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2. Strain Space Plasticity Model for Cyclic Mobility-

Susumu JIAT*
Yasuo MATSUNAGA**
Tomohiro KAMEOKA**

Synopsis

The cyclic mobility model proposed in this paper is of a generalized plasticity-multiple me-
chanism type. The salient feature of the present approach is that the concept of the multiple
mechanism, within the framework of plasticity theory defined in strain space, is used as a ve-
hicle for decomposing the complex mechanism into a set of one dimensional mechanism.  This
makes it possible to obtain not only incremental but also integrated constitutive relations. The
undrained stress path is idealized with the concept of liquefaction front, which is defined in the
effective stress space as an envelope of stress points gradually approaching failure line.

Once coded into the finite element program, most of the existing models suffer from seri-
ous difficulty in the numerical solution process when effective stress path becomes very close to
the failure line. A numerically robust approach is proposed in this paper by introducing a
scheme for gradually enlarging scale of shear strain with the progress of cyclic mobility.

Key words: constitutive equation of soil, dynamic, earthquake, liquefaction, plasticity, sand
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Strain Space Plasticity Model for Cyclic Mobility

1. Introduction

Two modes have been identified in the earthquake induced damage to soil structures
and foundations associated with excess pore water pressure rise in the saturated cohesionless
soils. One involves complete flow failure due to loss in the saturated soil strength.
This mode of damage is essentially analyzed by the simple static approach within the frame-
work of critical state concept (Castro, 1975); the analysis is done by comparing the post-
earthquake residual strength of soil with the initial stress due to gravity. The other in-
volves limited, but often large, amount of deformation due to significant reduction in the
soil stiffness but without involving the mechanism of failure in soil. The mechanism for
the latter mode of damage is called cyclic mobilty. In practice, cyclic mobility occurring
in the looser cohesionless soil is often called ‘liquefaction,” which is distinguished from the
‘cyclic mobility’ occurring in the denser cohesionless soil.  In the present paper, both phe-
nomena will be called cyclic mobility as long as the mechanism does not involve the flow
failure of soil. For estimating amount of deformation due to cyclic mobility, the dynamic
analysis is needed based on a simple but realistic modeling of cyclic mobility.

If a model for cyclic mobility can be of any use in practice of soil dynamics and earth-
quake engineering, the model may have to be able to simulate rapid or persistent increase
in shear strain ranging from about one to ten percent, from which cracks, settlement and
other deformation of major consequence initiate. Such a large shear strain is geneérated
only when the effective stress path becomes very close to the failure line. This causes
difficulty in the numerical analysis because a very small error contained in the computed
effective stress causes a very large, error in the computed strains, sometimes causing diver-

gence in the solution process. None of the existing approaches seem to overcome the
difficulty. In the present study, an attemptt is made toward achieving the numerical ro-
bustness.  The model is systematically constructed within the framework of generalized

plasticity theory defined in the strain space.

2. Generalized Plasticity Theory in Strain Space

Behavior of saturated cohesionless soil is defined in terms of effective stress and strain.
If vector-matrix notation is used, the effective stress increment do’ and the strain incre-
ment de are related with each other through the tangential stiffness matrix D as

do’=Dds (D

At each stage of deformation process under transient and cyclic loads, a direction is
introduced which differentiates loading from unloading (i. e. reversal loading). Commonly
adopted practice is to define the direction in the stress space but, in the present study,
the direction n is introduced in the strain space as suggested by Mroz and Norris (1982).
The dependence of the material behvior on the direction is specified by writing

do’'=D.,ds if n7de>0
do’ = Dyds if n7de<0 (2)
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Models of this type can be generalized further by considering that the deformation of
material is produced by I+1 separate mechanisms with =0, I, .-... , 1, all of which are
subjected to the same state and history of strain. In this approach increment of effective
stress is written as

da’=é dg’ ( 3 )

=0
and is related to the increment of strain by

I

do’'=3)D'%ds (4)

=0

Dependence of the material behavior on the direction of loading is separately defined for
each mechanism, such that

do’V = D9 de if n®7de>0
do’V =Dy de if n®7de<0 (5)

The plasticity theory in strain space, which assures the uniqueness of stress increment dg’®
for each mechanism, demands that Dy, is specified by

DL(i) =RL(i)nL(i)n(i)T

DU(i) =RU (i)nU(i)n(i)T ( 6 )

in which nz,;% are arbitrarily specified vector definig the directions of stress increments
and the scalars Rz,;% define the magnitudes of stress increments. Thus, the constitutive
relation is given by

I
dal=2 RL/U(i)nL/U(iln(i)Tde (7)
1=0 -

in which L/U is determined for each mechanism by Eq. (56).

3. Decomposition into Simple Mechanisms

In attempting to construct the model for cyclic mobility with practical application in
mind, the author limits himself, throughout the following discussion, to the two dimensional
behavior of soil under plane strain condition. Thus, the components of the effective stress
and the strain vectors are given as :

o'T= (o, oy, Tzy) ‘- (8)
3T= (éx, Eys T-ﬂl) ( 9 )

in which compressive stress and contractive strain will be assumed negative and the strains
will be given from displacements # and v in z and y directions as '

_ou _Ov  _du  dv
==z VT gy Ty Y ox (10)

It is assumed in the following discussion that ¢, is approximately equal to (s’ +a/)/2.
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3.1 Transformation

The first step to take for developing the model is to decompose the mechanism of cyclic
mobility into two mechanisms; one being the mechanism of cumulative pore pressure build
up with occasional recovery of mean effective stress, the other the mechanism of shear de-
formation without volume change.

Such decomposition is most conveniently done if we at first transform the effective
stress and the strain vectors into vectors with components of volumetric nature and shear

nature as follows.. The effective stress vector is transformed as
8’ = Taol ) (11)
in which
§T= [(Ux'+0v,)/2: (0‘;'—0’;,’)/2, Tzv] (12)
1 1
7 2z ©
T={1 _1 a3)
2 2
0 0 1
and the strain vector is transformed as
e=Te 4
in which
eT=[(ez+¢y), (ez—¢p), yzv] (15)
1 1 0
T={1 -1 0 @16)
0 O 1
It is to be noted that 7T, and 7, are related with each other by
TT=T an

By using Eqgs. (11), (14) and (17), the constitutive relation in Eq. (7) is rewritten as
I

d3'=‘2 Ri,u® Tonp,y " n9TT,Tde (18)
=0

If we define the direction vectors in the transformed space as

Lo =Ting,z"®
19 =T npw v 19)

Eq. (18) is rewritten as
1
d¢ =3 Rp,u 9L,y W19Tde (20)
i=0

Egs. (7) and (20) are the dual representation of the constitutive relation and, if we prescribe
Ry, lp,g™ and 1% in the transformed space, nz,y% and n' will readily be given in
the original space by Egs. (17) and (19) and consequently Eq. (7) is completely specified.
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3.2 Volumetric Mechanism

With 'the Eq. (20) in hand, the first mechanism (i.e. the mechanism for j= =0) wxll be
defined for ‘representing the cumulative ‘pore: pressure build up with “occasional recovery of
mean effective stress.  For modeling such a mechanism, the author takes the approach
similar, in principle, to that taken for densification model (Zienkiewicz et al, 1978). = This
approach has the advantagé of simplicity and of the most direct use of the laboratory data
obtained under cyclic loading condition. - In this approach, we need simply to include -an
additional strain e, of volumetric nature into the mechanism for 7=0 in Eq. (20) by writing

ds''® =Ry, 91,5 10T (de—de,) (2D

in which de, will be independently determined. .
Since the mean effective stress and the volumetric strain are the first components of
8’ and e, the direction vectors in Eq. (21) are given as’ :

10T [, 0T _JOT_(] 0 0) o 5 ' (22)
with the additional volumetric strain given as

e;"=(¢p, 0, 0) : B » (23)

The additional volumetric strain e, is further assumed to reprsent whole part of plastlc '
volumetric strain generated by transient and cyclic loads. Then the strain increment
197(de—de,) in Eq. (21) becomes elastic so that the moduli Rz,;'® in Eq. (21) should re-
present elastic volumetric behavior, i.e.

K=R;© =Ry, ) 24)

in which K is elastic tangent bulk modulus of soil skeleton, often called rebound.modulus.
The laboratory data suggest that, for cohesionless soil, K is glven by a power function of
effective mean stress, approximately given as

K=Ky(on'/0nd’)*® ' ' N - | - - ) (25)

in whch ¢,/ effective mean stress =(0.'+0,/)/2; Ky : elastlc tangent bulk modulus of soxl
skeleton’ at o/ =0me’; and gme’: effective mean stress at which K is defined as K=K,.

3.3 Shear Mechanism

The frame work for the first mechanism thus defined, the second mechanism will be
defined for representing the shear deformation without volume change.  For modeling
such a mechanism, the author adopts the approach similar to that proposed by Towhata
and Ishihara (1985 a). This approach has the advantage of representing soil behavior
under principal stress axes rotation. This approach, at the same time, has the advantage
of simplicity by decomposing the complex mechanism into a set of such simple .mechanisms
as those defined in one dimensional space.

In this approach, we need to mobilize I mechanisms for i=1 , T 6ut’ of Eq. (20) b§
writing

2 ds’® _2 R Lt ) lL/U mlmrde (26)

t=1 B TP L . K
as a tool for the decomposmon The mechanism ' ¢ represents ‘a one dlrnenswnal stress

strain--relation’ defined in a. virtual simple ‘shear which: s, in concept, mobilized at angle
8:/2+7/4 to the x axis; e.g. the mechanism with ;=0 represents a virtual compression
mode, that with 8;=7/2 representing a virtual simple shear mode in the x axis direction
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Ex- &y

compression shear
simple shear

Fig. 1 Schematic figure for multiple simple shear mechanisms (pairs of
circles indicate mobilized virtual shear strain in positive and nega-
tive modes of compression shear and simple shear)

as shown in Fig. 1. The angle §; for mechanism 7 is given so that all the possible
directions for mobxlxzatlon are approx1mately represented by those of I mechamsms such
that ’ :

0= (1—1) 40 (for i=l,'—--'--:~”, D ’ o . -(2_7)

in which 46==/1.
The above definition of mechanism 7 demands, as shown in Fig. 1, that the direction
vectors in Eq. (26) be given by

LLwr=ly “’T—l“”'—-(O cos 0y, sin ;) (for i=1, - , I), (28)

with Ry,;¥ representing tangent shear moduli which will be given as a functxon of v1rtua1
simple shear strain for mechanismi 7 (i.e. [7e) and of ‘its history.

- - . ]

3.4 Incremental Relation ]
If the expressions for the mechanisms given by Egs. (21) and (26) are combined, a

— 35 —
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relation which corresponds to Eq. (20) is given as
ds'=KIlW]l"T(de—de,) +i:21 Ry, g W19 WTde _ (29
in which modulus K is defined by Eq. (25), the direction vectors by Egs. (22) and (28).

As mentioned earlier, the constitutive relation in Eq. (26) is back-transformed into the
original representation corresponding to Eq. (7) as

I
dal=Kn ‘°’n‘°”'(de—dep) +2 RL/U(i)n(i)n(i) Tds (30)
i1

in which volumetric strain increment de, of plastic nature is given, by using the relation
in Egs. (14) and (17), as

de,=T,7de, (31)

and the direction vectors in the original space n' are given by Egs. (17) and (19) as

n9T=(, 1, 0) 32)
n®T=(cos §;, —cos b;, sin ;) (for z=1, «+veee, I) (33)
Because n'"de,=0 for i=1, .---.. , I, Eq. (30) is rewritten as
do=D(de—de,) ’ (34)
in which
D=Kn (i)n(o)r_'_ié Ry n®por ' (35)
=

As expected from the associative manner with which the direction vectors are chosen (i.e.
npp®=n"), the stiffness matrix D in Eq. (34) is symmetric, giving the advantage of ef-
ficient solution.

4. Integrated Formulation

The decomposition into one dimensional mechanisms in Eq. (30) provides a salient fea-
ture in the present approach ; the incremental relation can be integrated so that a direct
relation can be specified between effective stress and strain. Such integration can be
done one by one with respect to each variable defined for each mechanism.

The mechanism 7=0 in Eq. (29) can be rewritten as

dam’ = Ka. (Um’/ama.,) 0. sdee (36)
in which elastic volumetric strain increment de. is defined as
dee=1""T(de—de,) . €1))

Integration of Eq. (36) into the compressive side (i.e. into the negative side) with the con-
ditions that ¢,=0 when ¢,/=0 yields

O’ = — B(—¢,)? (38)
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in_which
B=[0.5K,/(—0oma")*®]? (39)
ge=¢Extey—ep (40)

The integrated result can be written back in the multiple mechanism formulation similar

to Eq. (21) as

g0 =—B(—e)n® | | D)
The transformation back to the original space by using Eqs. (11) and (19) yields

o' =—B(—e)n® | (42)

This is the integrated relation for the mechanism i=0. A
The rest of the mechanisms z=1, ------ , I are integrated by introducing virtual shear
strain for each mechanism 7 as

7 (1) — l (i) Te )
= (ez—¢y) €OS O; + 74y Sin 0; S (43)
’ : ' W
and by mtroducmg a scalar function Q% (y®) defined so that its flrst order denvatlve o e
. T
presents the -virtual tangent shear moduh per unit angle of 0 as
dQW ' e .
RL/U“’% ay 46 - _ . ‘ . (44)

in which 460=x=/1. The valie of QW in general depends on the history of r“’ Anal-
ogously to the integration of mechanism =0, the mechamsms i=1,%- ,-Iin Eq. (26) is
rewritten by’ usmg Eqs. (43) and (44) -as

ds’h = < dQ Jﬁd oy o (45)

Integration of Eq..(45) yields-.-.. . . .. . . .. ... ...

& = QU (7 9) 0L 46)
The transformation back to the original .;,pace by using Egs. (11) and. (19) yields

oW =QW(y@)46n W , Co “n
From Eqgs. (40), (42) and (47), one obtains the mtegrated formulation for the stress and
strain relation as - ‘

o=~ Bley (er o]t +3.00 () 4on )

in which, as mentioned earlier, the value of the function QW (;%) generally depends on the
value as well as history of the variable . The function Q"% can be interpreted as vir-
tual shear stress per unit angle § for mechanism i.

Now that incremental as well as integrated relation for modeling cyclic- mobilitv is ob-
tained in the previous and the present sections, it remains to define the volumetric strain ¢,
of plastic nature and the function Q¥ (y®¥) for representing the virtual shear mechanism.
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5. Undrained Effective Stress Path

5 1 Effective Mean Stress Change .

Genera! understanding on the lijuefaction and cyclic mobility of saturated cohesnonless
soil is that cyclic loading induces a soil particle rearrangement causing, under drained
condition, volumetric shrinkage. - Such a rearrangement causes, under undrained condition,
loss in effective mean stress and increase in pore water pressure.

In order to formulate this relation, let us consider the mechanism of undrained behav-
ior of cohesionless soil. For simplicity, let us assume that.the volumetric strain ¢, of plas-
tic nature is zero at the initial condition. _ The initial elastic volumetric strain e is related

Torsional shear 1est
06} Ty / (-Omd’) -
R Dr= 47A,Ko—10
=-Omo' =
04 | Fuji rsver sand -

\
EB
\
>
>
8
i

Txy /(- Omo')

1
: TN \[ \! v \/ \/Effectlve
' = confining
: : o == stress
Line of phase -om(kPa)
o4t transformation _

08[(q) Stress path

Txy
(~-O'mo!
Torsional shear test 06
Txy/(-%mo’)=0.229 :
Dr=47%
-0mo'=98 kPa 0.4
Fuji river sand :

(b) Stress- strain curve

Fig. 2 Stress path and stress-strain curve for loose.sand obtaind from
the cyclic torsion shear test (aftter Ishihara, 1985)
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to the initial effective mean stress on,’ via-Eq. (38)-as.
. Gmo’=—B(;5eo.)2 - ’ . . T cT S £49)

Under constant total mean stress with undrained condition, volumetric strain induced by the
change in the effective stress is only due to the volumetric strain of pore water, such that -

- 5¢+€p‘;5¢o=(n/Kf)(amol_o'ml) ’ o " ’ " (50).

in which 7 and K, are the porosity of soil skeleton and the bulk. modulus of pore water.
Elimination of ¢, from Eq. (50) by using Eq. (38).yields ’

5p=4(n/Kf) (Omd —0n") +[0m'/(_’B)I]°'5+€eo ’ ’ . ’ (51)

Whereas volumetric strain ¢, of plastic nature is needed to be specified in Eq. (48), com-
mon ‘practice in soil dynamics and earthquake engineering is to measure pore water pressure
change or, equivalently, to measure change in effective mean stress under undrained cyclic

Torsional shear test |
Tay/(-Omo') =0.717
Dr=75%, };(5’; 1.0

-Omo =98

06

0.4} |Fujiriver sand

———

-
—— -
= . -
. T

!
Effective 100
confining stress - om ( kPa)

Tay /(= Omo’)
o

02f S U
04} Line of phase |
) transformation
06 -
(a) Stress path
- . ;r' .
(- Omo)
“Torsional shear test 0.6l
BKY/ (-%mo’ ) =0.717
r=T75%
~Omo'= 98'kPa 04

Fuji river sand .

(b) Stress strain curve

Fig. 3 Stress path and stress-strain curve for dense sand obtained-from
the cyclic torsion shear test (after Ishihara, 1985)
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loading condition. Since one quantity is related with the others by Eq. (51), the measur-
able quantity, i.e. the undrained effective mean stress change under constant total confining
pressure, will be used in the following formulation.

5.2 Liquefaction Front

Several attempts have been made for modeling effective stress paths for cychc moblhty,
such as shown in Figs. 2 and 8, under undrained cyclic loading condition. Pender
(1980), paying due attention to the critical state, adopted parabolic function. Ishihara and
Towhata (1982), paying due attention to the yield loci and phase transformation line, adopted
combination of parabolic and hyperbolic functions. Yamazaki et al (1985), paying due
attention to the envelope of stress points specified by equally accumulated shear work,
adopted hyperbolic functions.

In the present study, the author postulates that the phase transformation line and the
envelope of stress points at equal shear work are two of the key concepts for modeling
effective stress path associated with the cyclic mobility. The phase transformation line as
defined by Ishihara et al (1975) is a straight line differentiating a dilative zone in the stress
space from contractive zone as indicated by broken lines in Figs. 2 and 3.  The envelope
of sterss points at equal shear work as defined by Towhata and Isihara (1985 b) is represented
by a contour, as shown in Fig. 4, defined in the stress space at which  cumulative shear
work is equal to a specified value. As shear work is accumulated by cyclic shear under
undrained condition, the envelope of stress points at equal shear work gradually moves from
the initial e;nvelope to the failure line. Such an envelope, being one of the key concepts
for modeling cyclic mobility, will be called “liquefaction front” in the following discussion.

In order to generalize the formulation of liquefaction front, the liquefaction front will
defined in the normalized stress space defined with the effective mean stress ratio
S=0u'/omd and the deviatoric stress ratio 7=17/(—@mo’); in Which ome’= (650" +040)/2 is the
initial effective mean stress and the dev1ator1c stress is defined by
t=(a/—0a)/2=V ‘rmﬁ-l,-[(zrm —ay) /2] In prmclple the shape of the liquefaction front
may be approximated by two segments of straight lines in the stress space as indicated by

Toyoura Sand

100_1 LIS N Y S S | T T T 17 |”tA|V| l l" |.>l T l T l-
;5 :O'mo 294 kPa f;?’,”v s p . ]
. F e ‘%"/ -
~ 50 o o Iy i
h % ]
B . :
w O ' -4
n - i .
s f ]
(2] : O\\Q o o A& :
5 -50f A LA % % 28
e TF R o 3002
& F % Bel °%e %oosA
(%] B Q o, Ny Q It
- Wst(kJ/m’)-lO S 2 1 05 0.2 01 A
_100 [H I F IR T S [ T Y S S A IR S B | I BRI A
o 700 ~200 300

" Effectivé Confining Stress -Om (kPa)

Fig. 4 Envelope of stress points at equal shear work (after Towhata
and Ishihara, 1985b) :

_T40 —_—
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r=7/(-Om)

,érm, (= siney)

: : Failure Line /<<§
Liqpéfbctibn Front S /‘{fmz( =sin¢p)
// Q
//
: P T ’A' ’ms‘(=0.67mz)
rz /
3 1R Phase Transformation Line
(o8 S2 So : 1.0 .

Fig. 5 Schematic figure of liquefaction front, state variable S and
shear stress ratio 7

the broken line segments in Fig. 5; one being the segment of a vertical line defined in the
contractive zone, the other being the segment of a line parallel to the failure line defined
in the dilative zone.  In practice, however, a smooth transition from one zone to the other
is necessary for assuring easy and reliable numerical solution. Thus the shape of the lig-
uefaction front will be approximated, as shown in Fig. 5, by the following function :

S=3S, (f r<rs)

S=8:+V(So—Se): +[(r—7s) /mi ]t Gf 7>73) (52)
in which

— , | G-

r3=m3S, » - : (54)

Sy =So— (72 —73)m, o (55)

and S, : a parameter to be defined by a function of shear work ; m, : inclination of failure
line, defined by the shear resistance angle ¢, as m,=sin ¢,"; m, : inclination of phase trans-
formation line, defined by the phase transformation angle ¢, as m;=sin ¢,’; and my=0. 67

ma. The auxiliary parameter s, introduced for assuring the smooth transition from  one
zone to the other, is determined as a balance of the smoothness and the realistic stress path
shape.

In this formulation, the parameter S,, hereafter called “liquefaction front parameter,”
may well be interpreted as a measure which defines the state of liquefaction ; e.g. Se=1.0
being the initial stress state if r<m;, So=0 being the limiting state at which failure occurs
due to liquefaction. At a certain boundary value problem, initial shear ratio -can be very
high so that r>m;. In such a case, initial value of the liquefaction front parameter S,
should be determined from the initial value of by solving the second equation in Eq. (52)
with §=1,0. S, is easily obtained as a solution of second order polynomial equation. -

5.3 Shear Work Correlation : :
The lignefaction front parameter S, is given by a function of shear work. Towhata and
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Fig. 6 Correlation between the shear work and the excess pore
water pressure (after Towhata and Ishihara, 1985b)

Ishihara (1985 b) obtained the correlation between the shear work and the excess pore water
pressure such as shown in Fig. 6 and concluded that the correlation is independent of the
shear stress paths with or without the rotation of principal stress axes. This correlation
is generalized by defining a- relation between the liquefaction front parameter S, and the
normalized shear work defined by

w=W,/ W, ' (56)
The factor for normalization W, is given by . '
Wn = Tmo)’mo/z (57)

in which tmo and ymo are drained shear strength and reference strain, at the initial effective
mean stress gmo, to be defined with the initial shear modulus G, as

Tmo= (—0md’) sin ¢,/ . (58)
Tmo= Tmo/Gmo o . : ’ - (59)

The initial shear mcdulus of cohesionless soil 1s known to be given by a power. functlon of
effective mean stress, approx1mated as

Gro=Gmna (Omo’ /Oma")O® : . (60)

in which Gy, : initial shear modulus at omo’=0ns; and one : effective mean stress at which

G is defined G,,,O—G . )
. With such a normahzation for shear work, the correlation between the liquefaction para-

meter and the normalized shear work can be empirically modeled based on the followmg

considerations :

(1) Certain laboratory studies -indicate a. “break” at S,=0.4 (Zienkiewicz et al 1978) from

which the behavior of soil drastically change. Therefore, it would be desirable to express

the correlation with two functions ; one defined for S,>0, 4, the other for So<0 4. Thus,

at least two parameters are necessary. :

(2). In order to fit the model to a set of soils with various degree of hquefactlon resxstance,
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it would te desirable. to have a parameter which can control, over the entire zone of S,, the
contribution of normalized shear work. = This adds one parameter.

(3) In the limiting case S, should not become zero if stable simulatlon of cyclic mobility is
needed. This indicates use of small parameter is needed as the limiting value for S,.

This adds another parameter.
Based on the above considerations, the correlation between the liquefaction front para-
meter and the normalized shear work is given with four parameters, such that

So=1_0, 6(w/'w1)p1 (if w<w|)
So=(0.4—38)) (w\/w)p:+ S, (lf w>w;) (61)

in which S,, w,, p, and p, are the material parameters which characterize the liquefaction
properties of the cohesionless soil. The schematic figure is shown in Fig. 7.

5.4 Threshold Limit
In obtaining the shear work correlation, Towhata and Ishihara (1985 b) used total shear

work such as

AWy=[(0s'—0y)/2)d(ez—&y) + 724y 2y ’ (62)
It is assumed in Eq.(62) that dW,, is always positive so that, if the right hand side should
take negative value, its absolute is taken. The use of total shear work gave satisfactory

correlation for the range of test data studied by Towhata and Ishihara (1985b). It is
known, however, that there exists a threshold limit in the amplitude of cyclic shear strain
or shear stress; for cyclic strain or stress below this threshold level, there is no pore water
pressure build-up (Dobry, et al, 1982). In order to incorporate such a factor of practical
significance into the correlation by Eq. (61), the shear work which would be consumed by
the threshold limit will be subtracted from the total shear work. Because the shear work
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consumed by the threshold limit may. be closely related. with the elastic shear work, it will
be given by mtroducmg a parameter ¢, for spemfymg the threshold level as -

edWe=ailed(c/Ga?)| I 6

N

in which G, *. elastic modulus at effectlve mean stress Om' glven as

IR

Gn*= mo(o'm,/o'mol)o 5 ) . L ‘ S . (64)

Thus the shear work increment to be used for the: shear work correlatxon in Eq (61) is
given by ’

AW,=dWaZ&dWy ™"~ " T ()

It is understood in Eq. (65) that, if the value of right hand side should become negative,
dW, will be assumed zero. - In general shear work induced by. plastic strain is called
plastic shear work. The shear work W, defined in Eq. (65) is in its approxunate sense
total shear work minus elastic shear work.  Therefore, in the following discussion, the
shear work W, will be convemently called “plastic shear work”.

In the formulation presented so far, the plastic shear work always contnbutes to the
progress of llquefactlon whether the effective stress is in the dilative zone or the contractive
zone. It is’ believed, however, that not all the plastic shear work induced in the dilative
zone contributes to the progress of liquefaction.  In a pragmatic sense this fact is already
incorporated in the shear work correlation in Eq. (61). The author believes, however,
that some explicit correction for shear work increment is needed in the dilative zone.
Such a correction is described in the Appendix.

At each stage of deformation process under transient and cyclic loads, increment in
plastic shear work will be computed via Eq. (65) (with the correction in the Appendix
when in dilative zone). The accumulated plastic shear work W, will be normalized by
Eq. (56) and substituted into Eq. (61), giving the liquefaction front parameter S,. = From
the liquefaction front parameter S, and the deviatoric stress . ratio 7, the effective mean
stress ratio S will be obtained by Eq. (52). Finally the effective mean stress ratio S is
multiplied by initial mean effective stress oo, giving the volumetric strain &p of plastic
nature by Eq. (51). _

In closing this section, it should be cautioned that such variables as ¢,/ and S are used
in this section in the context of undrained tests under constant total stress. - 'Such tests
are considered only as a mean to establish the relation between the shear work and the
volumetric strain &, of plastic nature. = Therefore, when those variables are computed from
plastic shear work, they should be regarded as state variables rather than real variables to
be computed as a solution of boundary value problems.

6. Shear Mechanism

In defining the virtual tangent shear moduli R.,; in Eq. (30) and the virtual shear
stress Q@ () in Eq. (48), it is assumed that each virtual simple shear mechanism can be
approximated by the.one dimensional. stress strain relation observed in the actual simple

shear test. As a candidate for such one dimensional relation, the hyperbolic stress strain
relation ‘is adopted for initial or monotonic loading as
QUG =[G 1)/ A+ 179 /7] @ . NGO
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in which @,% : virtual shear strength for mechanism 7; and 7, : virtual reference strain.
For simplicity, material isotropy is assumed in the following discussion. =~ Then, the hyper-
bolic relation is rewritten as

QUG =[G /re)/A+1r® /7o) 1R (67)

in which @,: virtual shear strength and y,: virtual reference strain. By substituting into
Eq. (44), the virtual tangent stear moduli are obtained for the initial loading as

Ru =[1/(L+/I7% /72)2)(Qo/70) 46 (68)

It is to be noted in Egs. (67) and (68) that, though material isotropy is assumed, the super-
script (z) for the function @ and R. is retained because, once unloading become involved,
its value will become dependent on the individual history of virtual shear strain.

Details in the rest of the formulation for loading criteria, unloading and reloading
will be shown somewhere else (Iai et al, 1990). The formulation is similar to that given
for one dimensional analysis by Ishihara et al (1985) for representing the realistic damping
factor during the drained cyclic loading. Within the framework of such formulation, the
damping factor for each virtual simple shear in the present study is specified by such a
function of virtual shear strain amplitude [yz'¥| as

Qs D =Clrs" /2l /A +1r8% /121D ] R (69)

in which A, : limiting value of virtual dimping factor when virtual shear strain level is very
large; and 7, : a parameter similar to virtual referense strain.

Four parameters Q,, 7, hv and 7, are introduced for modeling shear mechanism.
Though these parameters are not directly measurable, they can be readily determined from
the well defined soil parameters which are measurable in the laboratory test.  First of
all, @, and 7, are determined by shear strength z,, and shear modulus G, at small strain
level. The details in the derivation is shown somewhere else (Iai et al, 1990) but the
derivation similar to that by Towhata and Ishihhra (1985a) yields

Qu=tn/(3} sin 0:46) 70)
ro=(Qo/G) 2’ sin 6,40 1)

The soil parameters h, and 7, for virtual shear mechanism in Eq. (69) are determined by
such a measurable parameter as damping factor of actual simple shear. = The details are
shown somewhere else (Iai et al, 1990)

7. Scheme for Numerical Robustness

7.1 Problems

When the transient and cyclic loading begins, the excess pore water pressure will build
up and the effective mean stress will decrease, changing the values of the shear strength
and the shear modulus of soil.  If the current values of the shear strength and the shear
modulus are determined from the initial values as

Tm =Tmo (Um,/umo’) (72)
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G =Gm0 (Um’/omd,)o' 8 L . : (73)

they are consistent with the manner in which the initial values depend on the initial effec-
tive mean stress in Egs. (58) and (60). The reference strain for the hyperbolic relation
is defined by

tn=7m/Gmn (74)-

so that the reference strain corresponding to the formulation in Egs. (72) and (73) is given
by

7m =‘Tm (Um’/o'mo,) 05 . (75)

The above formulation, though consistent with the Mohr-Coulomb’s failure criterion
poses two problems.

. The first problen is the difficulty in the numerical analysis when the effective stress
path during cyclic mobility becomes very close to the failure line.  Whereas, in the static
analysis, a computational artifice such as introduction of virtual visco-plastic term (Zienkiewicz
and Cormeau, 1984), is available to overcome this problem, this is not the case in the dy-
namic analysis. A very small error contained in the computed effective stress causes a
very large error in the computed strains, sometimes causing divergence in the solution pro-
cess. This problem, common to most of the existing models, has been indeed the main
obstacle to the two dimensional application of effective stress models in practice.

In practice, meaningful prediction of earthquake induced deformation due to cyclic moblhty
involve sthe shear strain ranging from about one to ten percent, from which cracks, settlement
and other deformation of major'consequence initiate. Such a Iarge shear strain, as shown
in Figs. 2 and 3, is generated only when the effective stress path becomes very close to the
failure line.. *~ Whereas, in the vicinity of the failure line, the effective stress path appar-
ently converges to a certain limiting stress path, the stressstrain curve does not converge
to a closed hysteresis loop ; the shear strain rapidly increases in looser sand as shown in
Fig. 2 or gradually and continually increases in denser sand as shown in Fig. 8: © Some
of the existing models, which are successful in simulating the cyclic mobility in the numer-
ically robust manner, do not seem to be very successful in simulating such increase in the
shear strain; the stress-strain curve simulated by those models gradually converges to the
limiting closed hysteresis loop at the shear strain level ranging from about one to ten per-
cent.

. - The second problem arising from the formulation by Egs. (72, (73) and (75) relates
to the shape of the hysteresis loop for cychc loadmg The hystere51s loop simulated with
this formulation is more of a convex nature even when the stress path is in dilative zone,
as shown in Fig. 8, than that observed in the laboratory shown in Fig. 3. Two effécts
contribute to the -stiffness of soil; as shown in Eq. (68), one being Q,/rv, the other the
function of 7% /p,. Increasing (—on’) produces increase in G, and consequently increase
in Qu/rv» by Egs. (70) and-(71), producing a stlffemng in_soil. Increasing y® /y,, however,
produces decrease in the stiffness, resulfing in a softenmg in soil. Thus a mechanism is
available for explaining a stiffening with increasing (—ox’) but its effect is too mild, result-
ing in the unrealistic hysteresis loop.

, A scheme is necessary which ) is numerlcally robust, (2) sxmulates the rapxd or
gradual ‘increase in the shear stram ranging from about one to ten _percent although the
stress path gradually converges and (3) produces reahstlc shape in the hystere513 loop

>
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7.2 A Simple Scheme

A simple scheme for enhancing the numerical robustness is to introduce additional
strength 4z, for shear strength.  Such a computational artifice is necessary only when
the effective stress becomes close to the failure line. As a measure of the “distance” be-
tween the failure line and the current effective stress path, the liquefaction front parameter
S, in Eq. (61) is conveniently used. It is postulated that when So<0 4 the addmonal
strength is gradually increased with decrease in S, as . ce
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drm=drp(=omd’) - ... e e e ' (76)
in which ‘ ] ) o A .
dpm=(mi—m)(0.4=50) . . an

In the above equation, the term (0 4= So) represents the gradual increase and the difference
between inclinations of .the failure line and the phase. transformation line m, and m, is con-
veniently chosen as a magnitude of the additional factor.

Introduction of the- additional strength-produces adverse effect--on the shear strain am-
plitude ; the shear strain of the order of few percent will never be achieved or if achieved
will result in the closed hysteresis loop.  For simulating the rapid ‘or gradual increase in
the shear strain ranging from about one to fen percent, another scheme is necessary to
overcome such undesirable effect. = Let us go back to examine the laboratory data in
Figs. 2 and 3. If a closer look is directed to these data, it would be possible to recog
nize that the rapid or gradual increase in the shear strain amplitude, greater than about
one percent, can be approximately simulated by rapidly or gradually enlarging the scale of
shear strain axis. ~'Such a scheme as enlarging the scale of shear strain is achieved by
recognizing in Eq. (67) that the scale of shear strain is governed by the factor y,, which
is proportional to the reference strain ym. If the reference strain is gradually enlarged,
the shear strain will be proportionally enlarged under the same cyclic loading. Because
the change in the value of S, becomes very small when S, approaches zero, the reference
strain should be very.-sensitive to the change in S,. - - - From this reasoning, it is postulated
that when S;<0.4 the reference strain is inversely proportional to (S,/0.4), such that

7moc1/(Sy/0. 4) = ' (78)

For producing realistic shape in the hysteresis loop, it was pointed out earlier that the
mechanism for a stiffening with increasing (—an’) offers only too mild effect; the shear
modulus G, should be more sensitive to the chang in (—ay’). From this reasoning, it
is postulated that the current value of the shear medulus-during cychc mobxhty is propor-
tional to (ow’/om’), such that :

GmOC (Um’/amo’) ' 4 ‘_ (79)

From the conditions given by Egs. (76) through (79), the formulation analogous to Egs.
(72), (73) and (75) will be obtained as a simple scheme for robust simulation of cyclic
mobility. To begin, when with S,>0. 4, no correction is applied for shear strength so that
the shear strength is.given by Eq. (72), such that-

tm=Tmo(On’[omd) GE So>0.4) ‘ (80)
From the condition in Eq. (79), the shear modulus during cyclic mobility is given by

G =Gmo(on![am) Gif S0>0.4) 81
Thus, the reference strain is given by

Tm=7mo (if So>0.4) (82)

When S§,<0. 4, the factor 4z, defined in Egs. (76) and (77) should be added to the shear
strength, such that

T =Tmo(On’/Omd") + dtr, (if So<0.4) (83)

From the condition in Eq. (78) and fhe relation in ‘Eq. (82), the reference strain is given by
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Tm=71mo/ (Se/0.4) Gf S,<0.4) (84)
Therefore, the shear modulus during cyclic mobility is-given as
Gm=1'm/7’m (f S,<0.4) (85)

In theory when the liquefaction parameter S, réaches the limiting value S, in Eq. (61),
the hysteresis loop becomes closed loop. Such limit, in practice, can be chosen so as.to
produce a shear strain amplitude of more than .a hundred percent as the limlting case ; then
the existence of limit does not cause a problem in practice. It is further to be noted
that in the present scheme S, serving as a scaling factor for the shear strain amplitude is
determined by a function of accumulated plastic shéar work so that the computed shear strain
is insensitive against sporadically arising, if any, errors during the computation process.

The present scheme is further simplified under undrained condition. . Under undrained
condition, the state variable S in Eq. (52) is approximately. equal to (om’ [Gmd’). If it is
realized that, after all, the relations in Egs. (80) through (85) are a computational artifice
which approximates the relation in reality, it can be justified to use further approximation
that S is used on behalf of (04//om’) in Egs. (80) through (85). The use of the state
variable S further enhances the efficiency and the stability of the numerical solution because
S is directly determined from the accumulated plastic shear work and the shear stress ratio.
Such an efficient scheme is given by

When S,>0. 4
Tm="TmoS (86)
Gn="m/Tmo ' (87
Tm=7mo ‘ ‘ (88)
When S,<0. 4
Tm="Tmod +47m (89)
Gon=1n/Tn ' (90)
Tm=rmo/(S0/0.4) » (9D

in which 4z, is defined in Eq. (76) and (77). It is to be noted that the sheme for en-
larging the scale of shear strain is applicable only for the process in which S, monotonically
decreases such as undrained or partially drained condition. For the process in which S,
involves increasing as well as decreasing processes, it would be necessary to introduce an
additional scheme for appropriately memorizing the previous history of S, and its effects.
To develop such a scheme is beyond the scope of the ‘present study.
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8. Model Performance

The model presented in this pape is coded into the finite element computer program
FLIP (Finite element analysis of Liquefaction Program) and is used for examining the
overall performance of the present approach.  The basic steps in the computation are (1)
to compute the displacement increment from the nodal force increment by using the incre-
mental relation in Eq. (30) or (32) and (2) to compute the nodal force from the computed
displacement by using the integrated relation in Eq. (48). Convergence to the stress
strain relation in Eq. (48) is ensured by the use of correction force as well as iteration.
The scheme in Egs. (86) through (91) is used for assuring the numerical robustness.
All ‘the results to' be presented here are computed as a solution of a stress controlled bound-

ary value problem by using one element.

Thus, the numerical robustness of the model is

more critically examined here than in case of strain controlled computation.
The undrained torsion shear tests with initially isotropically consolidated sand shown in

Figs. 2 and 3 are simulated with the parameters shown in Table 1.
obtained by the back-fitting.

The parameters ‘are

The computed results are shown in Figs. 9 an 10, indicat-
ing good agreements with the laboratory test results for both looser and denser sand.

Table 1 Perameters for the model

Parameters Loose %:’i gi;‘e)r sand Dense (%L:jl %i;ée)r Sand
Kma 270, 500 kPa 366, 800 kPa
Gma 103, 700 kPa 140, 700 kPa
n 0.45 0.45
223 1.4 0.72
w, 2.0 2.85
S 0.0035 0. 005
a 1.0 1.0
sin gy’ 0.87 0.91
sin ¢’ 0.42 0.42
ho 0.3 0.3
n 1 0.45 __ 0.40 A
Ky 2.0x10° kPa 2.0X16% kPa

Kmo and Gma are given for (—oma’)=98 kPa.

The computation

was done with number of the shear mechanism 1=12 by 50 steps
of incremental loading for 1/4 cycle.
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Fig. 9 Computed results of loose sand to be compared with the
laboratory results in Fig. 2.
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(b) Stress strain curve

Fig. 10 Computed results of dense sand to be compared with the
laboratory results in Fig. 3.
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9. Conclusions

An attempt made for modeling cyclic mobility of saturated cohesionless soil. The
proposed concept is of a generalized plasticity type defined in strain space. =~ The concept
of multiple mechanism is used as a vehicle for decomposing the complex mechanism into a
set of simple mechanisms defined in one dimensional space.  Incremental as well inte-
grated constitutive relations are obtained.  In particular, the tangent stiffness matrix in
the incremental relation becomes symmetric, ensuring the efficiency in the numerical analy-
sis, whereas the integrated constitutive relation serves.as a guide, ensuring the convergence
to the realistic stress strain relation. Number of the parameters for the proposed model
is ten if two obvious parameters, i.e. porosity of soil skeleton and bulk modulus of pore
water, are omitted in counting number of the parameters.

Difficulty is known to exist in the numerical analysis of cyclic mobility when the effec-
tive stress path becomes very close to the failue line.  In order to overcome such diffi-
culty, a simple scheme is proposed ; modeling of cyclic mobility, not as a yielding process,
but as a process in which the scale of the shear strain is gradually enlarged with progress
of cyclic mobility. ~ The rapid -as well as well as persistent increase in the shear strain
amplitude greater than several percent is simulated in the numerically robust manner.
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" Appendix’
The .cori"ect.ibn factor R to be multiplied with dWy is basically given by:
R=(m1—r/5)/(ml—ma) (if 7‘/S>m3) (Al)

When S becomes small, however, the value of /S becomes so sensitive to the small errors
contained in the values of} 7 and S that R given by Eq. (Al) becomes numerically un-

reliable. Therefore, a measure is taken for small values of S, such that, if $<0.4, R is
given by o _
R=(m=7/0.4) [ (my—ms) - GE r/S>ms) (A2) PY

The most of the effect of the above coirection might be, however, offset by the parameter
pe-in Eq. (59).
Notation

B=[K,/(—0ma’)"**]? : factor for volumetric relation .
a : parameter for specifying the level of threshold limit

D : tangential stiffness matrix
Dr,z"® :tangential stiffness matrix for mechanism 7 at loadmg and unloadmg

eT=[(ez+¢y), (e2—¢y), 72y] : transformed strain

e;7=(ep, 0, 0).: additional volumetric strain of plastic nature in transformed space
Gumo. - :initial shear. modulus

Gp* : shear.modulus used for computing plastic shear work .

Gn : shear modulus .
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: damping factor for virtual simple shear :

: limiting virtual damping factor - . o
: number of the multiple mechanism for shear :

: elastic tangent bulk modulus of soil skeleton

: value of K at on'=0ma’

K, : bulk modulus of pore water

1% and I.,;" : transformed vectors of n® and nz,z"

m,=sin ¢, : inclination of failure line

me=sin ¢’ : inclination of phase transformation line

m3=0, 67m; : auxiliary parameter

AR

nw : loading/unloading direction vector for mechanism

nr,z®  : direction vectors of stress increments for mechanism 7 at loading and unloading
n : porosity of soil skeleton

1, P2, wi, S : material parameters for dilatancy

QW : virtual shear stress per unit angle for mechanism 2

QWy : virtual simple shear stress amplitude per unit angle

Qy : virtual shear strength per unit angle

r : state variable equivalent to 7/omo

R : correction factor for cumulative shear work in dilative zone
R;,z% : tangential stiffness modulus for mechanism i at loading and unloading
S : state variable equivalent to ¢’/omo’

So : liquefaction front parameter

8T=[(as'+0y)/2, (6'—06y)/2, T2y] : transformed stress

T. : transformation matrix for strain

T, : transformation matrix for stress

u, v : displacements in x and y directions

Wa : factor for normalization of shear work

W, - : plastic shear work

W : total shear work

Wee : elastic shear work

ww : equivalent elastic virtual strain energy for mechanism 7

w : normalized shear work

7@ : virtual simple shear strain for mechanism ¢

Tmo : initial reference strain

Tm : reference strain

s : a parameter for damping factor similar to virtual reference strain
To : virtual reference strain

TzyB : amplitude of simple shear strain

r¥p : amplitude of virtual simple shear strain for mechanism i
e7=(ez, &y, €zy) : Strain

8p : additional volumetric strain of plastic nature

& : elastic volumetric strain

€eo : initial elastic volumetric strain

0i=(i—1)40 : angle for virtual shear mechanism 7 in (e;—é&y) —7zy plane
40==/I

aT= (0., 0y, ozy) : effective stress

aw : virtual stress for machanism 7

on’= (07 +0,/)/2 : mean effective stress

Omo’ : initial mean effective stress

7= (0\/'—04') /2 : deviatoric stress

n : shear strength
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Tmo : initial shear strength
T4 : shear resistance angle , _
&0 : phase transformation angle . - . .- . ..o o
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