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1. Numerical Experiments on Wave Statistics with Speciral Simulation

Yoshimi GODA¥

Synopsis

The analysis of irregular wave action on maritime structures requires infor-
mation on statistical characteristics of irregular waves which are described with a
power spectrum. Though Cartwright and Loguet-Higgins have presented a theory
on the maxima of surface elevation, the statistics of wave heights and periods
for a spectrum of broad frequency band have remained unclarified. To serve
as a solution to the want of synthetic information on the wave statistics, computer
simulation of one-dimensional wave profiles has been carried cut for twenty four
wave spectra of various functional shapes, each with five to ten runs. Power
spectra and wave profiles were all non-dimensionalized to produce universal con-
clusions. Simulated wave profiles were examined for the maxima of surface
elevation, crest-to-trough wave heights, zero-up-cross wave heights, correlation
between wave height and period, and the run length of wave heights.

The numerical experiments show that the wave heights defined by the zero-
up-cross method practically follow the Rayleigh distribution irrespective of the
spectral width parameter. This supports the field reports of the fitness of the
Rayleigh distribution to the observed records of wind waves. The correlation
coeflicient between wave heights and periods is found to almost linearly increase
with the increase of spectral width parameter. The length of the run of zero-
up-cross wave heights is most closely related to the peakedness of a power
spectrum. The results of wave simulation with double peaked spectra justify
the use of energy concept to estimate the representative height and period of
wave system composed of wind waves and swells. In addition, for laboratory
simulation of ocean waves with an automatically controlled wave paddle, the
number of component waves for the input is recommended io be more than
fifty.

* Chief of Wave Laboratory, Hydraulics Division
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Wave Statistics with Spectral Simulation

1. Introduction

Qcean waves have two characters of complexity. The one is irregularity,
and the other is non.linearity. Irregularity of ocean waves is readily understood
if one goes to shore and looks at waves breaking at beach; the heights and
periods of breaking waves differ greatly from wave to wave. The breaking of
waves, on the other hand, does demonstrate the non-linear nature of water waves.
In case of other types of oscillations such as sound waves, seismic waves, etc,
they can increase their intensities without no apparent limit. The non-linear
nature of water waves, even before the occurrence of wave breaking, presents
difficulty in the analysis of ocean waves with large amplitudes.

To clarify these complex characters of ocean waves, various techniques have
been applied. The non-linear character of water waves has been studied analyti-
cally and experimentally for waves of finite amplitudes but in a regular train.
Wave profiles, particle velocities and accelerations, wave pressures, wave breaking
conditions, and other properties of finite amplitude waves are now fairly well
understood. Engineers can calculate the properties of finite amplitude waves
with reasonable accuracy.

The irregularity of ocean waves has been handled from two dirvections of
approach; one by the representation of irregullar waves with significant waves
or other mean waves, and the other by the analysis of irregular waves in the
form of power spectrum. The technique of spectral analysis has been so effective
in clarifying the internal mechanism of ocean waves that a detailed study of the
generation, development, and deformation of ocean waves cannot be conducted
without the employment of power spectral analysis. The technique, though
powerful in understanding the nature of waves, is principally based on the
linear theory. Actual waves are presumed as the result of superposition of an
infinite number of component waves, the energy of which is proportional to
the density of power spectrum at the corresponding frequencies. Theories of
non.-linear wave spectrum have been presented by several researchers (Hassel-
mann 1962, Tick 1963, Hamada 1965, etc.), but they are mostly aimed at the under-
standing of non-linear interaction among component waves. The accomplish-
ments of the study on non-linear, regular waves have not been incorporated in the
technique of power spectral analysis of the ocean waves.

From the engineer’s point of view, both the irregularity and non-linearity
of ocean waves are important in the design of marine structures. The incorpo-
ration of both the irregularity and non-linearity in design procedure has been
tried for the problems of the sliding of an upright section of composite break-
water by Ito et. al. (1966) and the rate of wave overtopping of sea walls by
Tsuruta and Goda (1968), based on the calculation of expected values with the
statistical distribution of wave heights. With the presumption that the action
of waves on structures can be analysed on the basis of wave by wave approach
at least statistically, the non-linear character is estimated with the information
on regular waves and the effect of wave irregularity is calculated with the wave
height distribution,

In this kind of analysis, a detailed information on the statistical properties
of waves is needed. The theoretical distribution for wave heights is the Rayleigh
distribution which has been shown by Longuet-Higgins (1952) to be applicable
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to ocean waves with narrow band spectra. Field observation data of various
sources® generally support the Rayleigh distribution for wave heights defined by
the zero-up-cross method despite the fact that most of observed waves has power
spectra of broad band. A question may be raised as such: why the Rayleigh
distribution derived under the condition of narrow band spectrum holds for the
height distribution of waves which are not necessarily of narrow band spectra.
As for wave periods, Bretschneider (1959) has proposed an empirical distribution
that the squares of wave periods follow the Rayleigh distribution. Though he
employs the period distribution as a basis of his wave spectrum, the applicability
of the empirical distribution has not been fully examined.

The use of significant wave characteristics is common among engineers.
The representation of irregular waves with the significant wave has one advan-
tage that the dimensions of waves are readily grasped by this representation,
even though the information on the structure of power spectrum is not given.
With proper consideration for wave irregularity, the significant wave character-
istics serve as the measure of wave dimensions. If the spectral representation of
irregular waves is correlated with the representation with significant waves, the
engineers’ use of the latter can be encouraged.

The study of wave statistics in connection with the power spectrum of sur-
face elevation has heen done with actual wave records. But the field data, though
they are the only source that should be referred to, are uncontrolled ones in
terms of magnitudes and spectral characteristics. The data can check the vali-
dity of a theory on wave statistics, but conclusions are often limited to particular
situations. Itis difficult to derive from field data general conclusions on the sta-
tistical properties of ocean waves and the effect of spectral shapes on wave sta-
tistics, On the other hand the establishment of the theory of wave statistics for
waves with broad band spectra seems impossible beyond the work of Cartwright
and Longuet-Higgins (1956) which has presented the theory on the statistics of
maxima but not on wave heights,

At this situation, the numerical analysis with the simulation of wave profiles
with given characteristics of power spectra becomes a promissing means for the
study of wave statistics. A numerical study can employ the data of controlled
character in comparison with field data. By varying the characteristics of a pow-
er spectrum, their effect on wave statistics can he systematically investigated.
Maxima of surface elevation, crest-to-trough wave heights, zero-up-cross wave
heights, correlation coefficient between wave height and period, and any other
property can be defined, measured, and analysed. Actually, numerical study has
been suggested by Cartwright (1963), but to the knowledge of the author only the
simulation on the apparent length of wind waves has been undertaken by Ewing
(1969),

By this reason, numerical experiments with simulation of wave profiles have
been carried out in order to provide answers to the questions on the statistical
properties of irregular waves. The subsequent chapters review the existing theo-
ries on wave statistics [2.], describe the method of wave simulation employed [3.],
present the results of wave simulation [4., 5., and 6.], discuss the results for practi-
cal application [7.], and summarize the results of the numerical experiments [8.].

* Tor example, see Bretschneider (1959), Goodnight and Russel (1963), Collins (1967), Goda
and Nagai (1968), etc.
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Wave Statistics with Spectral Simulation

Notation—In this report a wave is defined in two different ways as shown
in Fig. 1. The one is called the crest-to-trough wave and the other the zero-up-
cross wave. A crest-to-trough wave, denoted with an asterisk, begins at a maximum
elevation of wave profile and ends at the next maximum regardless of the position
of a maximum. The heights of a crest-to-trough wave is the vertical distance
between a maximum elevation and the subsequent minimum elevation; in the
example of Fig. 1, the heights of seven crest-to-trough waves are designated with
Hi* to H:*. The wave period is the time interval between the successive maxima.
On the other hand, a zero-up-cross wave is set in when the surface elevation
crosses upward the line of mean elevation and set off when the next zerc-up-cross-
ing takes place. Bumps of surface elevation are discarded so long as they do
not cross the line of mean elevation. In the example of Fig. 1, the heights of
four zero-up-cross waves are designated with H; to H;. The period of zero-up-
cross wave is the time interval between the successive zero-up-cress points,

T T2 = T - Ta ‘““'T

Wz

Fig., 1. Definition of wave heights and periods

Other notations used in this report are defined ‘when they first appear and
are listed alphabetically in Appendix A.

2. Review of Statistical Theories on Ocean Waves

2.1 Gaussian Distribution and Power Spectrum of Surface Elevation

The random nature of ocean waves is usually described as a stationary
(Gaussian process. This means two features of ocean waves: the Gaussian distri-
bution of instantaneous surface elevations and the equality of the ensembles with
respect to time and space. Thus, 2 number of the data of surface elevation
sampled at a fixed point over a long period of time (or those sampled at an in-
stant over a large area) follow the distribution of

Po=rr exp [ 2] (1)

where ¢'=y" denotes the variance of surface elevation, ». The zero level of 5 is
taken at the mean surface elevation so that %=0,

The properties of a statistical distribution can be examined by means of the
following moments:

" by

#1=ﬁ=5
(2)
#x=g (p—m)pln)dy
The first moment is the mean, and the second moment gives the variance, <.

The third moment yields the skewness /B as:
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B pt (3}

The fourth moment defines the kurtosis which is a parameter for the peakedness
of a statistical distribution as

Bo=pufps® . (4)

If the distribution is strictly Gaussian, then pi=p;=0 because of symmetricity
of Eq. 1 with respect to y=0. The second moment is ¢* by definition, and the
fourth moment is calculated as 3¢'. Thus the skewness and kurtosis of the
Gaussian distribution become

SB=0, and = Bg=3. (5)

The Gaussian distribution of surface elevation of ocean waves is an approxi-
mation. Detailed examination of wave records reveals a slight deviation from
Eq. 1 with a tendency of positive peaks being greater than negative depressions.
Kinsman (1964, p. 344) has reported a positive skewness of 0.045 and 0.168, and
Goda and Nagai (1968) have obtained the skewness ranging from --0.42 to 1.98 but
mostly with positive value. The chi-square test also fails to support the fitness
of the Gaussian distribution.

The deviation from the Gaussian distribution is not great, however. Histo-
grams of sampled surface elevation are close to that described by Eq. 1. If the
Gaussian distribution is assumed to hold for the surface elevation, waves can be
resolved as a sum of infinite number of wavelets with infinitesimal amplitudes
and random phases by virtue of the central limit theorem. Thus the surface
elevation at a fixed point, 5(t), is expressed as

p(B=3" an cos Qufut + ) , (6)

n=1

in which . denotes the amplitude of the n-th wavelet, fi the frequency, and ¢,
the phase. The amplitude @. is related to the power spectrum {two-sided) S(f) as

Lyof
$ an?=45(df . (7)
In the form of pseudo-integral representation, the surface elevation is
AO=2 | V/STVF cos @eftt). (8)
]

These relations afford the basis of wave simulation as will be discussed later.
The variance of the surfafe elevation, ¢° can be calculated from Eq. 6 as

A=lim — St" fdt=2 S“ SCAS . (9)

l:u—mo 1]

The F-value which appears in the P-N-J method for wave forecasting is twice
the variance; hence,

E=20'= S:‘ SCAF . (10)

— 10—
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2.2 Distributions of Wave Heights and Periods

The heights of ocean waves, defined by either the crest-to-trough method or
the zero-up-cross method, are not uniform but statistically distributed. Longuet-
Higgins (1952) has theoretically shown that when the wave spectrum is of narrow
frequency band the distribution of ym. is a Rayleigh distribution of the following:

f)("?luux}dﬁumx: Thong exp [_ ?'Imuxal"szg]d?‘jmux . (11)

g

The mean value of ypuu. is obtained from Eq. 11 as

Pz == N ax ] d 5 = E . 12
e Sﬂ Ty, [)(T/'max) Tmnus '\/2 a ( )

In the case of a narrow frequency spectrum, the wave height is twice the
maximum of surface elevation, or H=2yu... Thus the distribution of wave heights is

1 H H*
PEDAH = 1 1 SXP [_ 857 ]dI-I . (13
The above equation can be rewritten with the mean wave height of H=4/2z ¢ as
=/ H x [ H\* H
(B SBHE.

which is more conventional than Eq. 13.

The average heights of the highest one n-th waves have been numerically
calculated by Longuet-Higgins. His results expresed in terms of ¢ are

Hino=5.090¢, Hip=4.004c, and H=+/2z+=2.5070. (15)
The relations between these heights of mean waves are immediately derived as
Hyme Hi H
=127, —=—=1.60, ——=0.626 .
Hi 1.27 T 1.60 and Tin 0.626 (16)

Longuet-Higgins also gives the expected value of maximum wave height Hp. in
a sample of N waves. The approximate expression of Hn. for large N is

H, axX _ SETIURTF IS —3/2

where y is Euler’s constant, 0.5772....
A few more gquantities of wave heights can be obtained from Eq. 13, The
mode, or the most frequent value, is

Hioo=20 . (18)
The root-mean-square wave height is
Hims =22 ¢=2.8280 . (19)
And the standard deviation of wave height from the mean is
o(H)=~ Hym.s* —H =1.309% . (20)
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As for the distribution of wave periods, Bretschneider (1959) assumed a Ray-
leigh distribution to hold for the square of wave period, 7% His expression for
the wave period distribution is

' T\
HTUT=2.75 exp [—0.675(,7,) ]dT, @1

where T denotes the mean wave period. If the wave period follows the above
distribution, its standard deviation from the mean is given by

s T)=02817. (22)

2.3 Effect of Spectral Width on Wave Statistics

The distribution of 5m.. expressed by Eq. 11 has been obtained for waves with
a narrow frequency spectrum, which does not necessarily apply for most of ocean
waves. For waves with a broad frequency spectrum, Cartwright and Longuet-
Higgins (1956) has derived the following statistical distribution for yms, introduc-
ing a spectral width parameter «:

1‘-’\"1_{2/

oo

p(m):ﬁ;[e exp [ &2+~ T—¢ & exp [—2/2] S ) exp [—1/2] dt} , (23

where:
-T/':T/‘ma.\‘/o' 3 (24>
. Mo TFL = 3Ebg®
T peine (25)
- Sm SUAFrdS - (26)
o

The spectral width parameter ¢ has a value between 0 and 1. For the limit-
ing case of ¢—0 or an infinitely narrow spectrum, Eq. 23 becomes

xexp [—xY2], for x>0
Hx)= (27)
0, for <0,
which is the Rayleigh distribution of Eq. 11. For another limiting cuase of -1,
Eq. 23 is reduced to a Gaussian distribution of

Pa)=—rg= exp[—a*j2] . (28)

In this case, maxima of surface elevation appear below the mean sea level with
the equal frequency as those above the mean sea level. For intermediate values
of ¢ between 0 and 1, Cartwright and Longuet-Higgins have given graphs of p{x).

The mean and standard deviation of zm. have also been given from the
calculation of the moments of p(x) as:

?jmux = Jﬁg" (1 - EE) ¥
29

olpam =N 1=(5 1)1
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The mean of the maxima of surface elevation decrease as ¢ increases, while the
standard deviation increases.

The parameter ¢ which governs the distribution of maxima of surface eleva-
tion is calculated by Eq. 25 with the moments of power spectrum. It can also
be estimated from the numbers of maxima and zero-up-crossings. According to
Rice (1944), the number of maxima N: and that of zero-up-crossings Ny in the
record with a duration of L are given by

Ni=~mupm L, and  No=~/muafnt L . (30)

Since the ratic No/N gives s/ ons» Eq. 25 is rewritten with the relation of
Eq. 30 as

6-»—--«/].—(l\fnfl\}'l)2 . (31)

The above derivation by Cartwright and Longuet-Higgins is for the maxima
of surface elevation and not for the wave heights. They made comments that
the statistical distribution of wave amplitude is more difficult to obtain theoreti-
cally than that of maxima..., but it must in general be different from the Ray-
leigh distribution. By the wave amplitude they referred to the half distance
between a maximum and the succeeding minimum of the surface elevation. They
did not give consideration to the wave height defined by the zero-up-cross method.
Engineer’s experience that the Rayleigh distribution is a good approximation to
the statistical distribution of wave heights is explained with the difference in the
definition of wave height between engineers and statisticians.

2.4 Distribution of the Highest Maximum in a Wave Train

The highest maximum in a train of a given number of waves is an important
problem in engineering. Cartwright and Longuet-Higgins have derived the pro-
bahility density for the distribution of the highest in the sample of N maxima as:

p*(wmnx)=gfn";[}-_ﬂ(xmm‘)]” > (32)

where &=nmwfo as given by Eq. 24 and g(x) is the cumulative distribution of &
defined by

aw=\" neyia . @)

Cartwright and Longuet-Higgins have shown an approximate form of g{&m.)
for large values of N as

(o) =/ T=E exp t—mmﬂ/zno( exp [—xmﬂ/zeﬂ]) . (34)

FA—
With the above approximation, the mean value of Zn. has been estimated as

f]”ﬁ!}.X . 1

TV, Py o A SR
’\/#2,—.— 1 ) {«/ln («/1"—( N)+2 Jm} ’ (35)
'\/1—36“
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where ' is the variance of x and given by
' =2—¢, (36)

The number of maxima, N, is related to the number of zero-up-crossings, N,
through Eq. 31. Therefore, the mean of u.. is rewritten with Egs. 35 and 31 as:

T, n ray v AR R S
$max—«/21nNo+~/-2—«~ln—M . (37)

The above relation has been derived by Davenport (1964} in the study of the
gust loading problem. He has also obtained an explicit form of P 2maxy Tor large
values of N as follows. The probability that the highest of N maxima has the
value between Zmax and Zmuctdimae is the probability that one of the maxima
has this value and the rest are smaller, i.e.,

p*(ﬁmax)dxmnsz[l —(I(mmu)]Nalj)(mmnx)dmmm == d[l —Q(-Tcmnx)IN_l N

which is equivalent to Eq. 32. For large values of N, the following approxima-
tion can be made for the term in the right hand side of the above equation:

A . e Nl
1im {1 — (o)~ = lim {1_——] e, (38)
[l Moo N

in which ¢ stands for Ng(@wn.). With the expression of Eq. 34 available for
¢ Xmax), £ 18 expressed as

E=Ng(tmax) =No exp [—2max?f2] . (39
With the use of the above asymptotic form, p*(m..) is rewritten as
ﬁ*(xmux)dxmax =d {e—'E] = -T«'mu_x&e_‘zdxnmx . (40)

In addition to the mean of 2., Davenport has calculated the mode and
standard deviation of am.. as follows:

mode (Fmud=~" 210 Ny , (41)
T 1
)= TT G 1

Thus the highest surface elevation in a wave train is statistically determined hy
the number of zero-up-crossings Ny irrespective of the value of the spectral width
parameter e.

The largest wave height in a wave train has been studied by Longuet-Higgins
(1952) for waves with a narrow frequency spectrum. It is the limiting case of
the above calculation with «=0. A wave height is simply twice a maximum of
surface elevation. Therefore, equations in the above hold for the amplitude of
the largest wave height H.... When a spectrum has a broad frequency hand,
Hux is expected to be smaller than 2gu.. since the highest pme. is not necessarily
succeeded by the lowest smin.

2.5 Peakedness of Power Spectrum
In the process of wave simulation and data analysis to be described in the

— 14—
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subsequent chapters, it became evident that the peakedness of a power spectrum
plays an important role on the statistics of wave heights defined by the zero-up-
cross method. A problem has arised as to the definition of peakedness of a power
spectrum. One possible method is that similar to the kurtosis of Eq. 4. But it
yields an extremely large value for the spectra in the form of f~* even though
their spectral peaks may not be quite sharp. Another approach is the use of @
employed in the theory of electric circuit; @ is defined as f/(fi—/f) where f, is
the resonmant frequency, and fi and f: are such that the amplitude of resonant
curve at these frequencies is 1/+/ 2 of the resonant peak. But in the practice of
wave spectral analysis, a peak of a wave spectrum is difficult to determine accu-
rately; sometimes a wave spectrum has two or more peaks.

A third possibility is found in the treatment by Tucler (1963), who introduced
the following quantity ¢ as a measure of “ peakiness” of a wave spectrum:

S“E{f)*df

)

]

f=

) (43)

where E(f) is the energy spectrum of waves. According to Tucker, @ controls
the random error in the measurement of the root-mean-square value of wave
height, and its value is typically of the order of ten for locally generated waves
but may be as high as 100 for swell from a distant storm. The quantity ¢ de-
fined by Eq. 43 has a dimension of time, although a non-dimensional quantity
is preferable as a general parameter.

After these considerations, the following quantity @, has been selected as a
measure of the peakedness of a wave spectrum:

2" rsiryar

Ql’mm .

{44)

A few examples of the value of @, are shown in Table 1.

The spectral peakedness parameter @, is somewhat related to the spectral
width parameter e, but it is not a simple function of e. Figure 2 shows the corre-
lation of @, and ¢ of the model wave spectra employed in the present simulation
analysis {see 3.3 for details of the spectra). A small value of ¢ is associated with
a large value of @,, but the value of ¢ around 0.7 is associated with the value of
Q, ranging from 0.9 to 3.0. For a spectrum with a single peak at f=f1,&» may
be roughly estimated by

Qp=2/f(fi—fo) (45)

where fs and f: are such frequencies at which S(fs)=5( f4)=%5'( Fu.
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Table 1.

Examples of Spectral Peakedness, @p

Ne. Power Spectral Spectral Peakedness
S(f)
1 <f<fh N
I sm:{ (A<F<f) _ata
0 (F<fi, F>13) fi—Fi
0 fok I
)
f—h fLf<f .
n sn={7"" Viss= ) =2l )
0 (F<, £>0m) 3\ famni
O L £ i
s
a— <f <
1 S(f):{f f (h<r<s/) o 2(4 fi ~ )
O L & i
50 1 (ﬁ)Z(n"‘"l)
—n < < —t —
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g
Boal ° )
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os | 2 5 10 20 50

Speciral Peakedness , Qp

Fig. 2. Correlation between the spectral width param-
eter and peakedness parameter

3.1 Principles of Wave Simulation

(1)

different ways (Borgman 1969).

Fundamental equation
The simulation of »(#) with a digital computer can be carried out in two
The one method employs a pure random signal
such as the white noise and modifies it through a transformation function selected

for specific spectral characteristics.

(1967) for the test of his wave prediction filter.

— 16 —

3. Simulation of Irregular Waves with a Digital Computer

The method has been employed by Hino
Borgman (1969) has also demon-
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strated its effective use for the wave simulation with directional power spectra.
The other method is based on Eq. 8, which is to be rewritten in the form of
summation as

I
W) =jl{il*ﬂ iE Aicos (Cr fit - ) {46)
—o0 {m]
with
A=2"S()df; -

The latter method is simple and straight forward. Though the computation by
the latter is time-consuming, it has the advantage that no restriction is imposed
on functional shape of S(f). Since the simulation with various power spectra
was scheduled as seen in 3.3, Eq. 46 was employed in this report for the compu-
tation of wave profiles.

(2) Determination of ecomponent frequencies

The component frequencies fi, fi, fi, -+ , fic are required to be non-correlating
so that they will not constitute harmonics each other. At the same time, it is
desirable that the amplitudes of component waves will be approximately equal
in magnitude. Since the spectral function can take various shapes, the realization
of the latter requirement is in general difficult.

The selection of frequency was done in the following way. First, the range
of frequency from the lowest, foum, to the highest, Jmax, Was devided inte (K—1)
sub-ranges with the deviding frequencies constituting a power series of

r_ . fl.nnx__fﬁvl
N

=R %Cryreey [ fird X Crtye

“7)
Jr—1"=f" K Ot
CIRE-D
where: Cx= [%L]
Then, the secondary deviding frequencies A7, i”, fi”, -+, Fi-1 were chosen at

random in respective sub-ranges. The initial frequency f£” was set equal to
Jain and the last one was fi"= fuux. The selection was done with the aid of a
random-number-generation process programed on the computer. Finally the com-
ponent frequency f; and its band width 4f were calculated as

1 7
fo="y (flat £
i=1,2, K. 47

Afi=ﬁ”_‘ i”—j
The above process of random selection of component frequency was repeated
for each run of each wave spectrum.

(8) Determination of the phase of a component wave

The phase ¢: must be chosen at random in order that the resultant function
7(¢} would follow the Gaussian distribution. This has been done with the genera-
tion of random numbers equally distributed between 0 and 2z. The randomness
of the phase thus determined has been verified by Suzuki (1969). Like the com-

— 17 —
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ponent frequency by this process, the random selection of component phase was
repeated for each run of each wave spectrum.

{4) Number of component waves

The number of component waves, K, is required as large as feasible in order
that the Gaussian distribution of 5(#) would be realized asymptotically. But an
increase in K directly expands the computation time. Preliminary investigations
showed that the number of K=200 would he sufficiently large to simulate random
surface elevation for the standard spectrum of ocean waves. The performance of
the computer available, however, was not fast enough to allow the employment
of 200 component waves for the intended number of simulation runs necessary
for statistical analysis. The asymptotic approach to the Gaussian distribution
was found slow for the number of component waves over about fifty. And the
deviaton from the Gausstan was noticeable only at the highest maximum of wave
profile (see 7.1). A compromise was made in this study between the computation
time and the realization of the Gaussian distribution, and most of the runs were
carried out with 50 component waves for single peaked spectra and with 60 com-
ponent waves for double peaked spectra.

{5) Length of time step
The computation of wave profile by Eq. 46 is done at discrete intervals. The
time interval Af was set to satisfy the condition of

1
< .
At-— Sf max

In the measurement of power spectrum, the condition for the time interval of
data sampling is

(49)

1
zfmn.x ’

di< (50)

The stricter condition of Eq. 49 was employed in this study after preliminary
tests in order to ensure few overlocking of maxima and minima of surface elevation.

(6) Duration of simulated wave record

The length of a simulated wave record was controlled so that 200 zero-up-
cross waves would be generated in one run. The number of data under the
condition of Eq. 49 varied from about 1000 to 6000 depending upon the highest
frequency fu.x and the spectral width parameter e.

3.2 Normalization of Wave Profile and Spectrum

Though actual wave records are obtained with the dimension of length for
surface elevation and that of time for duration, some kind of normalization for
a wave record is preferable for the study of wave statistics, especially in this
kind of numerical experiments. The standard quantity of reference for the nor-
malization of surface elevation will be the root-mean-square value of »{(f}, or ¢
given by Eq. 9. This value is calculated for the surface elevation to be com-
puted by Eq. 46 as

(ft)dfs (61)

i
o~
T

:L
1IM‘~<
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The surface elevation »(#) and the amplitude of component wave A; are devided
by o given in the above.

As for the normalization of time and frequency, the frequency at which a
power spectrum shows the maximum density, fi, has been taken as the reference
quantity. Therefore, the fundamental equation for the computation of surface
elevation is rewritten in normalized form as

K
@(t)mz Az cos 2nfit+ i), (52)
i=1
where:

P(O=y(fil)fo

Ai= Asfa=2+"S(J)d]i | o

fi=filfo

t= fit .

(63

Under this normalization, the normalized surface elevation has the root-mean-
square of unit value, i.e.,

o=1. (54)
The integral of the power spectrum of the normalized surface elevation has the

value of % In the form of summation, it is expressed as

X 1
_El S(fz')ﬂfﬁg ) (55)
in which S(f;) denotes the normalized power spectrum.
In the subsequent paragraphs all the quantities appear in normalized forms
unless otherwise stated. They will be denoted by symbols in standard italic faces
since there will be no confusion.

3.3 Model Wave Spectra for Numerical Analysis

Various theoretical spectra of ocean waves have been proposed by Neumann
(1953), Bretschneider (1959), Pierson and Moscowitz (1964), Mitsuyasu (1968), and
other investigators. Most of wave spectra in the dimensional form are of the
power-exponential type of

S(fy=Af"exp[~Bf™]. (56)

For example, Neumann’s spectrum corresponds to the case of =68 and n==2, and
Pierson and Moskowitz’s one as well as Bretschneider's one for zero correlation
between wave height and period are represented with Eq. 56 with the values of
m=5 and n=4. According to Bretschneider (1963), the spectrum of Egq. 56 can
be rewritten as follows:

St=Anm(£) " exp [-2(L) . (57)

L n A
in which f, is the frequency at the maximum spectral density and is given by
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f= (%) - (58)

Equation 57 is already in normalized form with respect to frequency. By
employing the notation of f=f/f, it is expressed as

S(f)=A'f" exp [—%f‘"] . (59

The above spectral function has its maximum value at f=1, or fi=1. The
quantity A’ is determined so as to satisfy the normalization condition of Eq. 55.
In the practice of numerical computation, the integral of the power spectrum is
first evaluated with A’ being set to 1 and the result is employed to determin the
value of A’ by Eqg. 55.

The model wave spectra for the numerical analysis of wave statistics have
been selected so as to cover broad variations in spectral shape. They have been
assigned to clarify the following problems:

i) The effect of the cut-off frequency in high frequency part of a wave
spectrum on wave statistics.

ii) The effect of the spectral peakedness on wave statistics.

iii) Differences in the statistics of waves with various, theoretical wave spectra.

ivy Characteristics of waves simulated with a few number of component waves.

v) The statistics of waves with a double peaked spectrum such as formed

by a superposition of lecal wind waves and swell from a remote source.

The first problem was investigated for Pierson and Moskowitz’s spectrum
with m=>5 and #=4 in Eg. 59; the cut-off frequency was varied from 2 to 10.
The model spectra for this problem are denoted by F-1 to F-6. The second
problem was investigated with the model spectra for which the value of m ranged
from 0.5 to 50* while the ratio of s/ being kept at 0.8. The range of frequency
varied depending upon the value of m, but the cut-off frequency was determined
not to exceed fuax==5. The model spectra for the second problem are denoted by
M-1 to M-9. The functional shapes of the M-series spectra as well as F—4 spectrm
are shown in Fig. 3. As for the theoretical spectra to be compared in the third
problem, Neumann’s spectrum denoted by N,. and Mitsuyasu’s one denoted by M;
were selected. The spectrum AM; employed in this study is

Af-fexp(f-1], for 0.3 <1
S(H=1 AfE, for 1<f<5b (60)
0, for f<0.3, or f>5,

where the quantity A’ is determined in the same way as that in Eq. 59. Figure
4 shows the functional shapes of Na and M; spectra as well as F-4 spectrum.
It is seen that Mitsuyasu’s spectrum has a peake sharper than Neumann's one or
Pierson and Moskowitz’s one.

The fourth problem of the wave simulation with a few component waves was
investigated for the spectrum with m=5 and #=4. The number of component

* A swell from a remote source has a spectrum more peaked than that of wind waves;
the value of m reaches 10 in certain occasions.

— 90 —
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waves varied from 3 to 10. The model spectra are denoted by K-1 to X-3. This
problem is related {o the design of an irregular wave generator for laboratory
simulation of ocean waves. The last problem of double peaked wave spectra was
investigated with the following model wave spectra:

SUD= g exp | =51 | fm exp [T rm-n]L L 6y

in which the relative position of low frequency peak § and exponents »z, #', n,
and »’ were assigned the values of

m=5, w’ =10, n=4, #'=8, and pg=04. (62)

The factor « which represents the relative magnitude of low frequency peak
compared to the high frequency peak was assigned the value of 0.2 to 25. The
spectra are denoted by D-1 to D-4, among which the spectra D-1 and D4 are
shown in Fig. 5.

Characteristics of these model wave spectra are summerized in Table 2. The

mean frequency, f, has been calculated with the first moment of power spectrum
defined by Eq. 26 as

F=mifme . (63)
Table 2. Characteristics of Maodel Wave Spectra
m n Nos. =
Spectrum ) () Smin~ fmax K r(L)zfn ¢ Qr 7 Remarks
F-1 5.0 4.0 0.5~ 2.0 50 5 0.45 2,31 1.18
F-2 5.0 4.0 0.5~ 3.0 50 5 0.59 2.06 1.25
-3 5.0 4.0 0.5~ 4.0 50 5 0.65 2,02 1.28
F-4 5.0 4.0 0.5~ 5.0 50 10 0.71 2.01 1.29
IF-5 5.0 4.0 0.5~ 7.0 50 5 0.76 2.00 1.29
I*-6 5.0 4.0 0.5~10,0 50 5 0.80 2.0 1.29
K-1 5.0 4.0 0.7~ 2.0 3 9 0.45 2.14 1.16
K-2 5.0 4.0 0.6~ 3.0 5 9 0.60 1.5 1.25
K-3 5.0 4.0 0.5~ 5.0 10 10 0.7t 1,91 1.30
M-1 50.0 40.0 0,85~1.25 50 10 0.08 22.6 1.01 {(Ny=400 waves)
M-2 50.0 40.0 0,95~1.25 50 10 .06 22.6 1.01
M-3 50.0 40.0 0.95~1.25 | 100 9 0.06 22,6 1.01
M-4 20.0 16.0 0.8 ~1.8 100 5 ¢4.15 8.89 1.04
M-5 20.0 16.0 0.8 ~1.8 50 10 0.15 8.89 1.04
M-6 10.0 8.0 0.75~3.0 50 10 0.34 4.30 1.09
M-7 2.8 2.0 0.2 ~5.0 50 10 0.76  1.04 1.80
M-8 1.25 1.0 0.15~5.0 50 10 0.70 0.92 2.28
M-9 0.5 0.4 0.0 ~5.0 50 10 0.67 0.99 2,48
M; 5.0 -1.0 0.3~ 5.0 50 10 0.68 2,83 1.21
N 6.0 2.0 0.4~ 5.0 50 10 0.70 1,70 1.30
D-1 5.0 4.0 0.3~ 3.0 60 10 0.60 1.92 1.22 | «=0.2, p=0.4
(10.0) (8.0)
D-2 5.0 4.0 0.3~ 3.0 60 10 0.65 1,57 1.13 | a=1.0, f=0.4
(10.0} (8.0)
D-3 5.0 4.0 0.3~ 3.0 60 10 0.77 1.56 0.86 | «=5.0, B=0.4
(10.0) (8.0)
D-4 5.0 4.0 0.5~ 3.0 G0 10 0.86 2.98 0.58 | ¢=25.0, g=0.4
(10.0) (8.0)
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Details of spectral characteristics and wave statistics are listed in the table in the

Appendix B.

3.4 Reproducibility of Irregular Waves

An example of simulated wave profile is shown in Fig. 6. This is a part of
long record of wave simulation with the spectrum ¥F-4 of m=5, n=4, and fu=
5.0. Irregularity in wave profile is readily observed. The power spectrum of the
simulated wave record which contains the part shown in Fig. 6 has been cbtained
for the data of 2000 with the maximum lag of 100 and A{=0.04. The result of
spectral analysis is compared with the input spectrum in Fig. 7; the input is
shown with a solid line while the output is shown with a dashed line connecting
open circles. Since the power spectrum has been approximated with a finite num-
ber (K=50 for this case) of component waves, the input spectrum is represented
with a step-wise function. Except for the low frequency zone which belongs to
the noise range, the agreement between the input and cutput spectra is excellent.

Spectrum F«4 (m=5 , n=4}

Iig. 6. Example of simulated, non-dimensional wave profile

As for the statistical examination of simulated waves, the following character-
istics were investigated:

i) the Gaussian distribution of surface elevation,

ii) the skewness of surface elevation, and

iii) the kurtosis of surface elevation.

Figure 8 shows an example of the distribution of surface elevation. The wave
record is the one employed in Figs. 6 and 7. The ranges of surface elevation
were so devided that the equal percentage of appearance would be obtained un-
der the Gaussian distribution law. The chi-square value for the 20 divisions was
16.3 for the fitness test of the Gaussian distribution. Since the probability that
the chi-square value exceeds this value is about 0.7, the Gaussian distribution can
be accepted, The examination of the Gaussian distribution was conducted in the
stage of preliminary test with satisfactory results; hence the detailed examina-
tion for all of the runs was not undertaken.

The examination of the skewness and kurtosis, however, has been conducted
for all the runs. Since the spectral representation of irregular waves presumes
the linear summation of infinitesimal component waves and the present simu-
lation is based on the linear process, the skewness of simulated wave profiles
should be 0. The observed value of the skewness of each run varied from —0.18
to 0.14, but it varied at random without any correlation with the spectral width
parameter ¢. The overall average and standard deviation of the skewness of 187
runs have been calculated as
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Bt =0.0040.051 .  (64)

The result supports the presump-
tion of zero skewness for the pop-
ulation of simulated wave data.
The theoretical value of the
kurtosis for the data following the
Gaussian distribution is 2=3.0 as
shown by Eq. 5. On the other hand
if the distribution is uniform be-
tween {p]<1, then the kurtosis be-
comes 9/5. If the wave profile is
a sinusoid, the kurtosis is calculated
as 1.5. The observed value of the
kurtosis varied at random from 2.40
to 3.53 without any correlation with
the spectral width parameter ¢, ex-
cept for the K-series spectra. The
overall average and standard devia-
tion of the kurtosis of 157 runs ex-
cluding the K-series spectra have
been calculated as

£H=2.90040.204 .  (65)

Thus the simulated wave records
have the kurtosis almost the same
with that of the Gaussian distribu-
tion. The difference of 0.1 hetween
the average value of simulated
waves and the theoretical value of
the Gaussian distribution seems to
have been produced by the limit in
the number of component waves in
the simulation, because the K-series

Spectrum F-4{m=5,n=4)

20
2,000
16.3

Number of Claoss
Nz

Gaussian Distribution

L 5 I

-3 -2 -1

I 2 3.

Non-dimensional  Surface Elevation , 7
Fig. 8. Example of the distribution of surface elevation
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spectra simulated with a few number of component waves show much lower
values of the kurtosis than other spectra; this will be discussed in 7.1.

4, Spectral Width and Maxima of Surface Elevation

4,1 Spectral Width Parameter

The spectral width parameter is calculated from the input wave spectra by
Eq. 25 and denoted by egee. It is also obtained from the numbers of zero-up-
crossings and maxima of surface elevation by Eq. 31 and denoted by cnes. Two
estimations of ¢ averaged for five to ten runs of each spectrum are compared in
Fig. 9, which shows little difference between them for the range of e from 0.03

1o T | i T T 7 T T
co-
0.8|- i / -
&
'd
07|~ a-_,j’*s
H ¥
Y osl- *v/ -
05|~ N —
b L.egend B
0.4 Spectra
o F-ivG
. bt @ M-iv9 -
03 + K-i~3
a My
0.2~ O  Nm ]
¢ v  D-l~4
[
(RN / .
# ) ;
o | I | 1 ]

! |
08 07 08 02 10

Eapec.

Iig. 9. Comparison of spectral width parameter, énos and espee

¢ 0l 02 03 04 05

to 0.86, The agreement suggests the accuracy of Eq. 30 for the estimation of
Ny and M. In fact, the examination of the observed numbers of zero-up-crossings
and maxima for 187 runs has yielded the following averages and standard devia-
tions for the ratios between the observed and estimated numbers:

(NoJons

~—( Node ={.9985 4 0.0212

N (66}
1Jobs

———===().9934 £ 0.0187 .

(Mes 0.9934 +0

It should be mentioned that the above results were obtained by the sampling
of wave profile at the time interval of 4=1/(5fies). When the time interval
was chosen at 4t=1/(2.5fim) in the preliminary tests for wave spectra of f*
type, some of maxima of the surface elevation were overlooked and the num-
bers of maxima were less than those predicted by Eq. 30. This implies that the
calculation of the spectral width parameter ¢ from a wave spectrum is to be
made in the frequency range of f=0 t0 fme=3=1/(548), not to Nuiquist frequency
of fw=1/(24¢), especially for wind waves with power spectra of /= type.
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4.2 Distribution of the Maxima of Surface Elevation

The distribution of the maxima of surface elevation is shown in Fig. 10 for
model spectra of M-b, F-4, and D-4. Data of five to ten runs for each spectrum
are summed up to yield average values for respective ranges of surface elevation.
The theoretical distribution of Eq. 23 fits quite well to the observed ones. An-
other verfication of the theoretical distribution is seen in Fig. 11, which shows
the mean and standard deviation of nmx for each wave spectrum against the
spectral width parameter. Except for the K-series spectra simulated with a few
numbers of component waves, the theoretical relations of Eq. 29 agree well with
the observed values. Therefore, it is concluded that the theory of Cartwright
and Longuet-Higgins (1956) quite accurately predicts the general distribution of
the maxima of surface elevation, so long as it follows the Gaussian distribution.

The distribution of the highest maximum was examined for the model spectra
of F-1 to F-6 with total runs of 35. Figure 12 shows the distribution of {fmucmux

- 15F
H N=35runs
& ™ (F-1~8)
4 ! _
% me)m. =3.33
: / \
& 1o
- _Theory{No=200)
72..
5 L
(=1
2
2 osf
F-)
°
a.
o . h‘\ — ]

o] I 2 3 4 5
( }?““)mux

Fig. 12. Histogram of highest maxima in trains of 200 waves

for the 35 runs. An observed number of (madmex i @ specific range with the
increment of d(me)mex was devided by N:A(gmac)mex to give the density of obser-
vation. The observed value of {punx)me varied from 2.78 to 4.30 with the mean
of 3.33. The theoretical mean for wave trains with 200 zero-up-crossings is
calculated as 3.43 by Eq. 37; the mean of 3.33 corresponds to the zero-up-crossings
of about 140. The observed distribution of (puawx 18 In fair agreement with
the theoretical one with N;=200, though the observed one is concentrated in a
narrower range than the theoretical one. Slight differences in the mean and
distribution seem to be caused by the limit in the number of component waves
employed in the simulation.

The highest maxima were also examined for other model spectra. The mean
value of (jmes)max for five to ten runs of each spectrum has been calculated and
is plotted in Fig. 13 against the spectral peakedness @, introduced in 2.6. A
lowest minimum, (Hwin)m, Was regarded as another realization of (gmax)max in the
negative side, and its absolute value was averaged with (gmudmex S0 @s to in-
crease the number of data. The mean value of (gmedmex Shows a tendency to
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decrease as @, increases. The cause
of decrease is not clear. An increase
in the number of component waves
from 50 to 100 for the spectra M-2 and
M-4 with very sharp peaks has not in-
creased the mean value of (Humwomer. But
it is shown in 6.2 that the average
length of the run of wave heights in-
creases as @y increases, While the
theory concerns with the data of N
maxima sampled at random from a
great number of maxima, the present
data are composed of N continuous
maxima which may have a high level
of auto-correlation especially when @,
is large. This auto-correlation of pms
for waves with a sharp spectral peak
seems to make the value of (uus)mes
lower than the theoretical value of
Eq. 37.

5. Distribution of Wave Heights
and Periods

5.1 Heights and Perieds of Crest-to-
Trough Waves

Examples of the distribution of
crest-to-trough wave heights are shown
in Fig. 14, For the model spectrum of
M-5 with §=0.142, the Rayleigh distribu-
tion is a good approximation. On the
other hand the model spectra of F-4
with §=0.703 and that of D4 with &=
0.855 show the distributions somewhat
similar to the Gaussian but with inten-
sive concentration at H*=0,

The mean and standard deviation
of H* for each wave spectrum are
shown in Fig. 15 against ¢, Since the
mean of crest-to-trough wave heights
is twice that of the maxima of surface
elevation, i.e. H*=2%n., it follows the
theoretical relation of H*=~/Za(l—c').
The standard deviation, however, is
not a simple function of ¢, showing
some scatter in the range from 1.1 to
1.4.

The distribution of crest-to-trough
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wave periods, 7%, are compared with the Rayleigh-type distribution of Eq. 21 in
Fig. 16 for the model spectra of M-5, F-4, and D-4. Some of observed distribu-
tion (M-5) is narrower than that of Eq. 21, while others (F-4 and D-4} show
broader distributions. Thus, the Rayleigh-type distribution of Eq. 21 is not ap-
plicable to the distribution of crest-to-trough wave periods in general.

The mean and standard deviation of crest-to-trough wave periods are found
to be functions of the spectral width parameter ¢ as shown in Fig. 17. The mean

il T T T H ; : 3
LOF®— —gq_ -
7% "“'--,__m\
ogl- \\0 +
~
~
~
oal- Legend N .
- ~
T ‘T*ﬂ-.-g’b) Specira 7 \o
07| A N N
oy
+ o K-l 5%
L 0 M-1~9 *Ne
08 f i N i
S B Ny N
Q5k- N I T .\ '// —
. T
-~ V\
Q4 o 2
o1 S0, \
T* /-'x/ v
0 3} // ao
T
//
o2 g
-
-
a o//
oif
P
o " i L

Il i 3 i I3 ]
o] Gl 02 03 04 05 08 07 08 09 |0
Bpeciral Width Porameter , €

Fig. 17, Mean and standard deviation of non-dimensional crest-to-trough
wave periods

wave period, 7%, which is normalized by multiplication with the mean frequency
f, steadily decreases as ¢ increases. On the other hand, the ratio of standard
deviation to mean wave period increases as ¢ increases though some scatter of
data are observed.

5.2 Zero-up-Cross Wave Heights

Unlike the crest-to-trough wave heights, the zero-up-cross wave heights show
the distribution quite close to the Rayleigh distribution. Figure 18 shows the
comparison of the observed wave height distributions with the theoretical one of
Eq. 13 for the model spectra of M-5, F-4, and D-4. For each wave spectrum,
the observed frequencies of wave heights in five to ten runs were summed up
for each range of wave heights and averaged to give the density of wave height
appearance, Among these examples shown in Fig. 18, the wave spectrum D-4
which has conspicuous double peaks exhibits some deviation from the Rayleigh
distribution,
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Fig. 18. Examples of the distribution of zero- assumption of the Rayleigh distri-
up-cross wave heights bution

Non-dimensional Zero-up-Cross Wave Height . H

The fitness of the Rayleigh distribution to the observed ones was examined
by the chi-square test for each run. The range of wave height from 0 to o was
devided into ten subranges in such a way that each subrange has the probability
of 4P=1/10. The chi-square values of all the runs except for the K-series spec-
tra are shown in Fig. 19 against the spectral width parameter e, The chi-square
values are distributed in the range from 2.9 to 40.0, which corresponds to the
probability of 0.98 to less than 0.01. The scatter of y* seems to be little affected
by the spectral width parameter ¢. The result of Fig. 19 suggests that the
Rayleigh distribution fits to the zero-up-cross wave height in general, regardless
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Fig. 20, Cumulative distribution of the chi.square wvalue for
the test of the fitness of the Rayleigh distribution to the
wave height
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of the width of wave spectra. Since the chi-square value itself exhibits a distri-
bution in a certain range even if the population of the data exactly fits to the
proposed distribution, the test by a single value of chi-square is not conclusive
to examine the proposed distribution. Thus, the cumulative distribution of chi-
square values of 35 runs for the wave spectra of F-1 to F-6 which correspond
to Pierson-Moskowitz’s spectrum is compared in Fig. 20 with the theoretical
one of chi-square value. The agreement between the observed values and theo-
retical one suggests the fitness of the Rayleigh distribution to the population of
zero-up-cross wave heights for wind waves.

Another examination of wave height distribution was made for the heights
of various mean waves. Figure 21 shows the average values of Hi, H, and e H)
for each spectrum against the spectral peakedness @, defined by Eq. 44 in 2.5.
These average values steadily decrease from the theoretical values of Egs. 15
and 20 as the spectral peakedness decreases. The use of ¢ as the abscissa has
not yielded such steady decreases but produced scatter of data. The average
ratios of Huuw, Hije, and H to Hip for each wave spectrum are shown in Fig. 22
against @,. Again, steady deviations from the theoretical values with the decrease
of @y are ohserved.
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In Figs. 21 and 22, all the data except for (Huas/Hi) approach the theoretical
values as ) increases. This Is expected because as shown in Fig. 2 a very large
value of €, is associated with a very small value of ¢, which guarantees the ap-
plicability of the Rayleigh distribution. The deviation of (Hme/His) from the
theoretical value of 1.716 for 200 waves at large values of ¢, seems o be caused
by the existence of a high level of auto-correlation in each wave height train
with large @, since the theory presumes the sample of N wave heights chosen
at random from the population. The situation is the same with the distribution
Of (Pmax)max shown in Fig. 13.

Like the highest maximum of surface 30 gpachr F-1nG,
elevation, the highest wave height in a N 65%‘%“”'5‘ Nn
sample of N waves varies from a sample P25 Means1.597
to another. Figure 23 shows the distribu- 3 T0137 | / o 7200 Woves
tion of the ratio of Haw/Ihs: observed in I 20 Y|\ No=100 waves
simulated wave trains. The model wave = / L]
spectra of F-1 to F-6 with /% type, M-6 Z sk / Y
with f-1 type, M; of Mitsuyasw’s one, and  § J k
Np of Neumann’s one were emploved to = +of 1
provide the data of 65 runs in total. The 3 jf
theoretical distribution was calculated from g 0.5 !
Eq. 40 by setting Huw=27m. and introduc- /
ing the relation of Hi;3=4.000. Although o . 1A, =

L L 1 |
038 I L2 L4 16 1B 20 22

the observed data of Hu.. were obtained Ratio of Wave Height , Huax /Hig

in the trains of 200 zero-up-cross waves,
their distribution is closer to the theoreti-
cal one for the sample of 100 waves rather
than to that for 200 waves. One possible
cause of difference is the limitation in the
number of component waves employed in wave simulation, and another is the
use of 200 continuous waves instead of 200 random samples from the population.

Fig. 23. Distribution of the maximum
wave height in terms of signifi-
cant wave height in a train of
200 waves

5.3 Zero-up-Cross Wave Periods

Distributions of zero-up-cross wave periods are shown in Fig. 24 for the model
wave spectra of M-5, F-4, and D-4. Like Figs. 16, 18, etc., the ordinate shows
the density of wave period at respective positions calculated as the average of
five to ten runs for each wave spectrum. The theoretical distribution of Eq. 21
proposed by Bretschneider (1959) is in fair agreement with that of -4 spectrum,
but it is in disagreement with those of M-5 and D-4 spectra.

General characteristics of wave periods are shown in Figs. 25 and 26 against
the spectral width parameter ¢, Figure 25 shows the average values of significant
and mean wave periods normalized by multiplication with the mean frequency de-
fined by Eq. 63 in 3.3 for each wave spectrum. The normalized significant wave period
tends to increase as ¢ increases from the value of 1.0 to 1.28, while the normalized
mean wave period shows a tendency to decrease from 1.0 to 0.85 as ¢ increases.
Since the increase of f-Tis and decrease of F-T is not large, Ty and T may
be regarded approximately equal to 1/f in practice of field wave data analysis.
The standard deviation of wave periods, being expressed as the ratio to the mean
wave period, steadily increases from 0 to 0.5 with the increase of ¢. The data
of Tvs, T, and «(T) are fitted with the empirical curves drawn with dashed lines
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Fig. 26. Ratios of the periods of one-tenth maximum wave and significant
wave to the period of mean wave

in Fig. 25, Though drawing of these curves is rather subjective, the wave spectra
of M-7, 8, and 9 with flat spectral shapes and those of D-3 and D-4 with con-
spicuous double peaks consitute a group of data different from the rest of the
model wave spectra. This separation of data suggests that some parameter other
than the spectral width is playing a controlling role on the characteristics of zero-
up-cross wave periods; the spectral peakedness, however, has been found uninflu-
ential. The significant wave period and that of one-tenth highest waves in terms
of the ratios to the mean wave period are plotted in Fig. 26 against the spectral
width parameter ¢. Except for the data of the model wave spectra of M-7, M-8,
M-9, D-3, and D-4, Tl,rs and Tulu are &80

T T T T T T

almost equal and they show a slight F-4 Run No.l
increase from 1.0 to 1.22 as ¢ increases Mox 592 Loz -
from 0 to 0.79. The perieds of maxi- SOT 110 488 087 . )
mum waves have also been found to " Meon 348 53 A
have almost the same values with Ty 40 “‘“'EZS&? e . -
and Tip except for the spectra of - ' .
M-7, M-8, M-9, and D-3, which have TR e e
the tendency of increase from 7y sor _ o -
through Tije to Trax. Ho24e R ”.“':-‘ s
5.4 Correlation between Wave Heights 20 TR T

and Periods ; S

Figure 27 is an example of scat- Hor .. " L . .
ter diagram of wave height versus - Te075
wave period. The wave spectrum is 05 ST T EETTTS 54
¥4 of f-% type with the cut-off fre- T
quency of fuux=5.0. The data of 200 Fig. 27. Example of scatter diagram of zero-
Zero-up-cross waves in one simulated up-cross wave height versus period
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wave train are shown in this diagram, Tt is seen that the portion of the data
lower than the mean values of wave heights and periods show a close correlation
but the higher portion does not show marked correlation, This uncorrelation
between the heights and periods of large waves has yielded guasi-equlity among
Ty, Tijne, and T discussed in the previous section. The overall correlation

between wave heights and periods is measured with the correlation coefficient
defined by

1 1

D)= oty N

N

Zl(Hi-"H——)’(Ti““T). (67)
The correlation coeflicient of the data shown in Fig, 27 has been calculated as 0.60.
For each run of a model wave spectrum the correlation coefficient has been cal-
culated and the mean value of correlation coefficient has been obtained for each
wave specirum, Figure 28 is the result of the calculation, showing #»(H, T} against
¢. The correlation coeflicient between zero-up-cross wave heights and periods is

1o 1 I
- N
= v
T os P
- yd
H 5 '
§ S
:‘: 0.8 s © -
3 o/
= g )
A s
/
2 04| 4
3 Iy
2 e
3 »
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o] 0z 04 0.6 0.8 1.O
€

Fig. 28. Correlation coefficient between heights and periods of
ZEro-up-cross waves

strongly controlled by the spectral width parameter. On the other hand, the
correlation coefficient between crest-to-trough wave heights and periods shows
some scatter when plotted against ¢ as seen in Fig. 29. In any case such clear
relation between the correlation coefficient and the spectral width parameter
has not been reported for actual wave records. Bretschneider (1959) has reported
the values of correlation coefficient between wave heights and lengths from 0.08
to 0.65 for wind waves recorded by step-resistance wave staffs, but the respective
value of spectral width parameter have not been given. Instead, he has given
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the relationship between #(H,T?!) and ¢ as the deep water wave generation para-
meter. According to the relationship given, #(H, T is 1.0 at ¢=0.464 and de-
creases toward 0 as ¢ increases toward 1.0. The relationship is just opposite to
the data shown in Figs. 27 and 28. Since Bretschneider's data exhibit large
scatter and are not conclusive, the analysis of field data will be required to
determine whether the relation of Figs. 27 and 28 is applicable to actual wave
record.

Though the correlation coefficient employed by Bretschneider is that between
wave heights and lengths (or square of wave period), it does not differ much
from that between wave heights and periods. Figure 30 shows the relation be-
tween H{H, 77" and »(H,T). The correlation coefficient »(H, T is slightly smatler
(0.1 at most) than »(H,T), but it is uniquely determined by the latter.

6. Length of the Run of Wave Heights

6.1 Theory of the Length of a Run

A run of wave heights is defined as the sequence of waves, the heights of
which exceed a predetermined value: e.g., His, Hueuan, etc. In an example of
the sequence of wave heights shown in Fig. 31, ten waves out of fifty one exceed
Hiy in height; they constitute seven runs of H>Hys. The length of a run is

Spectrum F-4 {m=5,n=4)
Rira = 3. 780
R -2484

H

Non-dimensionai Wave Height ,

a . ) ; .
140 150 180 170 180 190
Order Number of Wave Appearonce

Fig. 31. Example of sequence of wave heights

the number of waves in that run. In the example of Fig. 31 the run length is
one or two; the mean run length is 1.43. The concept of the run of wave heights
has a practical importance in several design problems. The quantity of over-
topping of a sea wall by irregular waves, for example, is affected by the number
of large waves which attacks the sea wall in sequence. If large waves come at
random, the ratio of overtopping may be estimated for a design purpose with the
average over all waves. If large waves have tendency to come in a group,
however, the average over large waves only may be recommended.

The length of a run is calculated with the probability that a phenomenon in
question will occur at one trial, Let the probability he P, and the probability
not occurring . Clearly there exists the relation

Q=1-P. (68)
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The run with the length j is defined such that the phenomenon occurrs at (1)
consecutive trials after one occurrence of the phenomenon and fails to occur at
the j-th trial. If the process is random and not affected by the result of pre-
ceding trial, the probability of the run with the length of j, denoted by PA.(j), is
expressed as

Pi(j)=P"1 . (69)

The mean length denoted by ;i is calculated with Eq. 69 as its first moment:
= - = . . 1
Ji=E(g)=23] JP1(1)=5 . {70)
i=

For the calculation of the standard deviation, the second moment of Pi(j) is ob-
tained as

, =, . ) 1
E(Jls)zﬁﬂ JEPl(J):jQT(1+P) . {71)
The standard deviation is therefore obtained as
- — fﬂ—_ﬁ‘_ P
a(jn)=~EGH—EG1) =g (72)

Next, a total run is defined as the run beginning at the first occurrence of
a phenomenon, continuing the period of non-occurrence, and ending at the first
re-occurrence of the phenomenon. A portion of wave height train from the excee-
dance beyond Hy; to the next exceedance is an example of a total run. The
length of the total run from Hys to Hips is approximately the number of waves
from a peak of wave height train to the next peak, or the reccurrence interval
of high waves. The probability of a total run with 2 length of j, denoted by
Py, is given by

, P
PAj =t (P Qo). (73)
The mean and standard deviation of the length of a total run are calculated as
- 1 1
Ji= P+ ) (74
o= Lot F:- (75)

The results of Eqs. 74 and 75 are expected since a total run is the sum of the
Tuns Of agcecurrence Ellld non-gccurrence.

6.2 Observed Lengths of the Runs of Wave Heights

All the simulated wave records were analysed for the runs of wave heights.
Three definitions of runs were used: one with waves exceeding the median wave
height Huecin, the second one with waves exceeding the significant wave height
Hip, and the last one with a total run from Hips to Hys. The probability of a

wave height exceeding the median value is simply %: hence Psz—éﬂ. The pro-
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bability that a wave exceeds the significant wave in height is 0.134 provided that
the wave heights follow the Rayleigh distribution. Observed value of this pro-
bability, defined as the ratio of the number of waves exceeding the significant
wave heights to the total number of waves in one simulated wave records, varied
from 0.130 to 0.14%9 as the average for five to ten runs of each wave spectrum
except for the K-series spectra. The overall average and standard deviation of
the observed probability for 159 runs are

P(H > Hi2)=0.1386 £0.0178 . (76)

This average value is slightly larger than the theoretical value of 0.134 by the
amount of 0.005. The difference is partly attributed to the limit in the number
of zero-up-cross waves in a run, i.e., NMo=200. Slight deviation of the observed
wave height distribution from the Rayleigh distribution such as indicated in Fig.
22 is another cause of the difference.

Distributions of the lengths of three wave runs defined in the above are shown
in Fig. 32 for the model wave spectra of F-4, M-5, and M-9. For comparison

1.0
Run: H » Hiy
QB8
Numbers of Runs
0.8 M- 9 : 229tuns
F -4 : i79runs
.4 M-5: 83runs
0.2
*-.\.__1-_-‘
D 1 e E=y ]
0 5 =} 7 8 9 10

Run tH > Hmsdlun

Legend

Random process

==0-— Gpecirum M-9 (m=05) : 49iruns
-0~ Spectrum F-4 {m=5) : 385runs
—-#-— Spectrum M- 5{m=10) : 188runs

Probability of the Run with the fengith of j, P (})

0. 10 Run & Hy, 1o~ Hy,

0.08 Number of Runs @ same with M) Hy
006 - Note : Dota show smoothed values.
ooal | .

Bai -

]
\K‘M“u‘*“mm
I} . ; B i : ) et TP
¢} S 10 {5 20 25 30 35 40 45 50 55 860
Lengih of run , |

Fig. 32. Examples of the distribution of the length of runs of wave heights
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the distributions of the run lengths in a random process have been calculated by
Eqgs. 69 and 73 with P:Q:%" for H > Hpeainn and with P=0.1386 and @=0.8614

for H>Hip and Hipsto-Hys runs. The spectrum M-9 of f-% type which has
almost uniform power density from fum =0 t0 fux=5.0 exhibits the run lengths
almost same with those of random process. This is expected because a random
process is represented with a white spectrum. On the other hand, the spectrum
M-5 of f~'* type which has a marked peak at fi=1.0 shows broad distributions
of the lengths of the runs of wave heights. For example, a run of wave heights
greater than the significant wave height may last for 9 waves, and a total run
of wave heights from Hiss to His may last for 60 waves. This means that large
waves tend to come in a series, associated with a long series of small waves.
The spectrum F-4 which represents a spectrum of wind waves shows a little
broader distributions of the run length than those of random process, but the
difference is small. Hence, the length of a run of heights of wind waves may be
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approximated with that of the random process.

The effect of spectral peakedness on the length of a run of wave heights is
shown in TFig. 33, where means and standard deviations of the lengths of the
three runs of wave heights are plotted against the spectral peakedness parameter
&». The mean and standard deviation calculated as a random process provides
the asymptotic values for the run of H > Hiz, but they give a little larger values
than actual asymptotic values of observed data for the runs of H > Hueqien and
Hips-to-His.  As the spectral peakedness increases, the means and standard devi-
ations of the run lengths steadily increase from these asymptotic values. A plot-
ting with the spectral width parameter as the abscissa has fajled to produce such
a clear relationship. Thus the controlling factor appears to be the spectral peaked-
ness, not the spectral width.

It is interesting to note that the mean length of the total run for Hs-to-His
is about nine for the model spectra corresponding to that of wind waves. This
means that a peak of wave height greater than the significant wave comes in the
period of about nine waves on the average. It should be mentioned however
that the run length is determined statistically only. Take the run of heights ex-
ceeding the median wave height. The mean length in a random process is 2.0.
But, 5025 of runs have the length of 1.0 (only one wave exceeds the median and
the next wave goes under), while 6.2525 of runs have the length not less than
5.0. The variability in the run length is reflected in large values of the standard
deviation in comparison with the mean as seen in Fig. 33. Application of the
concept of a run of wave heights for practical problems will require attention
to the variabilitiy in the run length as well as to the mean length.

7. Discussion of the Results of Wave Simulation
for Practical Application

7.1 Number of Compoenent Waves for Laboratory Reproduction of Ocean Waves

Recently many efforts have been poured upon the laboratory reproduction of
ocean waves. One of the successful methods is the use of automatically controlled
wave paddle, the movement of which follows a predetermined oscillation of ir-
regular nature. The oscillation is calculated by a digital computer for a given
wave spectrum and fed into the system through a magnetic or perforated paper
tape. The calculation of irregular oscillation for the preparation of input tape
can be done in the way similar with the preseat wave simulation; a difference
is the addition of a transform function for wave generation characteristics. A
factor to be determined is the sufficient number of component waves to be able
to reproduce the ocean waves. In a simpler system, the input osciliation is elec-
trically produced by the mixing of electric currents from several oscillators.
Here again the number of oscillators becomes a point of argument. The answer
can be obtained from the result of the present wave simulation.

The madel wave spectra of K-1, K-2, and X~3 have been given the component
waves of only three, five, and ten, respectively. The Hmit in the number of com-
ponent waves were intentionally made to simulate an irregular wave generator of
simple system. According to the result of the simulation, a limit in the number
of component waves restricts the occurrence of large yma: and lowers the kurtosis
of surface elevation. Figure 34 shows the variation of the highest maximum,
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Fig. 34. Effect of wave component numbers on the distribution of
surface elevation

(pwusdmex, 111 & train of zero-up-cross waves and that of the kurtosis against the
number of component waves. The data of wave spectra F-1 to F-6 are also shown
to represent the case of fifty component waves. The limiting case of K=1 is a
regular sinusoidal wave, for which (fmuxmx=+"2¢ and F1=1.5. The results of
simulation is shown with the mean value and the range of one standard deviation.
Figure 34 clearly shows that the component waves of ten or less are insufficient
to reproduce the Gaussian process of surface elevation. Even the component waves
of fifty emploved in the present simulation appear to be not large enough. The
trend of data suggests that more than two hundred component waves are neces-
sary to reproduce that the Gaussian process of surface elevation.

The effect of the number of component waves on the distribution of wave
heights is demonstrated in Fig. 35, which shows the variations of Huw, Hijm,
and Hin terms of Fh; versus the component number, XK. The trend of the data
is the same with Fig. 34, suggesting more than two hundred component waves
necessary for the complete reproduction of a wave train with the Rayleigh dis-
tribution for wave heights. It should be noted however that the results of wave
simulation with fifty component waves do not differ much from those of the
Gaussian distribution of surface elevation and of the Rayleigh distribution of wave
heights. This little difference has been one of the reasons to choose the number
of fifty for that of component waves as a compromise hetween the computation
time and the realization of the theoretical distributions.

For the laboratory simulation of ocean waves, the results of Figs. 34 and 35
indicates that the number of ten for component waves is apparently insufficient;
the number of two hundred will be sufficient if it is feasible, The discussion,
however, is based on the presumptions of the Gaussian distribution for surface
elevation and the Rayleigh distribution for wave heights. Actual waves exhibit
non-linearity in surface elevation and some deviation in wave height distribution.
Such behaviors of actual waves suggest the number of component waves neces-
sary for the laboratory simulation somewhat smaller than two hundred; the
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Fig. 85, Effect of wave component numbers on the distribution
of wave heights

number of fifty to one hundred will be practical for the preparation of input
tapes and that of thirty for electric oscillators.

7.2 Wave Heights and Periods of a Double Peaked Spectrum

A double peaked spectrum is ohserved when wind waves are generated on
the water surface where a swell from a remote source of disturbance is present.
On such occasions, engineers are often asked to estimate the representative height
and period of the superimposed wave system from the independent data of wind
waves and swells, Engineer’s practice is the use of the following equations based
on the summation of wave energy.

fthal:f\/jHJ.g-{“HzT , (77)
H' 2+H 2

Tl = \/ —El_%“;“ﬁl? ) (78)
CECRR

where H and T are the height and period of the significant wave or some other
representative wave, respectively.
The first equation is implicitely verified in Fig. 23. The fact that the wave
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heights of the model wave spectra of D.series with double peaks follow the Ray-
leigh distribution is the proof. As explained in 3.8, the simulated surface eleva-
tion has been normalized with its root-mean-square value, ¢. The square of o,
or the variance, is equal to two times the integral of power spectral density
regardless of spectral shape (Eq. 9). Since a double peaked spectrum is considered
to be formed by the superposition of two wave trains, each with a single peak
in the spectrum, the variance of superposed wave system is the sum of the vari-
ances of two wave trains, This holds as a general rule within the limit of linear
wave spectral theory. If the two wave trains and the superposed wave system
have the same distribtion function for the wave heights, then the relation of Eq.
77 does hold; otherwise not. In the present case, a single peaked wave spectrum
regardless of its shape has been shown to approximately produce the Rayleigh
distribution for wave heights and so does a double peaked wave spectrum. This
supports the applicability of Eq. 77 to the system of swells and wind waves.

The above consideration yields the possibility to estimate the height of swell
component H: from the data of the wave height and power spectrum of an
observed wave record. The formula is

IJ] metal X '\/'%‘ 3 (79)
where:

Ep)
Engn SUS
80)
E=2SO S

in which fi is the frequency at which the power spectrum shows a hump.

The applicability of Eq. 78 is examined in Table 3, which lists the estimated
values of wave pericds by Eq. 78 and the observed values in the simulation. In
the estimation, the height of low frequency waves I was calculated by Eq. 79
with the ratio of wave energy which was obtained from the power spectrum
as listed in Table 3. The height of high frequency waves was calculated from
Eq. 79. The periods of low and high frequency waves were estimated from the
result of single peaked spectra. The result of the estimation of wave period shows
a fair agreement for the significant wave period, but the agreement for the mean
wave period is excellent, The discrepancy of the estimated values of significant

Table 3. Comparison of Estimated and Observed Wave Periods of
Double Peaked Wave Spectra

Spectra 5 BE 1\/{(31;1)1 Wave ](?gt#)*d Sig?ilﬁs:gnt Wav(ezfaiiiod
D-1 0.60 0.035 0.782 0.788 0.909 0.899
D-2 0.63 0.152 0.828 0.822 0.951 0.966
bD-3 0.66 0.473 1.013 1.018 1.152 1.407
D4 06.72 0.818 1.472 1.467 1.619 2.217

¥ Tstimated values by Eq. 79.
w  Average of the observed values in wave simulation for each spectrum.
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periods from the observed values for the model wave spectra D-3 and D-4 has
been suggested in Fig. 26, where the ratio of T/ T for the spectra D-3 and D4
was excessively large in comparison with other data. It is not clear whether
this is a singular phenomenon in the wave simulation. The difference between
the mean wave period and the significant wave period, however, is small in the
field wave records. Thus the agreement for the mean wave period is considered
to support the applicability of Eq. 78 to the problem of the superposition of ir-
regular waves in the field.

7.3 Applicability of the Rayleigh Distribution for Wave Heights

A feature of the results of present wave simulation is the fitness of the Rayleigh
distribution for zero-up-cross wave heights as demonstrated by the chi-square test
shown in Figs. 19 and 20. The ratios among several representative wave heights,
such as Hiyuo, Hiz, etc., on the other hand, are generally lower than the theoreti-
cal values estimated by the Rayleigh distribution. The results of the chi-square
tests and the examination of wave height ratios is contrary to the actual ocean
wave data. Goodknight and Russel (1963) have reported that surface wave heights
during hurricanes recorded with a step-resistance wave staff did not follow the
Rayleigh distribution exactly according to the chi-square test, but the wave height
ratios were practically in agreement with the theoretical values. Goda and Nagai
(1968) have also observed similar tendency for wind waves recorded with a capaci-
tance probe at Nagoya Port; the maximum wave height was in general greater
than the statistically expected value,

The difference between the wave statistics in the present wave simulation
and the field observation is attributed to the non-linearity of surface elevation
which is defected in the wave simulation. Wave records at Nagoya Port have
clearly exhibited positive skewness and large kurtosis. The non-linearity works
to increase the height of higher maxima in surface elevation, thus increasing the
heights of large waves. The ratio of mean wave height to the root-mean-square
value of » will be decreased by the presence of non-linearity; an addition of second
harmonic to a sinusoidal wave profile increases ¢, but the wave height remains
unchanged. A few trials to introduce the non-linearity in surface elevation into
the process of spectral wave simulation have been unsuccessful. Hence, the effect
of non-linearity on wave statistics suggested in the above has not been verified
but remains as a speculation.

Another source of the difference between the present wave simulation and
the field data is the use of a finite number of component waves to simulated wave
profiles. As discussed in 7.1, a decrease in the number of component waves
works to lower the heights of large waves especially of maximum waves. Use
of fifty to sixty component waves in the present wave simulation instead of a
greater number of waves seems to have interferred the realization of statistically
expected heights of maximum waves to some extent.

The difference between the simulatd wave heights and the theoretical values
based on the Rayleigh distribution is not large, however. As seen in Figs. 21 and
22 the difference is less than 10g for most of the model wave spectra inclusive
of double peaked spectra. With the addition of non-linearity and the increase in
the number of component waves, the wave heights are expected to approach the
theoretical values. Thus, the Rayleigh distribution is considered applicable for
the heights of waves defined by the zero-up-cross method, regardless of the func-
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tional shape of power spectrum.

It is interesting to note that a wave record obtained in a shallow water tends
to show the distribution of wave heights narrower than the Rayleigh distribution,
especially as the significant wave height increases in comparison with the water
depth (Goda 1967). This is easily understood as the result of selective breaking
of large waves in a wave train at a shallow water. Wave spectra in the shallow
water have been measured by Iwagaki and Kakinuma (1967) and by Ijima and
Matsuo (1968). The spectra are known to have a smaller rate of density decrease
at high frequency component such as expressed by % instead of % in the deep
water. The change in the exponent of the frequency term of the power spectrum
has been discussed by Hamada (1964) as a result of wave breaking in the shallow
water. The model wave spectrum M-7 which has the exponent of —2.5, however,
has not shown a significant deviation of the distribution of wave heights from
the Rayleigh distribution as demonstrated in Figs. 21 and 22, Therefore, the
deviation of wave height distribution from the Rayleigh type at the shallow water
should be considered separately from the change in the functional shape of wave
spectrum. It must be a highly non-linear phenomenon, which needs full analysis
with the theory of non-linear wave spectra.

8. Conclusions

Major conclusions of the present numerical experiments on wave statistics are
summarized as follows; k

(1) The distribution of the maxima of surface elevation is accurately describ-
ed with the theory of Cartwright and Longuet-Higgins.

(2) The estimate of the spectral width parameter based on the numbers of
maxima and zero-up-crossings agrees with that based on the moments of power
gspectrum, when the sampling of surface elevation is carried out with the time
interval of 4<{1/(5 fmu) in which fo. denotes the cut-off frequency.

{3) The highest maximum of surface elevation in a continuous record of
waves with a sharp spectral peak is a little lower than the statistically expected
value, possibly because of the existence of a high level of auto-correlation.

(4) The distribution of wave heights defined by the cresi-to-trough method be-
comes broader than the Rayleigh distribution as the spectral width parameter
increases.

(5) The distribution of wave heights defined by the zero-up-cross method prac-
tically follows the Rayleigh distribution for the range of spectral width parameter
from 0.03 to 0.86 irrespective of the spectral shape and cut-off frequency.

(6) A Rayleigh-type distribution for the square of wave period proposed by
Bretschneider fairly agrees with that of wind waves, but it disagrees with that
of the waves with a sharply peaked spectrum, double peaked spectrum, or flat
gpectrum.

(7) The mean wave period normalized with the mean spectral frequency
slightly decreases with the increase of spectral width parameter, while the signifi-
cant wave period slightly increases.

(8) The correlation coefficient between wave heights and periods defined by
either the crest-to-trough method or the zero-up-cross method almost linearly in-
creases with the increase of spectral width parameter.
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(9) The length of the run of zero-up-cross wave heights increases as the
pealcedness of a power spectrum increases; for wind waves the run length does
not differ much from that of random process.

(10) A decrease in the number of component waves for the simulation ot
irregular waves causes to make the distribution of surface elevations narrower
than the Gaussian as well as that of wave heights narrower than the Rayleigh; for
laboratory simulation of ocean waves more than fifty component waves are recom-
mended.

(11) Use of energy concept to estimate the representative height and period
of wave system composed of wind waves and swells is justified on the hasis of the
wave simulation data of double peaked spectra.

The numerical experiments reported herein have been conducted with the
aid of a digital computer TOSBAC 3400 at the Computation Center of the Port
and Harbour Research Institute.
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Appendix A: List of Symbols

amplitude of wavelet constituting ocean waves

amplitude of component wave for simulation study

factor employed to devide the frequency range (Eq. 47)

the E-value in the P-N.J method

energy spectrum of ocean waves

moment of the length of a run

frequency

mean frequency defined by Eq. 63

irequency at which a power spectrum shows the maximum density
wave height defined by the zero-up-cross method

wave height defined by the crest-to-trough method

length of the run of wave heights

number of component waves for simulation study

duration of a wave record

#-th moment of a power spectrum (Eq. 26}

exponents of frequency in the power spectral function of Eq. 56
exponents of frequency in the double-peaked spectral function of Eq. 61
numbers in general

number of zero-up-crossings in the record with a duration of L (cf.
Eq. 30)

number of maxima in the record with a duration of L (cf. Eq. 30)
probability density of the variable inside the parentheses

probability density for the distribution of the highest in the sample
of N maxima (Eq. 40)

probahility of occurrence

cumulative distribution of the maxima of surface elevation (Eqg. 33)
probability of non-occurrence

spectral peakednes parameter defined by Eq. 44

correlation coefficient between wave height and period

two-gided power spectrum of surface elevation of ocean wawes

time

wave period defined by the zero-up-cross method

wave period defined by the crest-to-trough method

non-dimensional quantity of gmefo

upper bar referring to arithmetic mean except for 7

factor for relative magnitudes of two peaks of the spectrum of Eq. 61
factor for relative positions of two peaks of the spectrum of Eq. 61
skewness of surface elevation defined by Eq. 3

kurtosis of surface elevation defined by Eq. 4

Euler’s constant, 0.5772...

spectral width parameter defined by either Eq. 25 {copee) OF Edl. 31 (enes)
width of frequency band

time interval of wave simulation and data sampling

surface elevation from the mean elevation

k-th moment of surface elevation
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non-dimensional quantity of Ng(2me)

constant, 3.14155. ..

square root of the variance of surface elevation (FEq. 9)

standard deviation of the variable inside the parentheses from its mean
phase of component wave

Tucker's ‘ peakiness’ (Eq. 43)

chi-square value for the test of the goodness of the fitness of theo-
retical distribution
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Appendix B. Table of the Summary

Identification -1 -2 -3 F-4
Input Data
b 5.0 5.0 5.0 5.0
n 4.0 4.0 4.0 4.0
fmiﬂ""’fumx 0.5~2.0 0.5~3.0 0.5~4.0 0.5~5.0
K 50 0 50 50
nos. of run 5 5 5 10

Distribution of »
skewness
kurtoesis
max. ¥max
Mmin., Fmin

Nos. of Waves
ratio of Np
ratio of M
(f)nos.

(¢)apea.

Crest-to-Trough
ﬁmﬂ;\’
7| Fmax
a*
o(H*)
ARk
a(T%)
r(H*, T#)
H*—Ya0%: median®

Zero-up-Cross
His

H

ol H}
I"Imax,"Hl,"ﬂ
HymlHhys
Himns

T

F

oy

Tmax,,_r

Lol T

Tl

HH, T)

H—%1p%: median

Length of Run

0.011(0.035)®
2.939(0.145)
3.453(0.119)

—3.217(0.116)

0.998(0.029)
0.987(0.023)
0.430(0,037)
0.452(0.000)

1.147{0.025)
0.728
2.289(0.051)
1.296
0.748(0.015)
0.202

0.492(0.055)
28.7

3.868(0,043)
2.500(0.048)
1.218

1.637(0.085)
1.241(0.016)
0.647(0.017)

0.901(0.008)
0.827(0.024)
0.225

1.024(0.132)
1.061{0.029)
1.090{0.034)

0.408(0.078)
5.9

~0.003(0.057)
3.023(0.083)
3.305(0.164)
—3.362(0.049)

0.594(0.013)
0.992(0.014)
0.584(0.028)
0.588(0.000)

1.029(0.020)
0.787
2.057(0.039)
1.344
0.624(0.009)
0.207
0.663(0.028)
63.3

3.839(0.028)
2.476(0.018)
1.209

1.621(0.131)
1.253(0.031)
0.645(0.008)

0.887(0.009)
0.763(0.010)
(.233

1.141(0.055)
1.175(0.021)
1.155{0.014)

0.531(0.029)
12.6

—0.019(0.076)
2.875(0.093)
3.182(0.187)

—3.306(0.304)

0.991(0.014)
0.982(0.011)
0.653(0.009)
0.660(0.000)

0.963(0.009)
0.805
1.921(0.023)
1.370
0.568(0.006)
0.922

0.581(0.032)
148.5

3.837(0.050)
2.470{0.022)
1.206

1.500(0.050)
1.234(0.013)
0.644.(0.008)

0.882(0.014)
0.750(0.010)
0.245

1.131(0.083)
1.174(0.039}
1.177(0.022)

0.581(0.032)
9.5

0.011(0,043)
2.981{0.104)
3.432(0.355)
—3.271(0.207)

0.992(0.010)
0.990(0.020)
0.703(0.015)
0.705(0.000)

(.899(0.032)
(-850
1.806(0.050)
1.371
0.525(0.012)
0.218

0.740(0.013)
217.3

3.837(0.037)
2.461(0.032)
1.207

1.540(0.081)
1.235(0.026)
0.642(0.010)

0.883(0.013)
0.739(0.007)
0.243

1.230(0.087)
1.208(0.032)
1.196(0.019)

0.615(0.032)
7.2

Humealan 2.38+1,768 2.404:1.60 2.27+1.44 2,49+1.74
Hys 1.24+0.48 1.37+0.63 1.24::0.47 1.39=+0.60
Hip-to-Hip 9.37+5,91 9.70+6.37 9.47+5.99 10.02:+6.12
P(H > Hzps) 0.135(0.010) (.139(0.018) 0.136(0.006) 0.137(0.012)
Notes: 1) The median value of chi-square for the test of the goodness of the fitness

of the Rayleigh distribution to wave heights.
2) The numerals inside parentheses are the standard deviations of the values
representingTone run,
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of Statistics of Simulated Waves

F-5 F-6 K-1 K-2 K-3
5.0 5.0 5.0 .0 5.0
1.0 10 1.0 4.0 4.0
0.5~7.0 0.5~10.0 0.7~2.0 0.6~3.0 0.5~5.0
50 50 3 5 10
5 5 9 9 10
—0.037(0.055) | 0.019(0.028) [—0.003(0.004) | 0.020(0.054) |—0.021(0.045)

2.878(0.1423
3.289(0.409)
—3.433(0.395)

0.992(0.027)
0.995 (0.026)
0.757(0.027)
0.757(0.000)

0. 841(0 031}
0.845
1.667(0.046)
1.372
8 .475(0.012)

0. 769(0 024)
337.2

3.827(0.058)
2.449(0.062)
1.211

1.643{0.040)
1.222{0.020)
0.639(0.021)

0.868(0.006)
0.7290.020)
0.249

1.174(0.069)
1.189(0.054)
1.191(0.034)

0.601(0.037)
12.2

2,49+1.52

1.95+0.54

§.62%6.04
0.146{0.008)

2.904(0.185)
3.,425(0.263)
—3.268(0.261)

0.991(0.025)
0.975(0.039)
0.789(0.014)
0.797(0.000)

0.784(0.045)
0.882
1.572(0.063)
1.388

0. 445(0 017)
0.219

0.775(0.020)
540.4

3.834(0.033)
2.450(0,067)
1.224

1.665(0.128)
1.233(0.016)
0.639(0.020)

0.875(0.018)
0.724(0.017)
0.254

1.242(0.100)
1.212¢0.029)
1.208(0.016)

0.636(0.022)
9.4

2.30::1.46

1.42:0.72
10.26£6.67
0.136(0.010)

2.202(0.091)
2,214(0.066)
—2.217(0.064)

0.952(0.065)
0.995(0.044)
0.484(0.160)
0.446(0.033)

1.174(0.066)

0.667

2. 344(0 133)

1,113

0.750(0.044)
0.199

0 562(0 153)
107.2

3.566(0.052)
2.686(0.158)
0.869

1.143(0.026)
1.096(0.020)
0.753(0.044)

0.885(0.025)
0.881(0.080)
0.223

0.948(0.084)
0.959(0.082)
1.011¢0.076)

0.321(0.309)
115.3

1.37£0.75

1.00:0.00

5.927:6.08
0.161(0.014)

2.403(0.111)
2.608(0.087)
—2.582(0.087)

0.971(0.030)
0.978(0. 0159
0.605(¢.045)
0.599(0.026)

1. 057(0 045)
0.779
2.102(0.087)
1.239

0. 530(0 012)
0.210

0.704(0.023)
108.5

3.661(0.065)
2.590(0.087)
0.697

1.212(0.032)
1.116(0.014)
0.708(0.038)

0.907(0.042)
0.794(0.031)
0.223

1.100(0.078)
1.107(0.052)
1.143(0.082)

0.607(0.092;
43.9

1.51::0.77
1.00%0.00
6.805,53

0.148{0.012)

2.539(0.094)
2.736(0.082)
—2.873(0.179)

0.969(0.025)
0.964(0.020)
0.710(0.028)
0.714(0.015)

0.924(0.029)
0.828

1. 854(0 056)
1.3

0. 535(0 013)
0.212

0.741(0.027)
219.6

3.755(0.046)
2.541(0.049)
.035
.295(0.048)
.143(0.018)
.677(0.013)

.893(0.038)
.761(0.034)
252

.073(0.064)
.141(0.037)
.173(0.031)

0.648(0.043)
26,2

Pt et D O

1.81+1.02
1.0230.12
8.944 £,23
0.149(0.008)

3) The numerals connected with the double sign indicate the mean and stand-
ard deviation of the quantity in question,



Yoshimi GoDA

. . M-1
Identification {400 waves) M-2 M-3 M4
Input Data

M 50.0 50.0 50.0 20.0
n 40.0 40.0 40.0 16.0
Setn~ fax 0.95~1.25 0,95~1.25 0.95~1.25 0.8~1.8
K 50 50 100 100
nos. of run 10 10 9 5

Distribution of »
skewness
kurtosis
max. fmax
min. Pl

Nos. of Waves
ratio of Ny
ratio of M

(C )no:s.

& Jspee.

Crest-to-Trough
Fonnx
| (3?111.1\)

ur(H *)
a(1'%)

y(H*, T%)

F#*—%af: median

Zero-up-Cross
Hip

H

o{H}
Haxf 3
EalFhys
Al

1 T

u([)
T 1\]’1‘
T/ T
Nipf T

r{H, T)
F—Je?:

Length of Run
H'medlnn
Hin
Hyp-to-Hips
P{H > Hyys)

median

0.000(0.002)
2.901(0.278)
3.087(0.292)
-~3.078(0.254)

1.001(0.004)
1.001¢0.004)
0.041(0.042)
0.057(0.000)

1.959¢0.022)
0.644
2.517(0.044)
1.285
0.987(0.004)
0.046
0.021(0.130)
27.5

3.992(0.107)
2.521(0.047)
1.284

1.542(0.130)
1.268(0.039)
0.632(0.021)

0.988(0.002)
0.988(0.004)
0.058

0.994(0.009)
1.000(0.001)
1.000(0.005)

—0.013(0,169)
12.6

11.58+ 7.95
7.33% 3.95
49,45+:36.05
0.141{0.010)

0.001(0.005)
2,763(0.237)
2.970(0.143)
—2.964(0.151)

1.006(0.007)
1.006(0.007)
0.030(0.048)
0.057(0.000)

é 254(0 060)
2. 570(0 121)
1.215

o 985(0 007)

o 039(0 198)
97.4

3.866(0.133)
2.505(0.120)
1.211

1.532(0.068)
1.260{0.024)
0.649(0.034)

0.988(0.003)
0.984{0.008)
0.056

1.000(0.011)
1.001(0.011)
1.003(0.008)

0.056(0.204)
15.7

10.684 7.19
5.52%+ 2.84
40.64% 26,22
0.131{0.016)

—0.000(0.002)
2.840(0.233)
3.037(0.318)

—3,028(0.307)

1.003(0.005)
1.002(0.004)
0.033(0-047)
0.057(0.000)

1.284(0.067)
0.648
2.567(0.135)
1.205
0.989(0.004)
0.050

—0.037(0.137)

24.0

4.057(0.184)
2.567(0.138)
1.295

1.491(0.110)
1.250(0.039)
0.633(0.015)

0.987(0.003)
0.989(0.004)
0.049

0.996(0.010)
0.998(0.008)
0.998(0.006)

—0.038{0.140)
13.7

11.63+ 9.37
6.90+ 3.70
40.20+29.32
0.136(0.015)

—0.000{0,011)
2.923(0.308)
3.051%0.212)

—3.075{0.229)

1.004(D.016)
1.002(0.011)
0.122(0.089)
0.153(0.000)

1. 241(0 050)
0.646
2.485(0.098)
1.272

0 954(0 010)

o 154(0 089)
25.2

3.952(0.134)
2.504(0.112)
1.256

1.525(0.136)
1.271(0.053)
0.634(0.025)

0,967 (0,002)
0.962(0.015)
0.100

0.996(0.025)
0.999(0.026)
1.005{0.017)

0.117(0.140)
12.8

5.01+ 3.34
3.51% 1.90
21,70%11,23
0.142{0.021)
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0.000(0.001)
2.908(0.303)
3.121(0.280)
—3.112{0.316)

1.005(0.005)
1.005(0.008)

-142(0.057)
.153(0.000)

f=N=1

.250{0.028)
-660
-500(0.057)
.299
-952(0.007)

104
.179(0.083)
14.8

COOHNON
o

.002(0.063)
.520(0.056)
.81

.544(0.135)
1254(0.041)
-630(0.017)

L966(0.003)
~962(0.005
2102

-999(0.020)
.006(0.012)
.004.(0.006)

0.091(0.082)
7.5

HEOOOE O N

4.+ 3.17
2.84:1 1.44
20.20+13.10
0.141(0.012)

0.012(0.016)
2.921(0,312)
3.236(0.264)
—3.275(0.366)

1.005(0.013)
0.997(0.015)
0.318(0.040)
0.342(0.000)

1.194(0.030)
0.695
2.589(0.059)
1.306
0.857 (0.014)
0.175
0.440(0.063)
19.3

3.927(0.062)
2.514(0.057)
1.236

1.597(0.193)
1.249(0.049)
0.640(D.018)

0.933(0.006)
0.504(0.012)
0.167

1.034(0.033)
1.035(0.018)
1.032(0.016)

0.286(0,068)
8.4

3.10+2.16

1.680.92
12.28-£8.42
0.140(0.013)

~0.015(0,094)
2.860(0.152)
3.227(0.305)
-3.545(0.403)

0.987(0.030)
0.995(0.012)
0.758(0.020)
0.755{0.000)

0.832(0.019)
0.853
1.662(0.019)
1.181
0.822(0.004)
0.127

0.638(0.033)
123.7

3.666(0.074)
2.350(0.058)
1.133

1.547(0.120}
1.220{0.030)
0.643(0.015)

0.678(0.023)
0.494{0.015)
0.231

1.519(0.334)
1.519(0.072)
1.373(0.033)

0.689(0.039)
10.0

1.93::1.23

1.20+0.54

§8.38-£5.57
0.145(0.008)

--0.009(0.045)
2.880(0.107)
5.321(0.269)

—3.262(0.220)

.012(0.022)
.993(0.011)
.682(0.020)
.GIG(0,000)

OOk

0.911{0.020)
.822

.826(0.024)

114

.278(0.003)
88

-502(0.045)
43.6

[=F=N oy =]
[ Co

b=}

.537{0.050)
.321{0.043)
.061

.536(0.121)
.221(0.016)
-656(0.013)

0.499(0.015)
.379(0.009)
172

1.571(0.610)
1.474(0.097)
1.315(0.034)

0.594(0.048)
11.0

St = DD L

o2

1.9241.29

1.12:+0.57

7.75+4.66
0.143{0.011)

M-5 M-6 M-7 M-8 M-9
20.0 10.0 2.5 1.25 6.5
16.0 8.0 2.0 1.00 0.4

0.8~1.8 0.75~3.0 0.2~5.0 0.15~5.0 0~5.0
50 50 50 50 50
10 10 10 10 10

0.026(0.090)
2.920(0.001)
3.434(0.288)
—3.321{0.241)

0.994(0.021)
1.002(0.011)
0.673(0.023)
0.668(0.000)

0.945(0.017)
0.818
1.886(0.035)
1.084
0.263(0.003)
0.077

0.470(0.035)
43.6

3.498(0.071)
2.357(0.031)
1.006

1.492(0.080)
1.207{0.013)
0.674(0.011)

0.451(0.014)
0.356 (0. 008)
0.163

1.557(0.663)
1.387(0.103)
1.267(0.047)

0.529(0.058)
16.5

1.97-+1.28
1.1240.36
8.25--4.94

0.138{0.008)
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Yoshimi GobDa

{dentification M; N
Input Data
#He 5.0 6.0
n ~1.0 2.0
ﬁnln"‘"ﬁnax 0.3"-’5.0 0.4~5.0
K 50 50
nos. of run 10 19

Distribution of p
skewness
kurtosis
Max. Hmax
min. Phnin

Nos. of Waves
ratio of N
ratio of N
(C)nos.

(C)spcu.

Cresl-to-Trough
B
o 37[11:Lx)
Tk

)24
ol HT¥)
Pt

o(T*
r(H*, T%)
¥ —Y¥ey?: median

Zero-up-Cross
Hyps

H

olE)
flmnxl’lql,f:]
Hypaf Hhys
s
Tips

7

(1)
7‘1[]:1};,” 'I‘
Tyl
Tipl T
r(H, T
H—Z%w?: median

Length of Run
f[mcdinn
Hips
Hip-to-Hip
P(H > Hp)

~0.001(0,044)
2.914.(0.254)
3.393(0.303)
—3.326(0.280)

.003{0.027)
.983(0.025)
.662{0.022)
.680{0.000)

oo

.947(0.029)
.817
.885(0.065)
405

-591(0.016)
237

-757(0.025)
196.4

OO HOO

.840(0,057)
.459(0.066)
.227

.636(0.150)
.240(0.034)
.B41(0.024)

.907(0.007)
.788(0.019)
.234

.121(0.092)
. 146(0.045)
.152(0.029)

0.581(0.045)
12.4

HiR=EOGOO OFRHEHDW

2.6241,79
1.46-0.68

11.03+6.42

0.131(0.010)

0.054(0.037)
2.922(0.084)
3.482(0.314)
—3.139(0.273)

0.990(0.022)
0.981(0.023)
0.696(0.022)
0.704(0.000)

0,910(0.030)

0.856

.832(0.048)

.353

.523(0.012)
09

.718(0.026)
190.9

DS O it
[~

.821(0.059)
-466(0.047)
182

.575(0.098)
-228(D.022)
-648(0.014)

.879(0.014)
.729(0.017)
.51

.215(0.121)
.224.00. 080)
.205(0.021)

0.592(0.052)
10.2

HRROOOD OFHENL

2.25+1.55
1.25%0.52
8.935.62

0.137(0.011)
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Identification D-1 D-2 D-3 D-4
Input Data

w, n 5.0, 4.0 5.0, 4.0 5.0, 4.0 5.0, 4.0
', w 10.0, 8.0 10.0, 8.0 10.0, 8.0 10.0, 8.0
o 0.2 1.0 5.0 25.0
Smin~ fumex, B 0.3~3.0, 0.4 | 0.3~3.0, 0.4 | 0.3~3.0, 0.4 | 0.3~3.0, 0.4
K 60 60 60 G0
nos. of run 5 5 5 5

Distribution of »
skkewness
kurtosis
max. Pmax
min. Dmin

Nos. of Waves
ratio of Ny
ratio of M
(C)nos.
© )spee,

Crest-to-Trough
Tmax
& (J?m.u(

7=
()
Ak
g(T%)
y(H*, T%)
H¥—ya?: median
Zerg-up-Cross

Hip

H

(H)
Hroaxef Hipz
Hine/ s
A

11/3

0(1)
-[ﬂ!.ll\l" J"
Timal T
Tyl T
r(H, T)
F—210%: median
Length of Run

Hmc(lian

Hip

Hip-to-Hyp

P(H > Hips)

—0.032(D.054)
2.874(0.223)
3.277(0.549)

--3.272(0.286)

0.984(0.011)
0.981(0.011)
0.599(0.016)
0.603(0.000)

1.031(0.021)
0.778
2.054(0.030)
1.309

0. 632(0 005)
0.216

0.640(0.009)
72.5

3.795 (0. 043)
2.500(0.033)
1.156

1.594(0.199)
1.227(0.037)
0.659(0.014)

0.899(0.014)
0.788(0.009)
0.248

1.029(0.120)
1.095(0.040)
1.122(0.041)

0.505(0.044)
11.4

2.41+1.71
1.24%0.45
9.681.6.44

0.130{0.013)

0.038(0.067)
2.899(0.069)
3.495(0.305)
~3.084(0.216)

1.000(0.007)
0.993(0.011)
0.646 (0, 010)
0.652(0.001)

0. 959(0 019)
0.822
1. 937(0 029)
1.249
0 629(0 007)
0 634(0 037)

3.697(0.032)
2.443(0.030)
1.105

1.564(0.107)
1.216{0.018)
0.661(0.007)

0.966(0.023)
0.822(0.007)
0,302

1.049(0.062)
1.145(0.048)
1.175{0.027)

0.498{0,036)
14.6

2.2241.76
1.21£0.45
8.05-6.16

0.149(0.007)

~0.021(0.053)
2.940{0.088)
3.271(0.128)
—3.422(0.451)

1.001¢0.027)
-980(0.017)
.77040.018)
.767{0.001)

Soo

0.816(0.021)
0.871

1.633(0.022)
1164

.651(0.008)
232

.618(0.018)
139.5

OOO!—-‘

3.624(0.056)
.342(0.059)
112

1.558(0.116)
1.229{0.012)
0.646(0.015)

1.407(0.046)
1.018(0.029)
0.499

1.905(0.384)
1.653(0.127)
1.382(0.012)

0.679(0.031)
15.6

=

1,97+1.55

1.23+0.58

8.80+6.83
0.138(0.006)

0.032(0.021)
2.878(0.054)
3.087(0.138)
3.490(0.176)

1.002(0.045)
0.985(0.021)
0.855(0.014)
0.861(0.000)

0.659(0.025)
0.934
1.3060.041)
1.178
0.763(0.018)
0.393

0.681(0.035)
288.8

3.833(0.075)
2,262(0.090)
1.328

1.650(0.116)
1.273(0.023)
0.590{0.018)

2.217(0.024)
1.467(0.065)
0.731

1.555(0.121)
1,558(0.077)
1.515(0.068)

0.818(0.020)
17.1

2.67.+2.09
1.82+1.11

12.28+8.64

0.145(0.014)
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