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1. Diffraction of sea waves by rigid or cushion type breakwaters

Tomotsuka TAKAYAMA*
Yutaka KAMIYAMA**

Synopsis

The computation of wave diffraction is very important to determine the alignment
of breakwaters properly. Considering the irregularity of sea waves, Nagai has
presented the computation method as for irregular waves with a directional spectrum.
His method is a powerful tool in the resolution of practical wave diffraction pro-
blems, but it is not applicable to the following cases:

1) for cushion type breakwaters with arbitrary reflection coefficients

2) when the incident waves are reflected by the rear side of a breakwater

3) when the diffracted waves by a breakwater are again diffracted by the other

one.

In this paper, new practical computing method is presented, which resolves the
remaining problems in Nagai’s method. Then, the method is applicable to any type
of two breakwaters, either rigid or cushion type. As for regular waves, the method
is verified in the comparison with the numerical analysis of wave propagation,
which is presented by Ito and Tanimoto. In the results of the comparison, it has
become clear that the method is available. Furthermore, the method has been
verified by the experiments for the diffraction of the unidirectional irregular waves,
and confirmed to be applicable to practical problems within an acceptable accuracy.

* Chief of the Storm Surge and Tsunami Laboratory, Hydraulic Engineering Division
** Member of the Wave Laboratory, Marine Hydrodynamics Division
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Diffraction of sea waves by rigid or cushion type breakwaters

1. Introduction

The water wave diffraction phenomena are of great importance when engineers
determine most suitable alignment of breakwaters, which are constructed in order to
prevent sea waves from entering a harbour. If the alignment is not determined
properly, ships moored inside, apparently in the lee of breakwater, might be damaged
by wave action, or encounter a great difficulty during loading or unloading due to great
ship motions. The effect of breakwaters must be verified by determing the diffracted
waves through model tests or by computing the diffracted waves.

Though the model tests seem to be most reliable, there is the difficulty of
producing irregular waves with a directional spectrum such as sea waves even by
using an irregular wave generator, and furthemore it is rather time consuming to
carry out tests for many different breakwater alignments. Therefore. numerical
computation of diffracted waves is a powerful tool compared to model tests.

Penny and Price" are the researchers who first derived the solution of water wave
diffraction by a rigid semi-infinite breakwater. The solution is the same as that of
Sommerfeld, who solved diffraction of light due to a semi-infinite plate. Then, they
applied the solution to the analysis of water waves passing through a gap in a
breakwater normal to a wave approach direction.

Puttnam and Arthur® have checked experimentally the solution for a rigid semi-
infinite breakwater in deep water. Experimental wave heights agree approximately
with the theory in the sheltered region, but were considerably less than the theoretical
values in the unsheltered region.

Blue and Johnson® also verified experimentally the solution for gaps, which had
widths 1.41 to 4.87 times larger than the wave length. There was a close agreement
between the experiments and the theory, that proved the usefulness of the theory for
the computation of diffracted waves.

Wiegel® presented diffraction diagrams for a semi-infinite breakwater. Morihira
and Okuyama® also presented diagrams for a semi-infinite breakwater and a gap in a
breakwater normal to incident wave direction.

Then, Takai® derived the solution of diffracted wave due to a gap for oblique
incident waves by introducing the phase difference of incident wave between the tips
of the breakwaters. Furthermore, he computed the diffraction due to not-alined
breakwaters™.

The above papers have dealt with regular wave diffraction. However, real sea
waves are quite irregular and may be expressed as the superposition of infinite number
of component waves which approach along different directions and with different heights
and periods. Taking into account the wave irregularity, Mobarek and Wiegel® carried
out experiments for irregular wave diffraction due to a semi-infinite breakwater in
order to determine whether or not the diffraction theory could be applied with sufficient
accuracy even to irregular waves with a directional spectrum. The results of the
laboratory study showed that a knowledge of the directional spectra can be used
together with the diffraction theory to predict the energy spectra of waves in the lee
of the breakwater with an accuracy that is probably acceptable for many engineering
problems.

Referring to the conclusion of Mobarek and Wiegel, Nagai® computed the diffraction
of irregular waves with a directional spectrum, and presented useful diffraction
diagrams by defining diffraction coefficients of irregular waves as a ratio of significant
wave height of the diffracted waves to that of the incident waves. As frequency
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spectra, he used Pierson-Moskowitz’s spectrum or Bretschneider’s spectrum modified
by Mitsuyasu, and as wave directional distibution function, used SWOP type or cos™8,
where @ is an oblique angle to predominant direction of the wave approach and [ is
a positive integer.

The practical form of directional wave spectrum, however, has not been established
yet. Therefore, Goda and Suzuki'® considered to use the most reliable and practical
form among the presented various spectra. They adopted Bretschneider’s spectrum
as a frequency spectrum, and Mitsuyasu’s function as the wave directional distribution.
The function has been derived from many fields wave measurements. Goda and
Suzuki re-computed wave diffraction by using the adopted spectrum form and presented
many practical diffraction diagrams. In their computation, Nagai’s program was
utilized by transforming only wave spectrum. It, however, can not be applied to the
following cases;

1) for cushion type of breakwaters with arbitrary reflection coefficients.

2) when the incident waves are reflected by the rear side of a breakwater.

3) when the diffracted waves by a breakwater are again diffracted by the
other one.

In this paper, new practical computing method is presented, which resolves the
remaining problems in Nagai’s method. Then, the method is applicable to any
alignment of two breakwates or any type of breakwaters such as cushion type. It is
verified by the experiments and confirmed to be available to a practical use with an
acceptable accuracy.

2. Computing manner for irregular waves

2.1. Application to irregular waves

The sea surface deformation { (&, ¥,, £) at a point of (x,, ¥,) outside a harbour
may be expressed as the superposition of an infinite number of component waves as
follows:

c(xO) yO) t) = Z'\/S(fny om)afnaam exp{i(knxo cos 0m+kny0 Sil’l 017;
+27fut+enn)} (1)

Where S (f., 8,) denotes a directional wave spectrum at a wave frequency f, and
an approaching wave angle 6, e, is a phase difference of n:m-th component waves,
and &f, and d6,, are small bands of wave frequency and wave angle, respectively. Wave
number &, has the following relation to f,:

47 fi=gk, tanh k,h _ 2)

where g and h are the gravitational acceleration and a water depth. Equation (2)
implies that k, has a single real value for a given value of f,.

Since the wave diffraction theory is linear, the water surface deformation ¢, (x,
Y, t) at a point of (x, ¥) inside the harbour can be given as the following linear
relation to the incident waves:

Calx, Y, =2V S 0, 02)0f200n $(x, Y, fr, On)expliCkoz, cos O,
+kny0 Sin 0m+27rfnt+€nm)} ( 3 )

where ¢ (z, ¥, f», 0.) is a transfer function which expresses the diffraction of a component
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wave with the frequency f, and the direction ..
The frequency spectrum S, (f.) of & (x, ¥, t) is easily derived as follows:

Sa(f)= §S(fna 0.)¢(x, Y, f, 0:D9*(x, Y, f2, 0)50 (4)

where ¢* (z, ¥, f., 0.) is a conjugate of ¢ (z, ¥, far 0n).

First, we define the diffraction coefficient for irregular waves as a ratio of significant
wave height of the diffracted waves to that of the incident waves. If the wave height
probability distribution of irregular wave train follows Rayleigh distribution, the
following relation is derived between the significant wave height H,s and the frequency
spectrum S; (f):

Hip=4.0\/|" s.(Haf (5

According to wave simulation analysis by Goda'”, the wave height distribution
well agrees with the Rayleigh distribution when individual wave height is defined by
the zero-up crossing method. The analysises of other reserchers'® also pertain Goda’s
conclusion. Furthermore, the statistical analysis of field wave data by Goda'® concluded
that the proportional coefficient in Eq. (5) is about 3.8 in deep sea rather than 4.0.
Whether the coefficient is 4.0 or 3.8, the diffraction coefficient K, is given, according
to the previous definition, as the following formula:

K=~ TSI DT 5 SF s 00030 (6)

We define the diffracted wave period coefficient as a ratio of significant wave
period of the diffracted waves to that of the incident waves. According to Rice’s
theory, the mean wave period 7 of a irregular wave train can be calculated from the
frequency spectrum as follows:

T=\/["_sHar|”_rsar 1

The mean wave period calculated by Eq. (7) seems to have some difference from the
real mean period. However, considering that there is no other effective method to
estimate the mean wave period, we determined to utilize Eq. (7). Basing on the
analysis of field wave data, the following relation is given between the mean wave
period and the significant wave periods T)s:

T=0.9Ts (8)

Then, we can calculate the wave period coefficient K4» by using the relations of Eq.
(7)) and (8) as follows:

- —\/ ;Sd(fn)dfa \;aS.-(fm 0u)6fn60n
o {;fisa(fﬂ)df,,J -’ {'27“‘36’ 0860

Thus, if the forms of S (f, 6) and ¢ (z, ¥, f, ) are given, K, and K, can be
computed by Eq. (6) and (9).
2.2. Wave spectrum

It is necessary to determine the incident wave spctrum in order to compute the
diffraction coefficients and the wave period coefficients. The following form is assumed
as a sea wave spectrum:

S(f,0)=S:.(NHG(,0) (10)

9
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where S (f, 6) is a directional spectrum, S; (f) is a frequency spectrum and G (£, 6)
is a wave directional function. Here, wave spectra are assumed to be one-sided spectra
defined within the frequency region that 0<f< oo, while wave spectra in the previous
section of 2.1 are two-sided spectra defined in the region that —oo<f<co. One-sided
spectra show twice larger values than two-sided spectra for />0.

The relation between S (f, 6) and S; (f) is given as

SH=|" S, 0do - a

Therefore, the wave directional fonction must satisfy the following eqation :
|" 6. mae=1 (12)

Equation (11) means that the observed sea surface deformation appears as a superposition
of uni-directional irregular wave train with various approach angles.

Many Oceanographers have investigated the forms of the wave frequency spectrum
S¢ (f) or the directional function G (f, 6) through the analysis of field data or
theoretical treatments.

(1) Wave frequency spectrum S; ()

Pireson and Moskowitz'*’ presented the following form of wave freqency spectrum

through a dimensional analysis:

SCF)=0. 0081(29—7;. Fsexp{—0. T4Cw0/22 ) (13)

where g (m/sec?) is gravitational acceleration, w,=g/U,,.;, and Ul,., (m/sec) is a wind
velocity at 19.5m above sea surface.

Their spectrum was derived as a frequency spectrum in a fully developed sea. Its
form, however, is not practical because the generally unknown factor of U, is
introduced. Therefore, Nagai® transformed it to the following practical form by using
the relations of Eqs. (5), (7) and (8):

S(H=0. 1212917_{—:‘/’:‘ Flexp{—0. 48515( T\, f) %} (14

Bretschneider'*’ also presented the wave frequency spectrum derived from the
analysis of many field wave data. As the spectrum does not satisfy the basic relation
of wave spectrum to water surface deformation

c‘2=f&<f)df (15)

Mitsuyasu'® changed the coefficients in the spectrum to the suitable values which satisfy
Eq. (15). The transformed spectrum is given as follows:

S.(f)=0.2572 f;p/’: Fexp{—1.0288(T )%} (16)

Though Neumann'” and Hasselman et. al.'® presented the forms of wave spectra,
the above three spectra are simplest and most practical, and also agree with the spectra
of observed sea waves within an acceptable accuracy. Taking into acount these
reasons, we determined to choose a spectrum of three spectra.

Pierson and Moskowitz spectrum of Eq. (13) itself is for fully developed sea

— 10 —




Diffraction of sea waves by rigid or cushion type breakwaters

waves and includes the unknown factor of U, ;. Its transformed spectrum of Eq.
(14) itself indicates a practical simple form. However, Rice’s formula of Eq. (7)
used in the process of the transformation is questionable in the application to real sea
waves, as Goda'® descrives that the mean wave periods obtained from wave records
are about 202 larger on the avarage than the corresponding periods calculated from
wave spectra by using Rice’s theory. Considering the above questionable points of
Pierson and Moskowitz’s spectrum and its transformed spectrum, we adopted Bretsch-
neider’s spectrum of Eq. (16) for the computation of the wave diffraction.
(2) Wave directional functon

Cote, et. al*®. derived the following formula as a wave directional function from

stereo-photographs :

L {I—L[O 50-+0. 82exp(—'2—{£'o£} )]cos 26
G 0=1 4. 32exp( %{ f} ) os40} (wg%} an
. (03

where w,=g/U,, and U, denotes wind speed at about 5m above sea surface.
The following formula is also often used in the estimation or the forcast of wind
genarated waves:

@n!! oz 0
G(f, 0y =4 @I=D0max (5 7mr) C10]= o)

0 (181> 0max)

as

where / is an integer determined from the degree of wave directional concentration,
and @msx is a maximum wave angle measured from the predominant wave direction.
Mitsuyasu®?'*® presented the following formula derived from many field wave data
observed by a clover type buoy:

r
Gf, )= T(Zii—?) cos g 19

where I" (s) is Ganma function, and s is a parameter of a wave directional concentration,
which is determined by the following equation:

-2.5
[smax(.—ff—) for f>f£,
. P
s= e 20)
1Sm8x(7p—) for f<f,
where f, is the wave frequency at a peak of a spectrum and given by
1
1= 1.057 @

Goda and Suzuki'® presented a figure for the estimation of the mean values of smax
to wave steepness, and gave, as a standard value of smax, 10 for wind wave, 25 for
swells close to wind waves and 75 for swells. In the computation, we determined to
choose Mitsuyasu’s wave directional function of Eq. (19), because SWOP’s function
of Eq. (17) includes the unknown values of U, and cosine type of Eq. (18) also
does the unknown parameter of /.

— 11 —
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2.3. Dividing method of frequency and wave angle

As shown in Eq. (1), the incident wave spectrum must be divided into a number
of component waves in order to obtain the diffracted wave spectrum. Here, the
frequency and the wave direction are assumed to be divided into N and M sections,
respectively.

First, we descrive as to the frequency. The frequency is divided as each section
has an equal wave energy. Then,

S D= SN 22)

and the central frequency f, in the n-th section is given as

fn=ﬁﬁ7§\/ 2.9124N| [Ef(\/ 21“( nljl )) _E’f<‘/2]“(r—]\z/>)_] @

where Err () is a error function. Eq. (23) is derived by Nagai for Bretschneider
frequency spectrum.

Next, the width of directional angle of each section is constant and given as
follows:

_ 0max sl 0min
50—-———————M 24

where Omax and Omin are maximum and minimum wave angle to the predominant
wave direction. As shown in Fig. 1, the width of each section is §6, and the repre-
sentative angle of each section is a central angle.

Predominant
wave direction

Bmox
Gmin

Breakwater

Directional
distribution
function

N
ol D
36 56|86 56| 56 sajl

B min 0 Gmax
(negative value) (positive value)

Fig. 1 Dividing of directional distribution function

It is important to take the smallest values of M and N within an acceptable
accuracy in order to decrease the computing time. The dividing number N for frequency
does not so much affect the values of diffraction coefficients if N>5. N is enough to
be 10 in any case. On the other hand, the dividing number M for wave angle must
be increased as the distance r from the opening becomes larger. According to our co-
mputation, M is enough to be 20 within r/L<30, but M is necessary to be 36 within
30<r/L<80, where L is wave length of the significant wave. Within »/L>80, larger
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Diffraction of sea waves by rigid or cushion type breakwaters

value of M is necessary for the precise estimation.

3. Formulation of wave diffraction and its validity

3.1 Wave diffraction due te cushion type breakwaters
When a regular wave train approaches a rigid semi-infinite breakwater with an
angle of 8, as shown Fig. 2, the wave diffraction formula at a point P is given as

&(r, &, fu 0m)=ﬁexp [i{knr cos (@—0.,) +%}]
x[fcara+ L} -ifsao+1]]
+~/_-exp[ { o7 COS (a+0m)+%}]

x[{can+L-ifsaro+1l] (25)
where
/Al cos 20 |
— T cos 2Ll ’ (26)

and C (7) and S (7) denote Fresnel integrals as follows:

()= Srcos T reqx l
27
S(nN= S sin —X2dX J ‘

Eq. (25) has been derived by Penny and Price and the function ¢ (7, @, fu, 6a)
corresponds to ¢ (z, Y, fa» 6.) in Eq. (3). Therefore, the diffraction coefficients
for irregular waves can be computed for a rigid semi-infinite breakwater if ¢(r, a, fa
6.,.) is used as a transfer function.

Beforehand, we will make clear physical meanings of ¢ (r, a, f», =) in order to
modify Eq. (25) for the cushion type breakwater. First, we will consider the first
term in the right hand side of Eq. (25). Since 7,>0 in the region of a<z+0., S
(7)>0 and C (7,)>0. In this case, the meaning becomes clear if the term is
reformed as follows:

The first term of Eq. (25)=exp[i{k, cos (a—8.)}]

+«/—expgz{ k.7 cos (@a—65)+- }}

Jlowo-y)-pard) e

As r—oo, C (r,)—->— and S (7’,)—>7 Therefore, at the limit, only the first term in

the right hand side of Eq. (28) remains and the second term vanishes, that is, the
incident waves only exist there. Referring to this, it become clear that in the region of
a<rm+60. the first term of Eq. (25) consists of the incident waves and the scattered
waves induced by the incident waves. On the other hand, in the sheltersd region

— 13 —
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of a>n+6,, r,<0, and then C (7,)<0 and S (7,)<0. In the region, S (r,)—>——;—-

and C (7‘,)—>—%— as r—>oo, Then, the first term of Eq. (25) vanishes at r=o00. This

proves that the first term itself indicates the scattered waves only.

Next, we will discuss the meaning of the second term in the right hand side of
Eq. (25). In the region of a<z—6,, S (#)>0 and C (7,)>0 since 7,>0 by Eq.
(26). As the previous treatment of the first term of Eq. (25), it is convenient in
understanding to rewrite the second term as follows:

The second term of Eq. (25)=exp[i{k.r cos (a+8,)}]
1 .
+ﬁexp [z {k,,r cos (a+80,)+ %}]

x[fcao-L)-isao-21] 9

As r—oo in the region, S (72)—>% and C (7’2)—’%. Then, in Eq. (29) the first

term only remains and the second term vanishes at the limit, that is, the reflected
waves only exist there. This means that the second term of Eq. (25) consists of
the reflected waves and the scattered waves induced by the reflected waves.

In the other region of 2r>a>z—0,, S (7,)<0 and C (7,) <0 since 7,<0. As r

—oo in the region, C(7’2)-—>—% and S (7‘2)—%—% and then the second term of Eq.

(25) vanishes. Therefore, the second term indicates the scattered wave only in the
region.
Referring to the above investigation as for Eq. (25), the whole space can be
divided into following three regions:
1) The reflected wave region in a<z—@,, where the reflected waves, the incident
waves and the scattered waves coexist.
2) The incident wave region in 7—60,<a<z-+0, where the incident waves and the
scattered waves coexist.
3) The diffracted wave region of a>n+6, where the scattered waves only exist.
Each region is shown by the region I, II, and III, in Fig. 2.

INCIDENT WAVE

\ REGION I DIRECTION
(O Lasm-g,)
REGION IN
(7~ 8m £a LT +8n )
REGION II

(7t6nlal2n)

Fig. 2 Wave diffraction by a semi-infinite breakwater

Since the first and the second terms indicate the terms related to the incident waves
and the reflected waves respectively, Eq. (25) can be applied to a cushion type
breakwater through the following assumptions ;

1) The mechanism of wave energy absorption by the cushion type breakwater is
not taken into consideration.
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Diffraction of sea waves by rigid or cushion type breakwaters

2) The reflected wave height only decreases to K, times of the incident wave height,
where K, represents a reflection coefficient.
3) The phase shift of the reflected wave is always kept constant in any type of
breakwater.
4) The secondary waves with short periods do not appear when the wave energy
is dissipated in the breakwater.
Under these assumptions, the diffraction function for a cushion type breakwater is
given as follows:

&o(r, a, fa, 0m)=:/1T2——exp[i {k,.r cos (@a—6.,) +%H X [{C(r,)+%}
—ifser) +%}] +§!§-—exp[i.{k,,r cos (a+8.,) +%}]
x [{c(r2)+%} —i{S(n) +%}] (30)

In the case of rigid breakwater, Eq. (30) coincide with Eq. (25) because the reflection
coefficient K, is unity. If the wave energy is completely dissipated in the breakwater,
that is, K,=0, only both the incident waves and the scattered waves induced by the
incident wave exist in the sea space.

7
t - ‘
2.0 P == ==

- - gy
-
Ka A -
’/
1.0 ‘
Y/L=20 i
! i !
| - ' j
;7N - - [
20 T e
II i
H

V i
reguiar wave

Y/L=0 I ” direction
Kg { 90°

breakwater
Kr=10 —=—=~—
Kr=Q ———
e s
K ' [ : ]
1.0 -~ e e
i R
Y/L=-6.0 ,
-1.0 o] 10 2.0 30 40
x/L

Fig. 3 Diffraction coefficient variation by a semi-infinite
breakwater for regular waves

Fig. 3. shows the diffraction coefficient variation for regular waves which
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approach in the direction normal to the semi-infinite breakwater. The coefficients are
calculated in Eq. (30). In Fig. 3, the solid and the dash lines show the diffraction
coefficients for a rigid breakwater (X,=1.0) and a no-reflection breakwater (K,=0)
respectively. In front of the breakwater, the diffraction coefficients vary around K,=
2.0 in the case of the rigid breakwater, but they do around K,;=1.0 in the case of the
no-reflection breakwater. This result seems to satisfy the condition of no-reflection.
At the tip of the no-reflection breakwater, the diffraction coefficients always become
0.5 in any incident wave direction. This is due to the introduction of the reflection
coefficient without considering the mechanism of the wave energy absorption in the
breakwater. In the lee of the breakwater, the diffraction coefficients do not greatly
depend on the valve of the reflection coefficient K, except the neighbor of the break-
water. On the lines of y/L=—2.0, the difference between the two lines is not more
than 0.05.

2.0
L CH N R T R
() bt i
y/L=20
2.0 —
1}
Ke |yr=0 |/
!
1.0
\ﬁ Irregular wave
direction

had

Kd v
1.0 =
y/L=0 \‘\ breakwater
Kd Kr=10 —=—~-
1.0 S— Kr=0
=
Y/L=-2.0l\\_
Kd
1.0
y/L=-40 T
Kqg
1.0
y/L=-60
o) |
-1.0 o] LO 20 3.0 40

x/L

Fig. 4 Diffraction coefficient variation by a semi-infinite
breakwater for irregular waves

Fig. 4 also shows the diffraction coefficient variation for irregular waves having
the directional spectrum with concentration parameter of smax=10 in the same case
as Fig. 3. In front of the breakwater, the diffraction coefficients for the no-reflection
breakwater are almost 1.0 except the tip of the breakwater. Therefore, the condition
of no-reflection seems to be satisfied. As for the rigid breakwater, the coefhcient is
almost 1.4 on ¥y/L=2.0 and 2.0 on ¥y/L=0 in the reflected wave region. The coefficients
show a great difference between two cases in front of breakwater. In the lee of the
breakwater, however, they are close each other, except ¥/L=0. Then, it is concluded
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that the reflection coefficient greatly affects the value of the diffraction coefficients in
front of the breakwater, but does not in the lee. Therefore, even if a breakwater is
constructed in any type, the calmness in its lee will be kept almost same degree.
3.2 Wave diffraction due to a gap between breakwaters
In this section, the problems of wave intrusion into a harbour through a gap are
treated. In the problems, the wave intrusion is classified into following five types:
1) when reflected waves due to a breakwater do not enter the harbour but are
scattered outside (Fig. 5 (a)),

Qo

Breakwater 1

Fig. 5 (a) Case where reflected waves travel outwards

2) when reflected waves due to a breakwater are diffracted by the other one

(Fig. 5 (b)),

Breakwater I

Fig. 5 (b) Case where the reflected waves by breakwater I
are once more reflected by the other one
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3) when reflected waves due to a breakwater enter a harbour without being diffracted
by the other one (Fig. 5 (¢)),

Breakwater I

Fig. 5 (¢) Case where reflected waves by breakwater I
intrude inward without another reflection

4) when incident waves intrude into a harbour (Fig. 5 (d)) but may be reflected
by a rear side of a breakwater in some breakwater alignment (Fig. 5 (d)’),

/ e
/ Breakwater 1

Fig. 5 (d) Case where incident waves intrude without any reflection

5) when diffracted waves due to a breakwater are again diffracted by the other
one (Fig. 5 (e)),

As for each type of wave diffraction, an approximate formula is derived as a super-
position of the solution of the wave diffraction for a semi-infinite breakwater. Here,
Eq. (30) was adopted for the formulation. Since the foundamental thought of the
formulation is quite same for each type, we explain the thought by making an
approximate formula of the wave diffraction for one example. Type 2) is picked up
as an example. This type appears only when the incident wave angle @, is within

—727—<0,,.<7:—a3. The reflection coefficients of breakwater I and II are assumed to be

K.1 and K, respectively. The alignment of the breakwaters is shown in Fig. 5(b).
If there were not breakwater II, the diffraction formula due to breakwater I at an
arbitrary point P inside the harbour would be given as follows:
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\) Breakwater 1

Fig. 5 (d)’ Case where incident waves are reflected by breakwater II

~
)
o
<
&
Q

B

Breakwater 1

Fig. 5 (e) Case where diffracted waves by breakwater I
are diffracted once more by breakwater II
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¢1Gr, ax, fa 0,,.)='\/L—2—exp[i{k,,r1 cos (ag —0,,.)-{—%” X [{C(TI,)+—;—}
K,

_i{S(TI 1)+%}] +«/7exp[i{kﬂr1 cos (a1 +0m)+%}]

X[{C(le)+—;—}—i{5(712)+%” 3D

where 71 and a; are the distance from the tip of breakwater I to P and the angle
of P to breakwater I, and 71, and 7. are given as

7 1=/ B cos 150 |
(32)
1=~ 4k 1[x cosal—-zi-am— l

The incident waves to breakwater II have a phase lag of £,B, cos (@z—6,) to the
incident wave to breakwater I, and approach with an angle of #,—8 to breakwater II.
Then, if there were not breakwater I, the diffraction formula due to breakwater II at
the point P would be derived as

$1(rr, @, frs On) =717exp[i [kmr cos (ax—0nt+)+7
By cos Ca=0.0} | x[{CCrnd+ L —ifscra+1]]
+5—'§Eexp [i{knrn cos (rn+0,— )+
+k,B, cos (ag—em)}] x [{C<rn2)+%} —i{S(m)Jr%}]

33

where 7y and ey are the distance from the tip of breakwater II to P and the angle
of P to breakwater II, and 7y, and 7y, are given as

1. =~ 4k 1]z cos W
D
7']1,=»\/4k,,r1[/77: cos %’d

Since the reflected waves due to breakwater I become incident waves to breakwater II,
their phase lag is given as k,B, cos (az+8,) and their approach angle to breakwater
II is 2z —6,—B) as shown in Fig. 5(b). Therefore, the diffraction formula for the
reflected waves would be given as

d1.1Crm, an fon am)=%exp[i{km cos (ax+Ont-B)+5-
+k,B, cos (a3+0m)}] x [{C(Trm)-l-%}
—z’{S(rI 1) +—é—}] +%§Lﬂexp[i{knrn cos (g —0.—B)
+ 2 kB, cos (apt 00} | % [ {CCrad + 2
—ifstrim+1}] @5)
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where
rim=vakrolz COSW I
(36)
rim=4krolw cosgLo’"z—ﬁ—z—E. J

It is convenient to divide the area inside the harbour into 5 regions of A, B, C, D,
and E as shown in Fig. 6. In each region, the following formula of wave diffraction
can be given approximately :

AU LU LY AN \
Breakwater I

Fig. 6 Dividing inside a harbor
1) In region A

Ga=d1G1, ar, for 0a) +9u(rn, an, fo, 02) +$110(rn, @n, fo, 02)
—exp [ikary cos (@ —0.)]— K, 1 exp Li{k.rg cos (an+ 8.+ 8)
+k,B, cos (az+0.)}] 3D

2) In region B

Gs=¢1Gr1, @1, fur 02) +9u(rn, an, fo, 02) +¢10(rn, @n, f2, 02D
—exp [ikar1 cos (a;—0.)]—K, 1 exp [tkary cos (a1 +6.)]
—K, 1 exp [i{k.rq cos (ag+0.+8)+k.Bscos (apt8:)}] (38)

3) In region C
¢C=¢H(rﬂy auyfm 0:&) +¢I H(rﬂy an:ﬂn 01:\) (39)
4) In region D

¢D=¢H(rn) aﬂ:fn’ 01:) +¢I 11(7'11, an:ftu on)
—K.,1 exp Lilk.rg cos (an+0.+B8)+k.B, cos (as+0:)}] (40)
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5) In region E

¢E=¢']I(r]b auyﬁu 01») +¢IH(T]I) aI[)fm 0m)_KrI exp [i{knrﬂ cos (a]I+0m+ ﬂ)
+k.B, cos (az+0,)}]—K, 1 K,1 exp [i{k,71 cos (ag—6.—B)
+k,B, cos (az+6,)}] 4D

In the derivation, the influence of the diffracted waves due to breakwater I is ignored
in the region ‘of a1>aj, because the waves are supposed to travel in the radial
direction from the tip of breakwater 1 and their diffracted waves due to breakwater II
are assumed to be very small in the comparison with other waves. Therefore, in the
regions C,D, and E, the formulas do not include the term of ¢; (1, a1, f, 0).
Since each region is divided in the condition of the geometrical optics, it is natural
that the obtained formulas should not be continuous on the boundary lines. The
difference, however, is supposed to be as small as negligible, if B, is wide enough to
satisfy the superposition condition.

The formulation in the other types are made in the same manner as in type 2)
though the obtained formulas are not presented here in order to eliminate a great
complicacy.

8
Smax=10
Kiz=1.0, Kex=1.0
7| Ke=0, Kiz=1O
Y/L
6 |-
5 -
4 -
3 |-
o | wavE DIRECTION
///
1k e
/// T
o e — O3 - Kt —— :
0 1 2 3 4 5 6 7 8 9 10
X/L

Fig. 7 Wave diffraction diagram

Fig. 7 shows the diffraction diagram of the irregular waves with smax=10, which
is calculated by the diffraction formulas such as Eq. (37) to (41). In the figure,
each solid line indicates equal diffraction coefficient in the case of the rigid breakwater
(K,1=1.0, K,p1=1.0) and each dash lines also does in the case where one is a cushion
type breakwater (K,1=0) and the other is a rigid breakwater (K,y=1.0). Judging
from the figure, the calmness inside the harbour is greatly promoted in its degree by
only changing the value of the reflection coefficient of breakwater I to zero. Since
the case such as Fig. 7 is under the condition that the reflected waves intrude the
harbour, the calmness can be promoted by decreasing the value of the reflection co-
efficients, but in other case without the reflected waves we can not expect such promotion
even if the reflection coefficients of breakwaters are small. This is clear as we previously
described in 3.1 that the value of the reflection coefficient does not affect the diffraction
coefficient in the lee of a breakwater.

3.3 Verification of the validity of the formulation

Since the formulas, as obtained in 3.2, are approximate, they do not satisfy the

boundary conditions on the breakwater or the continuity condition on the boundary
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lines. In order to verify the validity of the formulation, we make comparison with the
numerical analysis method of wave propagation, which has been developed by Ito and
Tanimoto™, and whose validity has already been confirmed by experiments. In their
method, the adoption of irregular waves needs a great deal of computing time. Regular
waves, therefore, are used for comparison. The comparisons are carried out as for
three different breakwater alignments, as shown in Fig. 8 to 10, where solid lines
represent the diffraction coefficient variation calculated by the numerical method and
small circles do the diffraction coefficients calculated by the approximate formula.

0.5

Ke ! wLzat .
< i )
'
[o] - L

T
' Numerical anolysis method ——

!
Kg I Approximate formula o
0.5 i ; .
| Lo x/LF33 R |
} J , !
1 I O
Y | i : waves
; p/i=a X/L
Ka i e 2.1
! ; ‘ 33
0.5 : f a5
l ’ x/L =‘ 45 [ 57
B0 O OO OOt O OO OO OO0 ¢
o - - < ~0—0—0—P~0-0- 0|
Ka : | !
os ) i 1
. : i
i x/L i 57 I
|
o TOOOr00010-0-0-00—0-0;0-0-010-20p0-0-0
o} 10 20 30 40 S0 6.0 70

x/L

Fig. 8 Diffraction of the diffracted waves

Fig. 8 shows very close agreement between both calculated values. In this break-
water alignment, the diffracted waves due to a breakwater are once more diffracted
by the other one. The diffraction coefficients are about 0.1 to 0.2, and do not show
a great variation.

Fig. 9 also shows the comparison of two methods. In this case, both breakwaters
are parallel to each other and the tip of a breakwater is in the lee of the other one.
Since the incident waves are reflected by the rear breakwater, the diffraction coefficients
on x/L=1.6 or 2.4 show a great variation near the gap because of the teflection. The
difference between both calculated values is as great as 0.2 in maximum, but referring
to the figure, it is hard to say they show bad agreement in the area with a great
influence of the wave reflection, because they are close at some points. In the inner
part, or in the lee of the breakwater, both values quite well agree each other.

Fig. 10 also shows the comparison in the case that the incident waves directly
intrude the harbour. Both breakwaters are also parallel to each other. On the lines
of z/L=—2.0, —1.6 and 0.8 in the unshetered region the dffraction coefficients by
the approximate formula show a great discrepancy to those by the numerical analysis
method. Especially, on the line of x/L=—2.0, the former values become gradually
larger from a point of about y/L=2.5, while the latter values decrease from the point.
Thus, on the line, the inclination itself of two diffraction coefficients is quite different
each other. In the area, the diffraction coefficients by the approximate formula are
different by about 20% of their values from those by the numerical analysis.

Referring to the above comparisons, the following conclusion is drawn: The
approximate formula shows the estimation of the diffraction coefficients within about
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Fig. 9 Diffraction of the waves with reflected waves
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Fig. 10 Diffraction of directly intruding wave
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20% error near the gap, and predicts well diffraction coefficients in the lee of break-
waters.

4. Verification of the approximate formula by the experiments

The validity of the approximate formula for the wave diffraction is confirmed for
regular waves in the comparison with the numerical analysis method, but it is
necessary to comfirm its validity for irregular waves. In this chapter, we presents
the results of model experiments which were carried out for uni-directional irregular
waves in order to verify the validity.

4.1. Measuring and recording equipments, wave tank and irregular wave generators

Capacitance type wave meters are used for the measurment of the waves. The
measured analog data of the waves are stored on the magnetic tapes of a data recorder
through the amplifier of the wave meter. The waves are measured simultaneously at
three points for about 10 minutes. After measuring, the wave meter are moved to
another three points, and the shifts of zero balance induced by the movement are
adjusted by the dial on the wave meter amplifier. In the same process the experiments
are continued.

19.9m

Fig. 11 Wave tank and position of wave generators

The wave tank and the position of wave generators are shown in Fig. 11. The
gravel mounds are constructed in front of the walls of the tank in order to prevent
waves from being reflected. The generators can generate uni-directional irregular
waves with an arbitrary frequency spectrum. The process of the irregular wave
generation is as follows:

1) The white noise signals are produced by two white noise genarators.

2) The signals are passed through ten band-pass-filters and changed to the irregu-
lar wave signals with Bretschneider’s spectrum, where the dials of the filters are
adjusted to the value calculated by the dial setting program.

3) The transformed signals are stored in a data recorder.

4) The signals themselves have too high frequencies to put in the wave generator.
Therefore, the out-put tape speed is cut down to 1/10 or 1/20 times of the recording
speed.

5) The signals at the cut-down speed are put in the wave generator control board.

6) The wave paddle moves with the signals, and the irregular waves with the
expected spectrum are generated.
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4.2. Experimental condition and incident waves
(1) Experimental condition
We imagined that the incident waves with the significant wave height of 2.0m
and the wave period of 10 sec approached to a port with the opening length of 300m
in a sea of 15m deep. We determined the port model scale to be 1/100. Then, in
the model the incident significant wave height and period become 2.0cm and 1.0 sec
respectively, and the depth and the opening length do 15cm and 300cm respectively.
The three kinds of breakwater alignments are adopted as shown in Fig. 12 to 14:
1) Case 1 that the incident waves may be reflected by the rear face of a breakwater
(Fig. 12).
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2) Case 2 that the incident waves intrude the port directly (Fig. 13).
3) Case 3 that the diffracted waves due to a breakwater are once more diffracted
by the other one (Fig. 14).

! o WAVE MEASURING POINTS ¥
N

' / N

] A\
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Fig. 14 Alignment of breakwaters and measuring points for case 3
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Fig. 15 Distribution of the significant wave height ratios

In these figures, small circles indicate the measuring points, whose number are about
40 and which are on three lines at 2.0m, 4.0m and 8.0m from the tip of a breakwater.
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The experiments were also carried out for cushion type breakwaters in the same
breakwater alignments as case 1 and 2. The breakwaters were made by gravelling
around them with the slope of 1/1.5.
(2) Spectrum and statistic quantities of incident irregular waves

The incident irregular waves are measured at 18 points without breakwater models.
The points are chosen around opening site of model breakwaters. Fig. 15 shows the
distribution of significant wave height ratios to the average height around the site.
The ratio varies from 0.90 to 1.10 at a place to place, as shown in Fig. 15. Referring
to Fig. 15, the place of the breakwater settlement was chosen. Average statistic
quantities of the incident waves are shown on Table 1.

Table 1 Statistical quantities of the incident waves

H,;;,(cm) H,;;(cm) H(cm) T .:(sec) T(sec)
2.27 1.82 1.11 1.08 0.96
o
10 Bretscheider’'s Spec. —-——-- T
Measured Spec. — -
T T [T T A T T ":
107" —
o ]
& .
“é |
S .
(n —
1072 —
1073 —]
1074 [N R [ NN
0.1 | 10
F (sec™")

Fig. 16 Measured spectrum and Bretschneider’s
spectrum of incident waves

Fig. 16 shows a measured spectrum at a point and Bretschneider’s spectrum
calculated with the mean significant wave height and period. In Fig. 16, the wave
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energy of the former spectrum is larger than that of the latter in the part of lower
frequencies than the peak one of 1.0, and less than the latter in the part of higher
frequencies. The damping of the measured spectrum in the higher frequencies seems
to be caused due to the dirt on water surface or viscous energy dissipation. The refle-
ction coefficients of the cushion type breakwaters were estimated for three irregular
wave trains with different significant wave heights and same wave periods. The waves
were measured at two points with the distance of 20cm each other in front of the
breakwater, which was set normal to the incident wave direction. The incident and
reflected wave energy were computed from the measured data by the technique presented
by Goda and et. al*”. Then reflection coefficients for irregular waves were calculated
as a root of the ratio of the reflected wave whole energy to the incident one. They
are shown in Table 2. Referring to Table 2, we adopted 0.5 in the computation of
wave diffraction as the reflection coefficient of the breakwaters.

Table 2 Reflection coefficient of the cushion type breakwater

H,,(cm) T, (sec) H,,/L K,
1.81 1.12 0.0145 0.48
1.06 1.12 0.0085 0.54
0.29 1.09 0. 0024 0.63

4.3. Experimental results and discussions
(1) Casel

In this case, the incident waves reflected by a breakwater enter a harbor through
an opening. The alignment of the breakwaters and measuring points for the case are
shown in Fig. 12.

The comparisons between the experimental results and the calculated values by
the approximate formula are shown in Fig. 17 to 18. In these figures, the solid lines,
the broken lines and the small circles indicate the calculated values by Bretschneider’s
and the measured spectra in Fig. 16, and the experimental values, respectively.

Fig. 17 (a) and (b) show the comparisons for the diffraction coefficients and the
diffracted wave period coefficients in rigid breakwaters, respectively. In Fig. 17 (a), the

30
Ka
20

Co). For Bre!schreider’s Spec.:
Col. For Mecsured Spec. -

Experiments

Fig. 17 (a) Diffraction coefficients for case 1 (K,=1.0)
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calculated coefficients show small differences between Bretschneider’s and the measured
spectra in spite of the large difference between the two spectra as shown in Fig. 16. This
implies that diffraction coefficients are not so much affected by the difference of frequency
spectral forms, if the spectra show almost same values each other around their peak
frequencies. On the line of x=8.0m, the calculated values are twice or 1.5 times
larger than the experimental ones in the portion of y¥/L=1 to 2. The causes of the
difference are referred to the computing assumptions that the wave reflection area is
determined by optical wave reflection and that wave energy is not transferred into or
out of another area through the boundaries. On the other lines, the calculation
shows close agreement with the experiments. Therefore, the approximate formula is
applicable to practical problems with a good accuracy except some portion.

20
I | Kr=1.0
Kat I |
R e e D T Mil—
Cal. For Bretschneider's Spec. ——
) x=2m Cal. For Measured Spec.  -----
Kar Experiments. o
R S =
x=4m
o]
Ker
107 o () %] e Qo - 5 - I
x=8m l
o ]
o] 1 2 3 4 S

y/L

Fig. 17 (b) Periodical ratios of the diffracted
waves for case 1 (K,=1.0)

In Fig. 17 (b), the wave period coefficients show some discrepancy between the
calculated values by Bretschneider’s and the measured spectra. The discrepancy depends
upon the difference between the two spectra in high frequencies, because the frequencies
influence the wave period coefficients by the square of their values, as shown in Eq.
(7). The experimental values show closer agreement with the dash lines for the
measured spectrum than with the solid lines for Bretschneider’s one. This means that
Rice’s formula can be applied to the estimation of the wave period coefficients only,
though it is uncertain whether the formula can precisely predict the mean wave periods.

Fig. 18 (a) and (b) show the distribution of the diffraction coefficients and the
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—o—o— a

Cal. For Bretschneider's Spec,

| Kr =0.5

Cal. For Measured Spec. -

Experiments
2o o ol o I |

o 1 2 3 4 5
y/L

Fig. 18 (a) Diffraction coefficients for case 1 (K,=0.5)
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wave period coefficients for the cushion type breakwaters with the reflection coefficients
of 0.5, respectively. In Fig. 18 (&), the distribution of the diffraction coefficients shows
almost the same variation as in Fig. 17 (a), though their values are smaller than
those in Fig. 17 (a). Both the calculations show very well agreement with the expe-
riments. Especially, in the inner habor the agreement becomes much better. Referring
to Fig. 18 (a), the approximate formula is also applicable to the cushion type break-
waters.
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Fig. 18 (b) Periodical ratios of the diffracted
waves for case 1 (K,=0.5)

Fig. 18 (b) for the wave period coefficients shows that the experimental values
are close to the calculated ones by the measured spectrum except the portion of y/L
=3.50on z=2m. In the portion, the experimental values are larger by about 0.3 than
the calculated ones. The approximate formula can estimate the wave period coefficients
even for the cushion type breakwaters.

(2) Case 2

In this case, the incident waves enter the harbor through a opening without the
direct reflection due to a breakwater, as shown in Fig. 13. Figs. 19 and 20 show the
comparisons between the calculations and the experiments for rigid and cushion type
breakwaters, respectively. In these figures, each line and the small circles indicate
the same as in Fig. 17 or 18.

In Fig. 19 (&), both calculations by Bretschneider’s and the measured spectra
show quite close values to each other. Though the experimental values are smaller

o K Cel). For Bretschreder's Spet.  ———
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Fig. 19 (a) Diffraction coefficients for case 2 (K,=1.0)
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than the calculated ones by about 0.1 near the peak value of the wave diffraction
coefficients, the discrepancy is very small. Therefore, the calculation can predict the

diffracted waves very well.
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Fig. 19 (b) Periodical ratios of the diffracted
waves for case 2 (K,=1.0)

In Fig. 19(b) for the wave period coefficients, the experimental values show quite
closer agreement with the calculated ones by the measured spectrum than by Bretschn-
eider’s one.
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Fig. 20 (a) Diffraction coefficients for case 2 (K,=0.5)

Fig. 20 is the case for the cushion type breakwater. As previously mensioned
in 3.1 that the calculated diffraction coefficients are not affected by the reflection
coefficients in the lee of the breakwater, the calculations in Fig. 20 (a) show almost
same values as that in Fig. 19 (a). However, the experimental diffraction coefficients
are affected by the reflection coefficients, because the values in Fig. 20(a) are less than
those in Fig. 19 (a) by 0.1 to 0.2 near the peak value, which exists in the
unsheltered region. Therefore, the experiments show smaller diffraction coefficients
than the calculations by about 0.4 in maximum except the sheltered region, where the
experiments show a close agreement with the calculation. We could not make clear
why the diffraction coefficients in the unsheltered region decrease their values in the
experiments for the cushion type breakwaters. Anyway, according to the experimental
results, we may say that it is effective to construct cushion type breakwaters on purpose
of the improvement of calmness in unsheltered region.
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Fig. 20 (b) Periodical ratios of the diffracted
waves for case 2 (K,=0.5)

In Fig. 20 (b), the experimental wave period coefficients show much closer agree-
ment with the calculated ones by the measured spectrum than by Bretschneider’s
spectrum.

In the results of the comparison between the experiments and the calculations for
this case, the calculation by the approximate formula shows very good estimation in
the sheltered region, but it will overestimate diffraction coefficients in the unsheltered
region. The calculation of wave period coefficients shows very good estimation both
in the sheltered region and in the unsheltered region, if the precise spectrum of inci-
dent waves is given.

(3) Case 3

In this ‘case, the incident waves are diffracted by a breakwater and then once
more diffracted by the other one. The diffraction coefficients are very small and 0.1
to 0.2. The experiments show close agreement with the calculations, as shown in
Fig. 21 (a) and (b). The approximate formula is applicable to the prediction of the
diffracted waves. In this case, the experiments for cushion type breakwaters were not
carried out, because large variation of the diffraction coefficients due to them are not
expected.

. i . Kr = 1.0
Ke x=2m ~; i
1of — ——
ol o Yo o ot o a
o : : =
Ke x= 4:,,, Cal. For Bretschneider’s Spec.
I [ Cal. For Meosured Spec. —_—
1G- ' Experiments o
° ig o g o o P "
K x: 6m . ;
N i
10}~ S - —- - ]
0. o ‘ .
0 T
(] )
2 3 4 L S

Fig. 21 (a) Diffraction coefficients for case 3 (X,=1.0)

The following conclusion are drawn in the comparison of the calculations with the
experiments :
(1) The calculation by the presented approximate formulas gives a good estimation
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Fig. 21 (b) Periodical ratios of the diffracted
waves for case 3 (K,=1.0)

of diffraction coefficients due to cushion type breakwaters as well as rigid breakwaters.
(2) Though in Case 2 the calculated diffraction coefficients are not affected even in
the unshelted region by the reflection coefficients of breakwaters, the experimental
diffraction coefficients for the cushion type breakwaters decrease their values in the
unsheltered region. This implies that it is effective to construct cushion type break-
waters on purpose of the improvement of calmness in unsheltered region.

(3) If the incident wave spectra show almost same values near their peak, the
diffraction coefficients calculated by the spectra show almost same values without
depending on the difference of their spectral forms. On the other hand, the wave
period coefficients vary, depending on the spectral form in high frequencies.
Therefore, precise spectral form of the incident waves is necessary in the good
estimation of the wave period coefficients.

(4) For the wave period coefficients, the calculation estimates very close values to
the experiments as far as the precise spectrum of incident waves is given.

(5) The close agreement between the calculations and the experiments suggests that
the approximate formula is applicable to the estimation of wave diffraction for the
incident waves with a directional spectrum.

5. Conclusions

The following conclusions are drawn in the study:
1) The formula of the wave diffraction due to a rigid semi-infinite breakwater is
transformed to a practical form applicable to a cushion type semi-infinite breakwater.
2) According to the calculation by the transformed formula, in the lee of a semi-infinite
breakwater the diffraction coefficients are not affected by the value of the reflection
coefficient except the neighborhood of the breakwater.
3) The formula is applied with its superposition to the wave diffraction due to a gap,
and the derived approximate formula is applicable to any alignment of breakwaters,
and also to cushion type breakwaters.
4) The comparisons with the numerical analysis method of wave propagation are
carried out for regular waves in order to verify the validity of the approximater formula.
In the results, the calculation by the approximate formula shows a good prediction in
the lee of breakwaters or in the inner harbor area, but shows some discrepancies to
the numerical analysis method near a gap.
5) The experimental verification of the approximate formula is also carried out for
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uni-directional irregular waves. Three cases of different breakwater alignments and
two kinds of breakwaters with reflection coefficients of 1.0 and 0.5 are adopted in the
experiments. In the results of the comparisons with the experimental values, the cal-
culations by the approximate formula show a good prediction of the diffracted waves
in the models. This implies that the prediction by the approximate formula is acceptable
in the estimation of diffraction of incident waves with a directional spectrum.

6) The estimation of the wave period coefficients needs more precise spectral form of
incident wave than that of the diffraction coefficiernts.
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22)

List of symbols

B, : width of a gap
Cr) : Fresnel integral
f : wave frequency
Ia : n-th component wave frequency
- : peak frequency of wave spectrum
G(f,8) : wave directional distribution function

g : gravitational acceleration

H,, : significant wave height

h : water depth

K, : diffraction coefficient

K. : period ratio of diffracted wave

K, : reflection coefficient

L : wave length of signifcant wave

M : dividing number of wave direction
N : dividing number of wave frequency

r : distance from the origin to a point
S(f,8) : directional spectrum
S:(f) : frequency spectrum

S : Fresnel integral

Smax : a parameter of wave directional concentration
T : significant wave period

T : mean wave period

Ue.s : wind speed at 19.5m above the sea
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a : incident wave approaching angle
S —0.

7 1 7.=~4k.r|x cos « 5
_ 0.

7 : 7o=+4kr|z cos a-;

Eum : phase difference

4 : wave surface deformation

0 : wave approaching angle

0. : m-th component wave angle

&(r, a, fr, 0) : transfer function of wave diffraction
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