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Synopsis 

 
Water temperature (hereafter WT) is one of the most important a-biotic factors influencing the distri-

bution of marine species. It controls the rate of metabolic and reproductive activities, and determines 
which species can survive. However, the WT data is very poor in comparison with the air temperature 
(hereafter AT) data. This situation has been solved by the WT estimation method based on the regression 
model by using the AT data. This method, however, cannot consider the hysteresis which is the general 
pattern to be shown between AT and WT data relationship. It has not the time-history concept.  

In this study, the Hysteresis Loop model based on the harmonic analysis is developed. It is able to con-
sider the hysteresis pattern and includes the time-history concept. The model calibration and validation is 
carried out to check the RMS error by using the 4-year period (2005. 7- 2009. 6) AT and WT data of the 
monitoring buoy in Mikawa bay. The results show that the RMS error of the WT estimation only using 
the AT data is in the range of 0.8 – 1.0 at the calibration and validation stage. It is better in comparison 
with the RMS error 1.4-2.1 of the linear regression model. 

The Hysteresis Loop model can be used as an efficient tool for the prediction of the present and near 
future WT in the coastal area. It can be regarded to predict the more accurate and reliable WT information 
in the condition of the WT rise in the (near) future due to the global warming effects 

 
 

Key Words: Hysteresis Loop model, air temperature, water temperature, harmonic analysis, hysteresis, Mikawa Bay. 
 

*    Visiting Scientist of Ocean Environment Information Research Team 

**   Team Leader of Ocean Environment Information Research Team 

***  Director of Special Research   

Port and Airport Research Institute, 3-1-1 Nagase, Yokosuka, Kanagawa, 239-0826, Japan 

Phone：+81-46-844-5049  Fax：+81-46-844-1274  e-mail: cho-h@pari.go.jp and/or hycho@kordi.re.kr 

－123－ 



 - 124 - 

港湾空港技術研究所報告 
第 49 巻第 2 号(2010.6) 

 

沿岸水温を推定するヒステリシスループモデルの開発  

－ 三河湾ブイモニタリングデータを活用して － 

 
趙烘輦 (チョホンヨン)*・鈴木高二朗**・中村由行*** 

 

 

 

 

 

 

 

 

 

 

 

 

 

要  旨 

 

水温は海洋生物の代謝及び生産活動を制御してその生存可否を決めるため，海洋生物に影響を及ぼす最

も重要な環境因子である. しかし，水温は気温に比べてデータが著しく少ないため，これまでは回帰分析

を用いて気温から水温を推定するということが行われてきた.ただし，既存の回帰分析では，気温と水温

の履歴現象を考慮できないため，推定値が大きく異なる場合が多い.  

そこで，本研究では調和解析を含んだヒステリシスループモデル（履歴循環モデル）を開発した. この

モデルは履歴現象を考慮することができるとともに，時系列の概念を含んでいる. ここでは，本モデルを

三河湾にあるモニタリングブイの 4 年間(2005. 7 - 2009. 6)の 気温および水温データに適用してモデ

ルの精度を調べた. その結果，推定値と観測値の RMS 誤差は 0.8 - 1.0 と小さく，推定値と観測値でよ

い一致をみた. また，この結果は既存の線形回帰モデルの RMS 誤差である 1.4 - 2.1 に比べて小さかった.  

本研究で開発された履歴循環モデルは，現在及び近未来の沿岸の水温を予測するうえで，效果的なツー

ルとして活用されるものと期待される.  
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1. Introduction 
 

Water temperature is one of the most important 
physical properties of the coastal and marine environ-
ment as it has a direct/indirect influence on many phys-
ical, chemical, and biological processes (Lalli & Par-
sons, 1997). It also exerts major influence on aquatic 
organisms with respect to selection/occurrence and lev-
el of activity of the organisms. Water temperature is 
important because it governs the kinds of aquatic life 
that can live in a stream and the coastal seas (Murphy, 
2009). Fish, zooplankton, phytoplankton, and other 
aquatic species all have a preferred temperature range. 
If temperature gets too far above or below this preferred 
range, the number of individuals of the species de-
creases until finally there are none (Department of 
Ecology, State of Washington, 2009).  

Temperature controls the rates at which chemical 
reactions and biological processes (such as metabolism 
and growth) take place. Temperature and salinity varia-
tions combine to determine the density of seawater, 
which in turn greatly influences vertical water move-
ments with consequent changes in chemical and bio-
logical processes within the water column and the sur-
face sediment layer (Lalli & Parsons, 1997). Water 
temperature partly determines the concentration of dis-
solved gases in seawater; these include oxygen and 
carbon dioxide, which are profoundly linked with bio-
logical processes. Temperature is also one of the most 
important a-biotic factors influencing the distribution of 
marine species (Lalli & Parsons, 1997). It controls the 
rate of metabolic and reproductive activities, and de-
termines which fish species can survive (Murphy, 2009). 
It also affects the concentration of dissolved oxygen 
and can influence the activity of bacteria and toxic 
chemicals in water (Murphy, 2009). It is an essential 
factor of the study on the heat budget computation in 
the semi-enclosed bays, the shallow coastal zone, and 
the marginal seas (Hsu, 1988). 

As expected, an increase in the importance of the 
public natural resources, such as the open ocean space, 
the beach, the natural habitats in the coastal zone, etc., 
leads to a great attention to their intangible values in the 
coastal seas. Water temperature is an essential factor for 
the aquatic environment and the fishery resources 

management (Crisp and Howson, 1982; Poff et al., 
2002; Weber et al., 2007).  

Furthermore, the change of the coastal water tem-
perature is most probably expected in the (near) future 
because of the global warming effects. Its change also 
has an effect on the coastal ecosystem and would act as 
a limiting factor for the coastal utilization of human 
beings because it is very important and critical factor on 
the aquatic environment in the shallow coastal zone 
(UNEP, 2007). 

However, there is a practical limitation in the esti-
mation of the long-term water temperature change by 
using the available long-term water temperature data 
because they are not available in most cases. Thus, it is 
highly recommended that the water temperature 
changes should be estimated by using the air tempera-
ture data, for water temperature data are relatively poor 
and not sufficient to estimate its future changes in 
comparison with the air temperature data. In relation to 
this, the study on the water temperature estimation has 
been carried out mainly focused on the stream temper-
atures (Stefan and Preud’home, 1993; Pilgrim and Ste-
fan, 1995; Morrill et al., 2005; Cho et al., 2007; Be-
nyahya et al., 2007).  

On the contrary, the study on the estimation of the 
coastal water temperatures is very limited because there 
are no sufficient continuous monitoring data in the bay 
or coastal areas. The numerical models based on the 
energy conservation concept (the heat balance in the 
simulation area) are widely used to simulate the distri-
bution of the spatial and temporal water temperatures in 
the lakes, streams, and coastal areas. It requires many 
input data set, e.g., solar radiation or sun light time, 
rainfall and snow fall, wind velocity and direction, hu-
midity, air pressure, topography, altitude and longitude, 
and air and water temperatures of the simulation area, 
etc. Although these mechanism-based models might be 
more accurate than statistical models, the accuracy of 
its simulation results highly depends on the input data 
conditions and the condition of the complete input data 
set for model run is rarely satisfied and thus unavailable 
input data should be estimated based on the regression 
model.  

The relationship-type model only using the air and 
water temperatures data is highly recommended and 
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practically accepted if the reliability of the water tem-
perature’s estimation is in the acceptable level based on 
the project target. First of all, the variations between air 
and surface water temperatures have very similar pat-
terns in an overall point of view (Knauss, 1979; Berner 
and Berner, 1987). It makes the construction of the air 
and water temperature’s relationship possible. 

 
In general, the studies on the water temperature es-

timation have been conducted based on the simple li-
near regression model or the non-linear S-shape curve 
(logistic) model (Benyahya et al., 2007; Morrill et al., 
2005; Mohseni et al., 1998; Cho et al., 2007; Lee, 2007). 
It is a kind of stochastic model. In general, the da-
ta-division method is used in order to consider the hys-
teresis (time-lag response) which is the general pattern 
to be shown between air and water temperature data 
relationship. This method is composed of the 2 steps, 
the data-division step dividing the total data period into 
a temperature rising and falling intervals based on the 
specified criteria, and the model parameters estimation 
step using the divided data, respectively (Kyle & Bra-
bets, 2001). However, the research on the coastal water 
temperature estimation model is very limited because of 
the available data condition. The estimation model for 
the surface water temperature in the coastal zone are 
suggested as the linear and non-linear regression model 
and the hysteresis pattern between air and water tem-
peratures are analyzed in detail (Cho et al., 2007; Lee, 
2007). However, only surface water temperatures data 
are used because there is no bottom water temperature 
data and the estimation method is basically based on the 
regression analysis in their study. There is no 
time-series concept. 

In this study, the hysteresis loop (hereafter HL) 
model, which integrates the air temperature rising and 
falling intervals and is constructed based on the tradi-
tional harmonic analysis method, is suggested as the 
more reliable coastal water temperature estimation 
model. The error bounds of the estimation using this HL 
model is computed and compared to the error bounds of 
the simple linear regression model. In order to improve 
the HL model application level, the relationship of the 
dominant harmonic constants between the air and water 
temperatures with respect to the difference and ratio is 

analyzed in detail and suggests the model application 
methods in relation to the future air temperature 
changes.  

 
2. Variation pattern analysis between air and 
water temperatures – Mikawa bay buoy Data 
 
  The air and water temperature’s time-series data have 
a dominant annual and a less dominant inter-annual 
variation patterns even though they have different 
shapes which is considered as the time-lag response 
effects due to the air-water specific heat or hear capaci-
ty and the heat transfer efficiency in the water column. 
It can be easily shown from the time-series plot and 
scatter plot of the air and water temperature data set. In 
this analysis, we used the buoy monitoring data in Mi-
kawa bay located in the eastern part of the Ise Bay. 

There are air and coastal water temperatures data set 
in Mikawa bay, Japan. It has been continuously meas-
ured in the 3 automatic monitoring buoys installed in 
the Mikawa Bay and operated by the Fishery Experi-
ment Station, Aichi Prefecture from July 1st, 2003 until 
now. Fig. 1 shows the location of the monitoring buoy 
and Japan Meteorological Agency (hereafter JMA) 
Irago weather monitoring stations. 

 

 
Fig. 1 Location of the Coastal Monitoring Buoy and Irago 

Weather Monitoring Station (JMA) in Mikawa Bay (Ise 

Bay) 

Buoy 1: N 34° 44′ 36″, E137° 13′ 13″ Depth: 10.1 m. 

Buoy 2: N 34° 44′ 42″, E 137° 4′ 19″, Depth: 10.0m. 

Buoy 3: N 34° 40′ 30″, E 137° 5′ 49″, Depth: 13.7m. 

Irago JMA Station: N 34°37′42″, E 137° 5′ 36″, Elevation: 

+6.2m. 
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Air and water temperatures including the salinity 
and the saturation percentage of dissolved oxygen (DO) 
concentration are monitored in the surface and bottom 
layers (Sensor positions are below 3.5m from the water 
surface and above 2.0m from the sea bottom, respec-
tively) in 1-hour interval and 1-day mean (daily) data 
set and other supplementary data are disseminated as a 
*.pdf files in 10-days interval through the internet ho-
mepage (http://www.pref.aichi.jp/suisanshiken/).  

There are many missing data during the beginning 
of the operation time because of the buoy maintenance 
and sensor malfunctions which have been considered as 
the general and common things in the coastal monitor-
ing procedure. Taking this situation into consideration, 
the air and water temperatures data during the recent 4 
years (2005.7.–2009.6) having a relatively small miss-
ing data, are used in order to analyze the variation pat-
terns. Air and water temperatures missing data are im-
puted (filled in) by the (stochastic) linear regression 
method and the Bayesian estimation method, respec-
tively. JMA air temperature data at Irago station (in 
Aichi prefecture) which can be downloaded through the 
Internet website (www.jma.go.jp) are used to impute 
the missing air temperatures of the monitoring buoys. 
Although there are many missing data imputation me-
thods (techniques), whether which methods are selected 
and used (applied) or not, the impacts on the informa-
tion of the data is expected not so serious because the 
data missing ratio is about below 5% or much less (Lit-
tle & Rubin, 2002). To use all available data (6-year’s 
data) is better to analyze the long-term variation pattern. 
However, only 4 year’s data having a relatively small 
missing data are used because the many missing data 
could lead to the bias like an outlier and loss of preci-
sion in case of using these kind of data(Little & Rubin, 
2002; Barnett & Lewis, 1994). 

As a 1st step, the basic statistical information of the 
each buoy data and Irago JMA station data are com-
puted and their time-series data plot and correlation 
functions are displayed. (See the Table 1 and Figure 
2-4). Table 1 shows the data missing ratio is about be-
low 5%, the highest mean value of the temperatures is 
the surface water temperature, and whereas the highest 
standard deviation value of the temperatures is the air 

temperatures. The general pattern that the water tem-
peratures are higher than air temperatures on the aver-
age value is only applied to the surface water tempera-
ture. It is not true to the bottom water temperatures be-
cause the annual-mean bottom water temperatures are 
nearly close to the annual-mean air temperatures in this 
case. 

Fig. 2 shows the time-series plot of the air tempera-
tures data of the 3 buoys and JMA station. It shows the 
difference between air temperature data is very small 
and the determination coefficient (R2) between JMA 
and buoy air temperatures are computed above 0.99 
based on the regression analysis. The standard deviation 
between the JMA and Buoy 1, 2, and 3 air temperatures 
data are 0.6785, 0.5935, and 0.6431, respectively. It 
means that the JMA air temperature is very close to the 
Buoy’s air temperatures data. The basic regression re-
sults, i.e., the regression curve and R2 value are sum-
marized as follows: 

(AT)B1 = 1.0003 (AT)JMA+0.1008, R2=0.9922, 
(AT)B2 = 0.9946 (AT)JMA+0.0048, R2=0.9938, 
(AT)B3 = 0.9737 (AT)JMA+0.5662, R2=0.9931,  
where, AT is the air temperature and the subscripts 

JMA, B1, B2, and B3 refers to the JMA, Buoy 1, Buoy 
2, and Buoy 3, respectively.  

These equations of each regression curve can be 
used to estimate the buoy air temperatures relatively 
having many missing data because the JMA data, near-
ly no-missing data, are highly correlated with the air 
temperature data of the buoy. 

Figures 3 and 4 show the comparison time-series 
plots of the temperature data in each buoys and the air 
and water temperatures data of all buoy, respectively. In 
this case, all the available data (2003.7.1.-2009.10.30.) 
are plotted to check the missing condition, the clear 
annual variation and the fluctuation pattern, and the 
thermal stratification between surface and bottom water 
temperatures in Fig. 3. As shown in Figure 3, the 
time-lag pattern between air and water temperatures 
also appears but not clearly because of the data fluctua-
tion effects. 

In order to check the time-memory (or history) order, 
the correlation analysis methods are used in this study. 
Figure 5 shows the auto- and cross-correlation func-
tions between air and water temperatures. 
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Table 1. Basic Statistical Information of the JMA and Buoy Monitoring data 

ITEMS Mean 
Standard 

Deviation. 

Maximum 

temperature 

Minimum 

temperature 

No. of the 

missing data 

AT (JMA Irago St.) 16.45 7.68 30.6 0.5 3 

Buoy 1 

AT 

Surface WT 

Bottom WT 

16.40 

16.84 

15.87 

7.71 

7.41 

6.19 

30.3 

29.9 

26.9 

0.9 

4.2 

4.3 

314 

327 

346 

Buoy 2 

AT 

Surface WT 

Bottom WT 

15.92 

16.97 

16.24 

7.51 

6.79 

5.76 

29.9 

29.8 

26.7 

1.4 

5.1 

5.4 

142 

143 

143 

Buoy 3 

AT 

Surface WT 

Bottom WT 

16.05 

16.58 

16.35 

7.37 

6.65 

5.66 

29.7 

29.3 

26.4 

1.4 

5.3 

5.5 

174 

199 

251 

AT (JMA Irago) 16.34 7.68 30.6 0.5 3 

Buoy 1 

AT 

Surface WT 

Bottom WT 

16.69 

16.94 

15.93 

7.71 

7.37 

6.09 

30.3 

29.9 

26.9 

1.6 

4.2 

4.3 

13 

26 

45 

Buoy 2 

AT 

Surface WT 

Bottom WT 

16.34 

17.30 

16.39 

7.67 

6.93 

5.79 

29.9 

29.8 

26.7 

1.4 

5.1 

5.4 

13 

13 

13 

Buoy 3 

AT 

Surface WT 

Bottom WT 

16.45 

16.85 

16.24 

7.54 

6.77 

5.71 

29.7 

29.3 

25.6 

1.4 

5.3 

5.5 

41 

66 

47 

References: The upper part information is computed by using the all available data (total data numbers = 2,191) during 

2003.7.1.–2009.6.31. Whereas, the lower part information is computed by only using the data (total data numbers = 1,461) during 

2005.7.1.–2009.6.30 having a relatively small missing data (below 5%). AT = air temperature, WT = water temperature. 

 

Figure 2. Time-series plot of the air temperatures in the Irago (JMA) station and the buoys. 
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(a) Buoy 1 

 
(b) Buoy 2

 
(c) Buoy 3 

Figure 3. Time-series plot of the air and water temperatures data of each buoy. 
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(a) Air temperatures 

 
(b) Surface water temperatures.

 
(c) Bottom water temperatures. 

 
Figure 4. Time-series plot of the temperatures data of all buoys. 
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(a) Buoy 1 

 
(b) Buoy 2 

 

(c) Buoy 3 

Figure 5.  Auto- and cross-correlation functions between air and water temperatures of the buoy.  
(Lag Numbers Unit : days) 
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The values are very high even though the variation 
patterns have a clear difference. In general, its overall 
change pattern shows that the annual cycle is certainly 
dominant .  

 
The auto-correlation function shows the very slow 

decreasing pattern and is clearly divided with 2 groups, 
the upper one is for the water temperature and the lower 
one is for the air temperature. The slow decreasing au-
to-correlation and cross-correlation values due to lag 
number mean that the data have long-memory characte-
ristics, i.e., not negligible time-history effects neglected 
in the typical regression analysis.   

Figure 6 shows the scatter plot between air and 
temperatures. As shown in this figure, the hysteresis 
pattern will be clearly shown between the tempera-
tures. The hysteresis loops are constructed an-
ti-clockwise direction in an annual cycle. The data av-
eraged over 10 days are used in order to smooth the 
data fluctuation in the scatter plot. Based on the rough 
visual analysis of these plots, it seems that the hyste-
resis pattern and time-memory characteristics should 
be considered to analyze the relationship between air 
and water temperatures, and the surface and bottom 
water temperatures. In order to satisfy these require-
ments, the hysteresis loop model described in detail in 
the next section is developed and tested its perfor-
mance with the Mikawa bay buoy monitoring data. 

 
3. Basic concept of the hysteresis loop model 
 

  The hysteresis loop (hereafter HL) model suggested 
in this study is the water temperature estimation model 
by using the available data (air temperature in this case) 
having a relatively good data condition. It is mainly 
composed of the data smoothing and data structure 
comparison module. The suggested method for the data 
smoothing is the harmonic analysis (hereafter HA) be-
cause it considers the time-series pattern of the data. 
The HA used in this study is a little bit different the 
word used in the tidal analysis in the perspective of the 
frequency functions. In this study, the annual cycle and 
inter-annual cycle (and/or intra-annual cycle if neces-
sary) functions are used unlikely the tidal analysis in 
which the M2, S2, K1, O1 and the other minor compo-

nents are used. The other method for the data structure 
comparison is the component (or order) comparison by 
using the difference and/or ratio of the constants ob-
tained by the HA. By using this method, the water 
temperature estimation by only using the air tempera-
ture could be possible. In relation to the hysteresis loop 
construction, the parametric form are suggested and 
used to express the loop which cannot be drawn by the 
single-valued curves.  
 

4. Harmonic analysis of the temperature 
data 
 

The air and water temperature data are fitted by us-
ing harmonic function based on the harmonic analysis, 
respectively. It is given by the summation of the har-
monic functions having the different frequency terms:  
 
T t A  

  ∑ A cos
Y

B sin
Y

M    (1) 

 = A  

     ∑ A cos  ω t  B sin  ω tM  +     (2) 

 
in which, A0 is the mean of the time-series data(µT ), 
A  and B  are the harmonic coefficients of the order m, 
respectively, M is the maximum order of the frequency 
function in the harmonic analysis,  is the residual 
term (error terms), and Y is the one year days (365 in a 
common year and 366 in a leap year; 365.25 days are 
used for more than 1 year). T(t)=Tt are the temperature 
data of the t-th day, which are composed of the 
T , T ,… , TN data, in which N is the total data number 
of the N days. The frequency function (ωm) used in the 
analysis are 2π(m)/Y, in which m is the order of the 
harmonic analysis. The optimal order (model selection) 
can be determined by using the AIC (Akaike's Informa-
tion Criterion) values (Kitagawa, 2005). In order to 
consider the long-term frequencies over 1-year, the in-
tra-annual (n-year) periodic functions, e.g., 2π/(nY/2), 
could be included with ease in the harmonic analysis. 
Even though it makes the residual variance very low, it 
is skipped because it is unsuitable to analyze the 
long-term components by only using 4 to 6 years data. 
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(a) Buoy 1 

 
(b) Buoy 2 

 
(c) Buoy 3 

Figure 6. Shapes of the hysteresis loop (scatter plot) between air and water temperatures data 
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Table 2. The optimal order, AIC value, and variance of the residuals in the harmonic analysis. 

 Buoy 1 Buoy 2 Buoy 3 
AT SWT BWT AT SWT BWT AT SWT BWT 

AIC value 4,296 3,441 3,219 4,235 3,174 3,304 4,305 3,154 3,101
M (optimal order) 35 13 12 35 11 11 32 16 10

Variance 2.59 1.20 1.06 2.45 1.02 0.90 2.64 0.98 0.95
References: AIC = Akaike Information Criterion, M = the order of the harmonic constants at the lowest AIC value, and the 

Variance is the variance of the difference between the observed data and the smoothed values by the harmonic analysis. AT : 

Air Temperature, WT : Water Temperatures, and S & B : Surface and Bottom Layers, respectively. 

 

Table 3. Amplitude and phase information of the harmonic components in order sequences. 

(a) Amplitude (oC) 

Order 
JMA Buoy 1 Buoy 2 Buoy 3 

AT AT SWT BWT AT SWT BWT AT SWT BWT

0 16.45 16.46 16.88 15.77 16.31 17.30 16.47 16.53 17.01 16.38

1 10.48 10.45 10.20 8.32 10.39 9.52 7.83 10.18 9.25 7.73

2 0.78 0.85 0.85 1.76 0.85 0.59 1.52 0.77 0.77 1.71

3 0.35 0.25 0.11 0.47 0.31 0.17 0.50 0.29 0.11 0.41

4 0.26 0.23 0.22 0.10 0.27 0.25 0.17 0.24 0.22 0.14

5 0.23 0.16 0.14 0.18 0.23 0.10 0.16 0.23 0.11 0.17

6 0.17 0.20 0.12 0.09 0.19 0.16 0.12 0.21 0.11 0.11

7 0.12 0.12 0.16 0.06 0.11 0.19 0.11 0.08 0.14 0.13

8 0.12 0.15 0.11 0.06 0.19 0.20 0.08 0.16 0.12 0.04

9 0.13 0.18 0.15 0.18 0.18 0.14 0.12 0.15 0.14 0.09

10 0.18 0.17 0.08 0.05 0.16 0.08 0.02 0.16 0.06 0.05

(b) Phase(days) 

Order 
JMA Buoy 1 Buoy 2 Buoy 3 

AT AT SWT BWT AT SWT BWT AT SWT BWT

0 - - - - - - - - - - 

1 33.30 34.84 42.75 50.08 35.31 44.66 51.04 36.48 47.10 52.40

2 -10.92 -6.36 10.27 20.32 -7.07 10.73 21.65 -3.12 18.73 23.46

3 -13.89 -13.47 1.11 -28.35 -8.20 -4.84 30.18 -13.13 -0.77 -28.80

4 -3.31 0.42 11.12 -13.25 1.12 6.59 -21.76 -0.88 7.54 20.85

5 1.08 -6.39 -4.92 7.22 -3.21 -7.89 3.20 -0.76 1.70 2.02

6 -1.75 -0.74 -1.92 -14.55 -3.92 -5.31 3.32 -1.95 0.36 9.52

7 -0.36 4.19 10.11 3.62 6.36 11.62 5.23 5.50 12.57 10.47

8 -10.93 -9.75 -8.26 -2.23 -9.53 -7.12 -8.74 -9.41 -3.67 -6.43

9 -2.43 -3.47 2.53 5.41 -2.58 2.04 4.82 -2.48 3.76 0.60

10 4.89 3.44 8.36 8.93 3.34 4.95 -5.17 3.31 7.65 -0.73

Reference: Order 0 = the mean value.. Based on the order 1 value (=annual cycle components), the values until the orders 2, 2, 

and 3 are higher than 5% of the order 1 air, surface and bottom water temperature’s value. The values of the higher orders are 

remains below maximum 3% of the order 1 value of the air, surface and bottom water temperature’s data.  
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Every air and water temperature data can be fitted 
by the harmonic analysis. It means the harmonic coeffi-
cients of order M are estimated based on the least 
square methods by using the following equations. The 
fitting function is composed by the linear combination 
of the harmonic constants and its frequency functions.  

Equation (1) can be expressed as the following ma-
trix form: 

[T] = [A] [H] + [E]                        (3) 
in which, [T] = [T , T , … , TN] tp and is the temperature 
data (N 1) vector (known, observed), the superscript tp 
refers to the transpose of the matrix, and [A] = [I:C:S] 
expressed as follows:  
 
I  = [1 1 … 1]tp, (N 1 vector , 
 

C = 

cos  ω · 1 … cos  ωM · 1
cos  ω · 2 … cos  ωM · 2

cos  ω · N … cos  ωM · N

, 

 

S = 

sin  ω · 1 … sin  ωM · 1
sin  ω · 2 … sin  ωM · 2

sin  ω · N … sin  ωM · N

,                    (4) 

in which, the matrix [A] is the [N (2M+1)] matrix 

(known), H=[A , A , A , … , AM, B , B ,… , BM]tp and is 

the harmonic coefficient [(2M+1) 1] matrix (un-

known), and [E] =[ , , … , N]tp and is the residual 

(N 1) vector (unknown).  

 

The coefficient matrix [H] can be estimated by fol-

lowing procedures (Hermance, 2007). 

The objective function is  

Min{[E][E]tp}=Min{([T]-[A][H])([T]-[A][H])tp}, (5) 

Where, Min{ } means the minimization of the { }, i.e., 

the optimization problem.   

The optimal solution is obtained when the differen-

tiation of the objective function, Eq. (5), with respect to 

[H] set to zero. It becomes [T] - [A][H] = [0]. It also 

can be written as [T] = [A][H]. It requires some matrix 

manipulation because the [A] is not square. Then, the 

solution for [H] becomes the equation (6) via the fol-

lowing step, [A]tp [T] = [A]tp[A][H] : 

[H]={[A]tp [A]}-1[A]tp [T]                 (6) 

 

The results of the harmonic analysis including the 
optimal order, the AIC value, the residual variance, and 
the harmonic constants (amplitudes in oC and phases 
converted to the day units) are summarized in the Table 
2. The optimal orders of the air and water temperatures 
are about 32-35 and 10-13, respectively. The value of 
the optimal order of the air temperatures is higher than 
that of the water temperatures. As shown in Figure 7, it 
is compared with the time-series plot between the ob-
served data and the generated data with the optimal 
fitting curve, i.e., the linear combination of the har-
monic functions of order 12. The intra-annual compo-
nents, which mean the components having a longer than 
annual cycle, are not included because the available 
data seems not enough to analyze the long-term varia-
tion pattern although it makes the fitting-level (accura-
cy) better. The fitting-curve has an exactly same shape 
at 1-year interval in the condition that the harmonic 
analysis is carried out by using two or more year’s data. 
It is the averaged fitting-curve during the total data pe-
riods. 

 
The variances of the residuals are rapidly decreased 

until about order 3 to 5 and after constantly (a little bit 
slow) decreased as the harmonic order increases. In the 
perspective of the minimum residual variance, the 
higher the order is the better. Thus, the optimal model 
on this temperature data is decided based on the lowest 
AIC value widely used of the model selection criteria 
(Kitagawa, 2005). Basically, the harmonic analysis is 
the data-smoothing procedure like as the moving aver-
age and the data fitting based on the function. It is also 
very important process to analyze the data because the 
raw data having a high fluctuation are not suitable for 
the analysis of the overall variation pattern, such as the 
peak time, gradient, and time-delay, etc. The harmonic 
analysis model only gives the approximate variation by 
the combination of the harmonic functions.  
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(a) Air temperature data in Buoy 1 

 
(b) Surface water temperature data in Buoy 1

 
(c) Bottom water temperature data in Buoy 1 

Figure 7. Comparison of the observed data and generated data by using the harmonic function 
 

－138－ 



Hysteresis loop model for the estimation of the coastal water temperatures 
 

  - 139 -

 

  
(d) Air temperature data in Buoy 2

 
(e) Surface water temperature data in Buoy 2

 
(f) Bottom water temperature data in Buoy 2 

Figure 7. Comparison of the observed data and generated data by using the harmonic function 
(Continued) 
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(g) Air temperature data in Buoy 3

 
(h) Surface water temperature data in Buoy 3

 
(i) Bottom water temperature data in Buoy 3 

 
Figure 7. Comparison of the observed data and generated data by using the harmonic function. 

(Continued).
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It does not give the relationship between air and wa-
ter temperatures because the harmonic analysis is done 
independently by only using air and water temperatures 
data-set, respectively. Thus, it is required to establish 
the function-type relationship between air and water 
temperatures because of the estimation of the coastal 
water temperatures by only using the air temperatures. 
The data-fitting procedure is totally different from the 
estimation. 
 
5. Loop model construction procedure 
 
5.1 Loop construction by using the parametric form 
 

The studies on the water temperature estimation us-
ing the air temperature data are mainly on the regres-
sion analysis, except to the numerical models. In gener-
al, the regression analysis method is widely used to find 
out the correlation degree between the parameters. 
However, it is not suitable for the time-series data be-
cause it cannot consider the temporal-variation pattern 
which is very important for the time-series data analy-
sis. 

Based on the results of the study using the regres-
sion curve, the single-valued curve is certainly not suf-
ficient to express the relationship between air and water 
temperatures whether it is linear and non-linear curves 
or not. The hysteresis shape is the loop-type which 
cannot be expressed by the single-valued curve (Lap-
shin, 1995; Cruz-Hernandez and Hayward, 2001). In 
order to overcome these limitations, a loop-type func-
tion or any other multi-valued function should be 
checked. In this study, the loop function is suggested as 
these forms able to describe the loop, or ellipse forms, 
etc. In relation to this, the HL (hysteresis loop) model 
of order (m, n), HL(m,n), based on the loop function is 
suggested to describe the relationship between the air 
and water temperatures in the coastal zone. Even 
though the different orders between air and water tem-
peratures can be used only to draw the more accurate 
hysteresis loop, the same order condition, i.e., m=n, is 
used in order to apply to the water temperature estima-
tion explained in detail at the following section. 
HL(0,0) is the center point of the ellipse-type loop and 
HL(1,1) gives the ellipse shape. The optimal orders 

based on the lowest AIC value are about 36 for air 
temperature and 12 for water temperatures. In this study, 
every detailed analysis is carried out by using the 
HL(36,12) model. However, the same order is used to 
setup the HL model in this study even though the op-
timal order is different on air and water temperatures. 
 
Previous studies:  

TW(t) = aTA(t)+b (linear equation),  

TW(t) = a/(1+exp[b(c-TA(t))] (non-linear logistic equation). 

In this study (Parametric form): 

[TW(t),TA(t)]=[fA(t), fW(t)]=[HA(t), HW(t)]     (8) , 

in which, a, b, and c are the model parameters, and fA(t), 
fW(t) are the approximation or best-fitting (smoothing) 
function of the air and water temperature data, respec-
tively. Basically, every possible function can be used 
only if it is considered as the approximate function of 
the time-series data. For example, the polynomial func-
tion fitting method, the moving-average smoothing 
methods, the time-series model, and the harmonic anal-
ysis, etc. In this study, the harmonic analysis is selected 
because it has an advantage of the component analysis 
of the time-series data. The functions, HA(t) and HW(t), 
are given as the following equation (9): 
 
HA(t)-µA= ∑ CA cos SA sin  ω tM  

HW(t)-µW= ∑ CW cos SW sin  ω tM  

(9) 
The above function HA(t), HW(t) can be deter-

mined by the harmonic analysis of the air and water 
temperature data. If the parametric form is used, the 
loop having a lot of shapes is constructed as the order 
of the harmonic function changes. The higher the order, 
the more complex the loop shape is. The simplest shape 
is the ellipse-type loop in order 1(see Fig. 8). The order 
0 is the center point of the loop, i.e., the location of the 
mean air and water temperature values.  

The only requirement of the HL model application 
is that the variation patterns and the changes of the air 
temperatures should be included in this function. In 
terms of the component comparison, the harmonic 
function is very useful and powerful even though the 
other approximate functions more closely fit the 
time-series air and water temperature data.  
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(a) Buoy 1 

Figure 8. The shapes of the hysteresis-loop of orders 1, 2, 6, and 12. 
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(b) Buoy 2 

Figure 8. The shapes of the hysteresis-loop of order 1, 2, 6, and 12. 
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(c) Buoy 3 

Figure 8. The shapes of the hysteresis-loop of order 1, 2, 6, and 12. 
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In the step of the model building, the HL model is 
easily established by the harmonic analysis of the each 
data set in the condition that the air and water tempera-
ture data are both available. However, in the application 
step, i.e., the estimation step, it becomes not available 
condition of the water temperature data. So, the loop 
function cannot be evaluated if the harmonic constants 
of the water temperature data are not provided. In rela-
tion to this problem, the practical (technical) estimation 
method of the harmonic constant of the water tempera-
tures should be suggested. 

This method is based on the constant ratio assump-
tion of the harmonic constants between air and water 
temperatures. In this analysis, the ratio of the harmonic 
constants keeps approximately constant on the domi-
nant (until 3-order) constants). The ratio becomes high-
ly variable on the high order constants. However, the 
impact can be negligible because it is included in the 
residual fluctuation level. The ratio could be changed 
for the locations. However, the temporal ratio changes 
will be maintained nearly constant. It makes the HL 
model possible to estimate the water temperature using 
the air temperature data in the condition of the future 
changes and pattern changes. It should be checked in 
detail for more accurate and general applications. As 
another option, the difference HL method could be 
suggested based on the constant difference of the har-
monic constants between air and water temperatures. It 
also is checked in the model application section. 
 
5.2 Time-Lag analysis 

It is very difficult to extract the time-lag information 
between the air and water temperatures raw data set 
because of the high fluctuation. When we use the har-
monic functions, it is much easier to find out the 
time-lag because the fluctuation terms are smoothed by 
using the low-order harmonic coefficients. In this study, 
the fitting curves obtained from the harmonic analysis 
with the order 6 are used because the curves of high-
er-order coefficients make it more difficult. The 
time-lag analysis is carried out by using the harmonic 
functions of the air and water temperatures. The lag 
times (days) are obtained respectively in the rising and 
falling periods of the air temperature because it is dif-
ferent as the air temperature increases and decreases. 

The time-lag is analyzed only the air-surface water and 
surface-bottom water temperatures only. The time-lag is 
not constant. So, its mean value of the time-lag at 10, 
15, 20 degrees in Celsius is used as the representative 
value. The time lag (delay) is defined as an amount of 
time in days that passes to reach the specified tempera-
tures between air and water temperatures. In this study, 
the specified temperatures are the lowest and highest 
values, in order to analyze the seasonal time-lag varia-
tion patterns. Figure 9 shows the various time-lag defi-
nitions schematically. In general, the time lag defined in 
the highest and/or lowest point is widely used. 

 
Figure 9. Schematic definition diagram of the time-lags 

between air and water temperatures 
 

The time-lag, which unit is “day”, obtained based on 
the various time-lag definitions are summarized in the 
Table 4.  

 

Table 4. Time-lags between the air and water temperatures. 

RP HP FP LP
Buoy 1 AT-SWT 4.8 6.0 10.0 5.0 

SWT-BWT 12.5 35.0 1.9 1.0 
Buoy 2 AT-SWT 1.5 3.0 8.8 3.0 

SWT-BWT 15.7 36.0 3.5 4.0 
Buoy 3 AT-SWT 4.7 6.0 13.7 5.0 

SWT-BWT 7.2 32.0 1.7 -1.0 
Reference: RP, HP, FP, and LP mean the time-lags (Unit: 

days) of the rising period, the highest time, the falling period, 

and the lowest time of the air and water temperatures, respec-

tively. 

The time-lag difference between AT-SWT is much 
bigger in the falling period than the rising period. It is 
reversely changed in the condition of the SWT and 
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BWT relationship. Especially, the time-lag between the 
maximum temperature’s occurring dates becomes more 
than 30 days between SWT-BWT. It means the rising of 
the bottom water temperature is very slowly progressed 
by the heat transfer interception due to the thermal stra-
tification in the summer season. 

 
6. Model calibration and validation - model applica-
tion 
 

In the regression model, the water temperature from 
the air temperature can be directly estimated by the 
curve equation. However, the HL model estimates the 
water temperature as a time-series data. In the regres-
sion model, the air temperature change is directly in-
fluenced on the water temperature estimation. It is also 
required to make a relationship between the air and 
water temperatures in the HL model because the air 
temperature changes should be considered to the esti-
mation of the water temperatures. In this study, the rela-
tionship is established by the ratios or differences of the 
harmonic coefficients of the air and water temperatures 
data even though it can be applied only in the condition 
of the nearly constant ratio. If the relationship is setup, 
the application (estimation) process of the HL model 
can be carried out by following steps: 

 
Step 0: [Given condition] Air temperature data. 
Step 1: Harmonic analysis of the air temperature 
time-series data. Harmonic constants are obtained. 
Step 2: Harmonic constants of the water temperature 
are computed by the constant ratio or difference values 
which are already computed by using the existing data 
set. (in the model calibration stage.) 
Step 3: HL loop is made by the harmonic constants of 
the air and water temperatures. 
 

It is required to check the ratio (or difference) of the 
harmonic constants obtained from the air and water 
temperatures data in more detail. The information can 
be used to update the HL model application method by 
suggesting more reliable techniques. HL model is very 
easy to setup and more reasonable to show the synchro-
nized changes (tracks) of the air and water temperature 
changes because the hysteresis pattern is considered 

whether its impact is large or not. 
Basically, the ratio and difference of the harmonic 

constants is computed by using the 1-year harmonic 
analysis data in order to consider the typical annual 
temperature change patterns. 

The ratio and difference between the harmonic con-
stants of the air and water temperature data remain 
nearly constant until the order 2. The ratios become 
highly variable as the order increases above 3. However, 
the values of 0-th (mean value), 1st and 2nd order are 
dominant, even though the high fluctuation inhibits the 
HL model application. The absolute value of the har-
monic coefficients of high order is below 0.5 and the 
harmonic constants of the 1st and 2nd order is the range 
5 to 10 which is about 10-20 times greater than the high 
order harmonic coefficients. 
 
The relationship setup process between air and water 
temperatures starts with the following equation:  
HW(t)-µW= ∑ CW cos ω t SW sin  ω tM .  

It also becomes the following suggested forms,  

HW(t)-r µA= 

 ∑ r CA cos ω t r SA sin  ω tM  (10), 

or 

HW(t)-d µA= 

 ∑ d CA cos ω t d SA sin  ω tM  (11) 

in which, rm=Wm/Am , dm=Wm-Am, and the subscript m 
refers to the order of the harmonic functions, and the 
CW, SW, CA, and SA refer to the order m harmonic 
constants of the water and air temperatures data esti-
mated in the harmonic analysis. 

In this equation, r and d refer to the ratio and dif-
ference between the harmonic constants of the air and 
water temperatures, respectively. Thus, the HL model is 
classified as two types based on the harmonic constant 
computation methods. One is the HLM-R which means 
the HL model using the ratio method expressed as the 
equation (10), and the other is the HLM-D which means 
the HL model using the difference method expressed as 
the equation (11).  

In order to estimate of the future water temperature 
changes, the harmonic constants of the water tempera-
ture data should be changed by the ratio and difference 
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which is already estimated by using the available air 
and water temperature data set. The harmonic constants 
of the future air temperature data are easily estimated 
by the harmonic analysis based on the least square me-
thods, i.e., the equation (6). 

 
This scatter plot is the comparison plot between ob-

served and HL-model estimated values. In this scatter 
plot, the root-mean squared error (hereafter RMS error 
or RMSE) is computed by the root of the dis-
tance-square concept, as follows. 

The RMSE is given by: 
  RMSE   WTO WTE  

where, WT is the water temperature and the subscripts 
O and E refer to the observed and estimated values, 
respectively. Table 5 is the linear regression analysis 
information between air and water temperatures. The 
regression curves are used to estimate the surface and 
bottom water temperatures by using air temperatures. 
The comparisons of the observed and estimated tem-
peratures are carried out in the calibration stage and 

validation (or verification) stages. The RMSE values of 
the liner regression method and HL model are summa-
rized in the Table 6. (See also the Figure 10 and 11.) 
The RMS errors of the linear-regression method and 
HL model are on the range of 1.42–2.06, and 0.79–0.97, 
respectively. The HL model’s results show better esti-
mation results in comparison with the LRM. It is about 
5% of the approximate temperature variation range, 
with respect to 30 degrees in Celsius.  

The HL model is calibrated by using the data during 
2005.7-2007.6 (2 year’s data) and validated (verified) 
by using the data during 2007.7-2009.6 (also 2 year’s 
data). The higher the order is, the lower the residual is 
and the oscillation of the estimation result is. Because 
of these characteristics, the HL model of order 10 is 
used to estimate the water temperatures even though the 
optimal order is about 12. The estimation pattern using 
HL model of higher order makes high frequency oscil-
lations. This oscillation pattern should be checked and 
analyzed in detail whether it is significant or not, but it 
is skipped in this study.  

Table 5. Regression analysis information between the air and water temperatures. 

Buoy No. Data Items Equations of the regression curve R2 

Buoy 1 
AT – SWT 

AT - BWT 

(SWT)B1 = 0.9285·(AT)B1 + 1.3845 

(BWT)B1 = 0.7336·(AT)B1 + 3.4766 

0.9380 

0.8434 

Buoy 2 
AT – SWT 

AT – BWT 

(SWT)B2 = 0.8796·(AT)B2 + 2.9322 

(BWT)B2 = 0.7015·(AT)B2 + 4.9055 

0.9320 

0.8455 

Buoy 3 
AT – SWT 

AT - BWT 

(SWT)B3 = 0.8470·(AT)B3 + 2.8388 

(BWT)B3 = 0.6893·(AT)B3 + 4.8366 

0.9140 

0.8326 

Reference: AT, SWT, and BWT are the air temperature, surface and bottom water temperatures, respectively. The subscripts, B1, 

B2, and B3 mean the Buoy 1, Buoy 2, and Buoy 3, respectively. R2 is the coefficient of the determination. 

 

Table 6. Root-mean-squared errors of the estimation by the linear regression method and the HL model. 

Buoy No. Items 
Calibration stage Validation stage 

LRM HLM LRM HLM-D HLM-R 

Buoy 1 
AT – SWT 

AT – BWT 

1.500 

2.062 

0.972 

0.972 

1.415 

1.838 

0.937 

0.856 

0.864 

1.418 

Buoy 2 
AT – SWT 

AT – BWT 

1.482 

1.946 

0.820 

0.874 

1.360 

1.765 

0.852 

0.835 

0.921 

1.240 

Buoy 3 
AT – SWT 

AT - BWT 

1.532 

1.903 

0.847 

0.872 

1.557 

1.794 

0.860 

0.788 

0.762 

1.102 

References: AT, SWT, and BWT are the air temperature, surface and bottom water temperatures, respectively. LRM and HLM are 

the linear regression method and the hysteresis loop model, respectively. D and R refer to the difference and ratio method, respec-

tively, i.e., the water temperature’s harmonic constant computation method in the HL model. 
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(a) Surface water temperatures 
Figure 10. Comparison plot between observed and estimated data for the model calibration. 
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(b) Bottom water temperatures 

Figure 10. Comparison plot between observed and estimated data for the model calibration (Continued). 
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(a) Surface water temperatures 

Figure 11. Comparison plot between observed and estimated data for the model validation. 
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(b) Bottom water temperatures 

 

Figure 11. Comparison plot between observed and estimated data for the model validation (Continued). 
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Figures 10-11 show the comparison between ob-
served and estimated data of the water temperature. As 
shown in this figures, the estimated data by using the 
linear-regression method also included in order to 
compare the typical estimation method. As expected, 
the systematic bias between the observed and estimated 
data using the regression method is clearly appeared. 
On the contrary, the estimated data with HL model 
show that the variation pattern are more close to the 
observed data in terms of the typical time-lag and hys-
teresis and the RMSE is lower than that of the LRM.  

Since the HL type model is not suggested before, 
the more detailed analysis is required. It remains as the 
future research topics, such as the relationship between 
the air and water temperature variation structure, the 
other method for computation of the harmonic con-
stants, the residual analysis based on the phenomena 
and data fluctuation, the method for the addition of the 
another factors, and the limitation of the HL model in 
terms of the basic concept and model application.  
 
7. Conclusions 

 
The hysteresis loop model able to estimate the coastal 

water temperature only with the air temperature data is 
suggested. It is also calibrated and validated to test the 
model reliability level by using the buoy monitoring data 
in Mikawa Bay, Japan. This model is able to consider the 
hysteresis which cannot be considered in the regres-
sion-type model in terms of the concept. The model cali-
bration and validation results show that the HL model 
has higher estimation level than that of regression model. 

For a model validation, the coastal water tempera-
tures are estimated in this period, 2007.7-2009.6, only 
from the same period time-series data of the air temper-
ature by the HL model developed in this study. The 
estimation results are well fitted of the monitored water 
temperature data at a range of the 0.8-1.0 RMS errors. 
The method based on the constant difference option is 
proved to give better estimation results than that of the 
method based on the constant ratio option. 

The model could be improved and modified based on 
the more diverse, spatially and temporally, coastal water 
temperature data analysis, because the site-specific fac-
tors are very important in the coastal zone. However, a 

kind of the universal relationships also may be obtained 
by the more in-depth study because the heat transfer 
mechanism in the coastal zone is the physical phenome-
na expressed as the heat-energy conservation equation. 

Addition of the other factors which are expected to 
have substantial effects on the variation of the coastal 
water temperature, such as (warm or cold) ocean current, 
mixing intensity by the wind or flow in a certain depth, 
and any other artificial causes, makes the model predic-
tion ability certainly improved. However, every modifi-
cation should be suggested and applied based on the 
practical point of view, i.e., data availability. As the kind 
of data or parameters required in the model run increases, 
the uncertainty level also increases because of the poor 
data condition.  

In conclusion, it is expected to be increased the ap-
plication level and field of the HL model via the appro-
priate combination of the other methods predicting the 
water temperatures, e.g., numerical models. That is the 
why every model and method has an advantage and dis-
advantage. 
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