay wall than at the back of the quay wall.

In conclusion, damage of the Akita Port during
the 1983 Nihonkai-chubu earthquake can be explained
qualitatively, but there seems some disagreement. This
may be caused that liquefaction does not occur in
“sand 3” in the analysis; therefore, a more detailed
consideration is required for the mechanical property
of “sand 3”.

4 CONCLUDING REMARKS

A new finite element formulation is proposed in the
liquefaction analysis. It is based on u-U formulation,
one of the most exact formulations of Biot’s equa-
tion, and soil skeleton and water is modeled as it
is. The proposed method consists of ordinary Gauss
integration for integration related to soil skeleton and
reduced integration for other matrices; therefore, it
is more convenient to handle compared with SRI
method. This method has advantage that volume lock-
ing, which occurs when Poisson’s ratio comes close to
0.5, does not occur, and hourglass instability, which
occurs under excess reduced integration, does not
occur, too. In addition, dilatancy, which is necessary
to be considered in the liquefaction analysis, can be
naturally considered.

Numerical examples are carried out to evaluate
accuracy of the integration scheme, and the following
conclusions are obtained.

1. Volume locking as well as hourglass instability does
not occur in the proposed method. Displacement is

the same order as those by other methods that can
avoid volume locking and hourglass instability.

2. Bothtotal stress analysis and u-U formulation gives
the same results when selective reduced integration
is employed.

3. Displacements by two-point integration and selec-
tive reduced integration are different to each other
even when Poisson’s ratio is as small as 0.3.

4. It is necessary to employ reduced integration to
all matrices that relate porewater in the u-U
formulation.

Finally, analysis of Akita port that was damaged
during the 1983 Nihonkai-chubu earthquake indicates
that damage can be explained qualitatively, which
shows ability of the proposed method. It is also recog-
nized that modeling of soil property, especially lique-
faction property, is important to obtain accurate result.
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