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1. ““Apparent Coefficient of Partial Reflection of
Finite Amplitude Waves ’’

Yoshimi GODA¥*,
Yoshiki ABE**

Synopsis

Although Healy’s method based on small amplitude wave theory is com-
monly used for the measurment of reflection coefficient, a simple use of Healy’s
method for waves of large steepness against a structure of high reflectivity
causes an underestimation of reflection coefficient and an overestimation of in-
cident wave height. The theory of partial standing waves has been developed
to the third order approximation in order to calculate the wave heights at
nodes and anti-nodes accurately. The theory, for example, demonstrates the
appearance of twice frequency oscillation at nodal points for the case of total
reflection. The apparent coefficient of wave reflection was then obtained from
the calculated values of maximum and minimum wave heights and compared
with the actual value of reflection coefficient. Several diagrams which shows
the relation between the apparent and actual coefficients of wave reflection have
been prepared for the relative depth of #/L=0.08, 0.10, 0.12, 0.15, 0.20 and 1.0.
The ratio of apparent to actual incident waves has also been shown in similar
diagrams. :

Experiments have been done at the relative depth of %/L=0.1 and 0.2 for
the wave reflection from a vertical wall and energy dissipators of horizontal
wire mesh screens. The decrease of apparent reflection coefficient with the in-
crease of wave steepness was in good agreement with the results of calculation
shown in the correction diagrams. With these diagrams, the laboratory data
on wave reflection by means of Healy’s method can be corrected so as to yield
the actual values of reflection coefficient and incident wave height.

The present theory of third order wave interaction also indicates decreases
in wavelengths and increases in wave heights for both the incident and re-
flected waves. The standing wave height is therefore a little larger than twice
the height of incident waves. '

* Chief of Wave Laboratory, Hydraulics Division
** Member of Wave Laboratory, Hydraulics Division
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Apparent Coefficient of Partial Wave Reflection

1. Introduction

The reflection of water waves is associated with every problem of wave and
structure interaction. The intensity of wave reflection is a good index to the
extent of interaction. For harbor engineers, the wave reflection inside a harbor
basin is a source of trouble against the calmness of water basin. For coastal
engineers, the waves reflected from a neighboring jetty is a possible cause of
beach erosion.

All the problems related to the phenomenon of wave reflection require the
data of reflection coefficient, or the ratio of reflected to incident wave heights.
In certain problems such as a fixed thin board on the water surface, the reflec-
tion coefficient has been calculated theoretically®. In the problems involving the
dissipation of wave energy, which apply for most of actual structures, the re-
flection coefficient cannot be predicted analytically but must be measured ex-
perimentally. By this reason many tests on the reflection coefficient have been
done for various structures by means of scale models or for some generalized
models. The experiments by Healy® and Greslou and Mahe® on uniform slopes
belong to the latter group of laboratory study.

In most of wave tests, the reflection coefficient is determined by Healy’s
method which is based on the theory of small amplitude waves. According to
this method, the wave height envelope of wave system in front of a test struc-
ture is measured, and the incident and reflected wave heights, H; and Hr are
estimated by the following formula from the data of maximum and minimum
wave heights:

HI =’%(Hmax+ Hmin)

1 (1)
HR=§-(HIII&X—HIIIID)-
The reflction coefficient is therefore obtained as
KR= HR _ Hmax‘—Hmln (2)

HI - Hmax"l‘Hmln ’

Although Healy’s method is simple and convenient for use, it must be noted that
the method is only that of first order approximation and must be employed with
caution. Healy’s method, for example, will give a reflection coefficient far below
1.0 for the case of total reflection (Kr=1.0) for the waves of large steepness in
relatively shallow water, even though no wave energy is being dissipated®.
Such the apparent decrease of reflection coefficient comes from the presence of
higher order terms neglected in the small amplitude wave theory. Greslou and
Mahe® have reported that the reflection coefficient of a steep slope gradually
decreases as the wave steepness increases. This decrease also seems to be ap-
parent one, because they employed Eqs. 1 and 2 for the determination of re-
flection coefficient.

The way to avoid the underestimation of reflection coefficient is either the
direct measurement of reflected waves or the development of new method based on
the wave theory of higher order approximation. Recently Murota and Yamada®

— 7 —



. Yoshimi GoDA and Yoshiki ABE

have introduced a method for direct recording of reflected waves. Using this
method they have shown that a uniform slope steeper than 30 degree of angle
has the reflection coefficient of 1.0 regardless of wave steepness. The method,
however, is shown to be valid to the second order of approximation (see Section
3.4). In this report, the approach is taken toward the preparation of correction
diagrams for Healy’s method, taking the finite amplitude effect into considera-
tion. One diagram for the case of total reflection in the intermediate depth has
been given by one of the authors®. Another diagram for deep water waves has
been sketched by James®. The present approach is based on the theory of third
order wave interaction in the intermediate depth. The development of theory
will be introduced in Chapter 2, and the calculation of apparent reflection coef-
ficient as well as the correction diagrams will be shown in Chapter 3. The re-
sult of calculation will then be compared with the data of experiment conducted
for that purpose in Chapter 4.

2. Theory of Finite Amplitude Waves

2.1 Progressive Waves

(1) Perturbed equations of the problem

The problem of finite amplitude wave of permanent type has been investi-
gated by many researchers. If the problem is limited to the shallow water
waves, the theory of cnoidal waves or solitary wave is available. If the problem

is concerned with surface waves in the intermediate depth, the theory of Stokes

waves which expresses the velocity potential and surface profile in terms of har-
monic series is employed. At present the fifth order theory has been calculated
by Skjelbreia and Hendrickson”. Numerical computations of higher order ap-
proximation have been demonstrated by Chappelear® and Dean®. Though the
theory of finite amplitude progressive waves is well established, the calculation
of third order theory by means of perturbation method will be shown in this
section as the preparation for the calculation of partial standing waves. The
procedure is analoguous to that for standing waves calculated by Tadjbaksh and
Keller'®.,

As usual, the viscosity of water is considered as negligible and the motion is
treated as irrotational. Thus, the velocity potential @ must satisfy the Laplace
equation of

@zz'l'@w:()y ' ( 3)

where x is the horizontal coordinate and y is the vertical coordinate measured
upward from the still water level. In this study, only the two dimensional
motion will be treated. With the velocity potential @, the particle velocities, »
and v, are expressed as @. and @,, respectively. At the water surface, the pres-
sure must be zero and the water particle consistituting the surface must remain
there throughout the motion. These conditioned are described as

1
g7+ 0u+5(02+0;)=0 on y=y (4)

Oy=n+72 P on y=y, (5)
e 8 —
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Apparent Coefficient of Partial Wave Reflection

in which 5 is the vertical displacement of the water surface measured from y=0.
For the water of uniform depth of %, the boundatary condition is

0,=0 on y=—h. (6)
In addition, the conservation of water mass requires the average water level
must be at y=0, and the motion must be periodic both in x and . These condi-
tions are
2x/k
S oz, ) dz=0 (7)
0

v, y, t+2r/o)=pW(z+2nlk, y, )=pP(z, ¥, ), (8)

in which % is the wave number and ¢ is the angular frequency. Further, the
solution of progressive waves travelling toward the positive direction of x will
be sought.

Since Egs. 4 and 5 are nonlinear, the following pertubated solutions with a
parameter of small quantity ¢ are assumed here for @, 5 and o.

0, y, =00z, y, O+ 80D, Y, O+5 a0z, ¥, O+0(a)
2, D=1z, D+ e, O3y, O+ Ola) (9)

0'=00+00’1+—;‘(220'2+0(a3).

Equations 4 and 5 are rewritten with Eq. 9 for the conditions at y=0 instead of
y=7. Resultant equations are arranged with the terms of equal powers of @ to
yield the following sets of perturbed equations for the surface conditions:

07D+ 00 DO =0 (49
1
070 +00 0P +01 00 = —00 7y 0P — 5[0+ 0)] (49
1 2) 1 (2) 1 (2 — 0 PO L@ 10710}
Egy +-§oo@, +§o‘z@, =—0g1'V 07 — oo PO — ooy '@,y
1
L 09, — 10 09+ 0P O]

_@5}0) le)_ Q)%O) @@(’l)

on y=0, (4%

and
0P~ =0 (5
@,(,1)—0'0 7)9)—01 ,750)= —p® q)%)_*_,}(zo) oW (5%)

1 1 1 1
S0P — 500 =01 5P — S0P = — P DR — oy O,

__y(o) ¢§?+77§°)77‘°) @S;l)_l_”go) @gl)_i_”gl) ¢§:o)
on y=0, (5%



Yoshimi GODA and Yoshiki ABE
where 7 is the non-dimensional time of the following:
1 .
T=0t= 0‘o+a(11+—2‘(120'2+°" i 10y

The rest of equations, Egs. 3, 6, 7 and 8 are linear; hence they are applied
to each perturbed solutions of @ and 7, i.e., @©, O®, @® ... and ¥, 5D,
7D,

(2) First order solution

The general solution of Eq. 3 which also satisfies the bottom and periodicity
conditions of Eqs. 6 and 8 is written as :

Oz, y, D= i [AS(t) sin nkx+ BS(t) cos nkx] cosh nk(y+h), 11
n=0

with the condition of
At +2r)0)=A (1)
(12)
BSX(t+4-27/6)=BS (D),
in which 7 is an integer of 0, 1 or 2.

In order to solve AQ(#) and BX(#), the surface conditions of Egs. 4! and
5! are combined to yield

0P +a0P=0  on y=0. (13)

The substitution of Eq. 11 into Eq. 13 results in

AP ©
ngk sinh nkh+o} =L cosh nkh=0 with »=0,1,2,--- (14)
B(O) B(O)

n,

n TT

From the terms for #=0, B{®¥ is obtained as

BP=a+fo. ' 15)

From the terms for #>2, the condition of Eq. 12 with the relation of Eq. 17
vield Ax(t)=Bua(z)=0. @
From the terms for n=1, the equation for A{” and B{® are derived as

0
AP BY
[CR =10
AP " Bf

——;—;gk tanh kk. (16) .
0

Since A®(z) and B{®(r) must be periodic funtions with the period of 2z, g, is
required to satisfy the following relation:

ogi=gk tanh kh. an

With the above relation, A® and B{® are obtained as the sum of sinz and cosz
with arbitrary coefficients. Therefore, the first order solution of velocity poten-
tial @ is wirtten as

— 10 —



Apparent Coefficient of Partial Wave Reflection

PO =q7+Bo+[(a1 sin 7+ B1 cos 7) sin kx

+(a? sin 74 Bs cos 7) cos kx] cosh k(y+h). (18)

Since we are interested in progressive waves only, we take the following form

for O

D=z + Bo+ay sin (kx—17) cosh k(y+4). 19)
The surface displacement 5 is then obtained by substituting Eq. 18 into Eq. 1
as
7 =%[—ao-}-a1 cos (kz—7) cosh Eh]. (20)
l‘ .

Now the application of Eq. 7 results in a=0. If the first order amplitude of
> . surface displacement is set to @, then the amplitude of 5 must be unity; hence
. do

4= Sinh # @b

Thus the first order solution of @, 5, and ¢, are written as

=9 _pcoshk(y+h)
(0] 5 Sin (kx—ot) Sinh f7
(22)

PP =cos (kx—ot)
gs=gk tanh kh.

(3) The second order solution

The result of Eq. 22 is substituted into Egs. 4% and 5? in order to obtain the
following surface conditions for the second order solution:

gV +av @E”—%g cos (kx—t)
0
= —%aﬁ(coth” kh—3) cos 2(kx—1)
4 _%03(coth’ kh—1) on y=0 ()

OP —go nP— o1 sin (kx—7)=—aik coth kh sin 2(kx—7) on y=0. (24)
The term of 5 can be eliminated from the above as in the following:
90§+ 03 0P =2¢ko, sin (kx—1)
—%aﬁ(coth2 kh—1)sin 2(kx—17) on y=0. (25)

Since the general solution for @ is given with Eq. 11, the substitution of this
equation into the above yields the following set of equations for A$® and BS:

BP=0 (26)

— 11 —
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AP AP cosT.
gk sinh kh—l—a‘é{ } cosh kh= 2gk01{ } 27
B B sin'z
gl) Agl)
29k sinh 2kh+-63{ 7 tcosh 2kh
Bgl) Bgl)
3 ( cos 2t
= ——g3(coth? kh—l){ ) (28)
2 —sin 27
Ag;l) . Sr,l) .
ngk sinh nkh+03{ | coshnkh=0 for n>3. (29)
B7(11) lel)
The first equation gives
B§P=aut+ . (30)
The second equation is rewritten with the relation of Eq. 17 as
AP AP cos T
I R e : 31
B® Bﬁf sinh k% | _qip £
The condition of Eq. 12 now requires A{’(zr) and B{’(r) to be harmonic func-
tions with the period of 2z/m where m is an integer of 1, 2, 3,---.; the right-
hand side of the above equation then requires the period to be 2x. Hence,
AP a1 B
{ }={ } sin z-+<1 } cos 7. (32)
B as B

The substitution of Eq. 32 into Eq. 31 leaves the left- hand side of the latter in
zero; hence the term of g1 must be zero: .

a1=0. ' (33)

Equation 28 for A{® and B$® can be solved easily as

{Aé‘)}_s coth! kh—1 { cos 2z }

B =87 cosh Zkh 4

—sin2z)
For n>3, AS? and BS® must be zero by Eq. 29.
In the above solutions, the coefficient for A{” and B{’ remained undeter-

mined. The condition of progressive waves is then applied to eliminate three
out of four coefficients. Thus @ is obtained as

OV =an7+pu+e; sin (kx—c)cosh k(y+h)

cosh 2k(y+h)

cosh 2kh (35)

+%ao(coth4 kh—1) sin 2(kz—7)

The second order solution of surface displacement » is then derived by
substituting the above equation with Eq. 33 into Eq. 24 as

12 —




Apparent Coefficient of Partial Wave Reflection

2
= —gjam—% %(coth” kh-l)+%c§' cosh k% cos (kx—1)
+%k(3 coth?® kh~—coth kh) cos 2(kx—1). (36)

The term of an is determined by the condition of Eq. 7 as
aol=—711—ao(coth"’ Eh—1). | 37)

The term of Bu can be set to zero, since fn merely adds a small change to the
level of velocity potential which has already been given by the first order con-

1

stant of B,. The term of a can also be set to zero, since a;" represents the
amplitude of arbitrarily superposed waves. Therefore, the second order solution
of @V, » and o1 become as follows:

@D =gy ao1 T+ 00 a3 cos 2(kx—7) cosh 2k(y+ 1)
PP ="Fkbys cos 2(kx—1) (38)

a1=0,
where:

an= ——%(Coth’ kh—1)

_ 3 (coth*kh—1)
=g " cosh 2kh (39)
bzz=-l"—(3 coth?® kh—coth kh).

(4) Third order solution

The general solution of &% is given by Eq. 11 as well as for @ and @W.
The equations for the determination of A’ and BS” are obtained from the second
order perturbation of surface conditions, Eqgs. 4* and 5° with Eqgs. 22 and 38 being
substituted into them. After some manipulation, they are rewritten as

g9 +00 @?’—L:—g cos (kx—1)
0
3 2 5 3
=Zkao(—c +3c3—3c) cos (kr—1)

+%k oy —c5+7¢*—5c) cos I(kx—1) on y=0, (40)

and

OP— gy 7P — a3 cos (kr—1)
=711’-k2 ao(—6ct+c?) sin (kx—7)
+%k2 o —6ct+c242)sin 3(kx—7) on y=0, (41)

— 13 —



Yoshimi GODA and Yoshiki ABE

where:
c=coth kh. 42)

From Egs. 40 and 41, the terms of 5 are eliminated to yield the equation for
oD as

gOP+ g 0P = 9[202 +%k2 o(—9¢*+10c’—9) sin (kx—r)] A
+%g B o(—9c'+220—13) sin 3(kw—7)  on y=0. (43)

As in the preceding sections, the equations for A and B{ are easily obtained
by substituting Eg. 11 into the above and by assembling the terms with equal
value of n as

B{=0 ’ (44)
AP 2 |
gk sinh k2 + aﬁ{ ™+ cosh kh
B o
1 cost
=g[2m+—1e2 oo(—9¢! +100’—9):| (45)
4 —sin 7
o 3
. 2 T
3gk{ Bgz)} sinh 3kh+ao{ s } cosh 3kh
3 cos 3¢
=0 B ol —9ct+22c'—13)] (46)
—sin 3z

®
} sinh nkh+a§{

(2)
n

[©)]

ngk{ }coshnkh:O for n=2 and n>4. (47)

nf!‘
@

Although the first equation of the above yields the solution of B{’=aur+ o,
the coefficient of a: is shown to be zero by the condition of Eq. 7 and Bis can
be set to zero by being included into Bi; hence, B{®=0. Next for the second
equation, the periodic condition of Eq. 12 results in nulifying the coefficient of
the right-hand side. This determines g: as

01= —%k’ ao(—9c'+10c2—9). (48)

The functions of A{®’(z) and B{®(z) can be taken as arbitrary combinations of
sint and cosz. But the condition of progressive waves requires the following
form with an undetermined coefficient of as:

AP(t)=ascosz, and B{¥(z)=—azsinrz. : (49)

The functions of A{® and B{” are uniquely determined by Eq. 46, and the
functions of A’ and B for n=2 and n>4 are lead to zero by Eq. 47.

— 14 —




Apparent Coefficient of Partial Wave Reflection

The third order solution of velocity potential #® is thus obtained as:

@D =qy sin (kx—7) cosh k(y+h)
1
32

cosh 3k(y+4)

kao(c?+3)(9c°—22¢%+13¢) sin 3(kxr—7) cosh 3%k

+ (50)
The first term of the right-hand side expresses an progressive wave superposed
to the system in question. Although the assignment of a specific value to the
amplitude a3 is arbitrary, as is taken to be zero in this report, because the situ-
ation is simplified by this and the solution can be directly compared with that
of finite amplitude standing waves.

The third order solution of surface displacement »® is then calculated by
substituting Eq. 50 with a;=0 into Eq. 40. Thus the final results of @®, »®,
and ¢; become

O® =k gy fss sin 3(kx—7) cosh 3k(y+h)
7D =k {b cos (kx—7)+bss cos 3(kz—1)} (51)
ai=k'00 C1,

where:

1 5993
Bss= 32 coshd 7l (c*+3)(9c?—22¢3+13¢)
b11=%(3c4+862—9)

3 - (52)

—_ 6__ Q-4 3 __
bss= 2 (9ct—3ct4-3c2—1)

Cl=—é-(904—1062 +9)

(5) Wave height and wavelength of progressive waves

Summing up the above results, the perturbed solution of progressive waves
to the third approximation is written as

]
§_0¢=e B sin (kx—at) cosh k(y+h)+e? an ot
+¢€? Bas sin 2(kx—at) cosh 2k(y -+ h)
+%e3 Bss sin 3(kx—aot) cosh 3k(y+h)

kp= [e+—;-es bu] cos (kx—ot)+¢* bas cos 2(kx—ot) (53)

+%¢»:s bss cos 3(kx—ot)

0’=(Io[1+%e2 Cl].

where:

— 15 —-



Yoshimi GODA and Yoshiki ABE

e=ka
. (54)
Bu=1/sinh kh
The parameter ¢ is related to the wave height H as
RH=2¢+&%(bu1+bu). ‘ ©(85)

So far the solution has been obtained with the fixed value of wave number
k in search of angular frequency which satisfies the relation between %, % and e.
If the angular frequency is given a priori as in the case of mechanically gener-
ated waves, the wave number & will very with e. The variation of wave number
can be calculated by the following relation which has been obtained from Egs.
17 and 54:
1 2 -

=gk tanh kh[l o cl} (56)
We can also define a wave number k4 of the following as the first order appro-
ximation to wave number: ’ C

ol=qgkstanh ksh 67N

The wave number % is now related to the first order approximation k. as '
2 .
kh tanh kh[l +%e2 C;] =kah tanh ks h. ’ (58)

By taking the terms of up to &?, the relation between 2 and k4 is approximated
to the third order as

ki 1o 9

where:

- 2C,
" 14kah(coth kah—tanh kuh) "

K (60)

Thus the wave number of finite amplitude progressive waves is shown to de-
crease with the increase of amplitude; the wavelength increases.

In comparison with the solution by Skjelbreia and Hendrickson”, ‘the present
solution does not have the term of &Aissin (kx—at) cosh k(y+4) in the expression
for @ while the term of &% cos(kr—gt) appears in y instead. This difference
comes from the assignment of a value to a; in Eq. 50. Skjelbreia and Hend-

rickson have so chosen that the amplitude of fundamental harmonic of the sur-
face displacement is given by a, though they have obtained the solution by as-

suming the surface displacement to be a form of 3 &”bns cos n(kx—ot) a priori.
n=1

Becarse of this difference, the value of ¢ for a given wave height is different in
their solution from the present one. Another difference is the absence of au
term in their solution, which has a correction to the constant of Berrouille equa-
tion instead.

Other coefficients are shown to be the same with the corresponding ones in

—.16 —.
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their solution and present one, after some manupilation with hyperbolic functions.
The phase velocity of g/k is also shown to agree each other to the order of
second power of e. Therefore, the present solution is another expression of finite
amplitude progressive waves to the third order approximation.

2.2 Partial Standing Waves

(1) Perturbation of partial standing waves

When two trains of finite amplitude waves interact each other, the surface
conditions of Egs. 4 and 5 cannot be satisfied by a simple superposition of two
waves only. Because of non-linearity of the equations, some bound waves are
required to appear. The situation can be considered in such a way that the
original two waves deform themselves by the result of interaction and the dif-
ference due to deformation is expressed as bound waves. This property of finite
amplitude waves has been clearly shown by Hamada!" in the calculation of
second order interaction.

The phenomenon of partial standing waves produced by partial reflection is
a typical example of wave interaction which produces bound waves. The per-
turbed solution of partual standing waves, therefore, must be composed of pro-
gressive waves, retrogressive waves, and bound waves. In this.report the per-
turbed solution of bound waves will be sought under the condition of progressive
and retrogressive waves of finite amplitudes being given independently. Thus
the expressions for the velocity potential and surface displacement will have the
following form of perturbation:

O=0;+Dr+ O,
where: Or=a 9P+ a? @§1>+%as oW

61
Dr=2a PP+ 2’ a* @%’+%23a3 oP ©b

1
Or=a' 0P +5a' 0P, )
and
n=n1+nr+tyr,
1
where: s =ar;§°)+a21;‘,l’+§—a37;§2)

(62)
szlarng)_*_lﬂ aZ 775;),*_.%_18 as 77%)

1
rr=at 9P+ at D,

in which the subscripts, I, R and F deonte the progressive, retrogressive, and
bound waves, respectively. The factor 1 represents the ratio of retrogressive to
progressive wave amplitudes in the first order approximation. The pertubed
solutions of progressive and retrogressive waves, @5, %, »{”, 7%’ where r=0,
1 and 2 are given by Egs. 22, 38 and 51 with the wave number of %2 and ks
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respectively; for retrogressive waves, k= takes a negative value.

The perturbation for angular frequency needs a special treatment. As shown
in Eq. 52, the angular frequency for a given wave number increases as the
wave amplitude increases. This can be interpreted as the increase in wave-
length for a given wave period. In case of partial standing waves produced by
wave reflection, no change in wave period will take place as deduced from the
physical situation; the wavelength must change instead of wave period if any
change takes place. The perturbation of wave number is troublesome, however,
since the wave number appears explicitly in the surface condition whenever the
derivative with respect to x or y is taken. Therefore, the angular frequency of
progressive and retrogressive waves are perturbed in this report in order to ob-
tain the correction terms, and then the equality of wave frequency will be in-
troduced so as to yield the change in wave number. Taking the results of pro-
gressive waves into consideration, the perturbations of angular frequencies are
expressed as

or=0co+ -l-a’(az +01r)

2
(63)

1
OR=00 +§-a“(22m +0rr).

The first and third order perturbed frequencies of g0 and o: are given by Eqgs.
17 and 48, respectively.

(2) Second order solution of bound waves

The perturbed solution of partial standing waves expressed by Egs. 61, 62
and 63 must satisfy Eqs. 3 through 7. The periodicity condition of Eq. 8 is ap-
plied with due regard to the wave number and angular frequency of bound
waves, which will be expressed as the sum or difference of the multiples of %z,

kr, or and oxz.
The general solution of @ is immediately obtained from the linear equations

of 3, 6 and 8 in the same form with Egs. 11 and 12, i.e.
Xz, y, H)= E‘, [AS(¢) sin nkrx+ BS? cos nkrx]
n=0

x cosh nkp(y+4#)  with r=1 or 2, (64)
with the condition of

AP+ 2n)ar)= AT ()
B (t+2xjar)=BS(t).

The time functions A$(f) and B$ (f) must be determined from the surface
conditions of Eqgs. 4 and 5, into which the expressions of Egs. 61, 62 and 63
are introduced to yield the equations for bound waves. Since the group of
terms with only 0%, 7§ and their products satisfy the surface conditions by
themselves as well as the group with @%° and 7%, the remaining terms with @%°,
7%, and cross products of @, #%, 7{” and 7%’ become as follows for the second

power of a:
gP+ D= —2007P OP, — 2007 0P — 210D 0P — 202 0L
on y=0, (66)

(65)
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0P —=29% 0P+ X 0P — PO —21POP - on y=0,  (67)
where:

t=0gr1t for @r and p
or (68)
t=ort for Oz and zz.

The derivatives of @r and 7 with respect to ¢ will be calculated without resort-
ing to non-dimensional time 7 since the angular frequency ¢r is unknown at this
stage.

The right-hand sides of Egs. 66 and 67 are calculated after the substitu-
tion of the expressions for &, 8%, »{” and 5% which are given by Eq. 22 with

the change of % into k; or kz. The results of calculation become

grzﬁp-l-d)%z:-%—)ag[s—coth (1) coth (R)] cos (I+R)

+%)a§[1—coth (I)coth (R)Jcos(I—R) on y=0, (69)
and
905, —gri= ——;—Zag[coth (D+coth (R)}* sin (I+R)
—%zaﬁ[cothg(l)—coth"’(R)] sin (/—R) on =0, (70)
where:

coth (I)=coth k:h

coth (R)=coth kgrh

cos (I+ R)=cos [(kr + kr)x— (01 L 0R)E]
sin (I+ R)=sin [(kr + kr)x—(0: L oR)1]. ..

(71)

The elimination of 5% from the above equations results in

gq)gl; + (DS#L =203{6—coth?(I)—coth? (R)—4 coth (I) coth_(R)} sin (I4+R)

——;—Zcr?,[coth2 (I)—coth!(R)]sin(I-R) on y=0 (72)

In the above calculation, the approximation of o:r=os=0, is employed, because
the introduction of correction terms of g3 etc. into the term of ¢: or gz produces
terms with @' or higher order terms while the present calculation is to the
second power of a.

By the same reason, the wave numbers of k; and ks can be approximated
with the first order value of k4 given by Eq. 57 as

ki=—kr=ky (73)
The above approximation should not be employed for the célculation c;f the phase

—19 —



Yoshimi GopA and Yoshiki ABE

functions of sin(J/+ R) and cos(/+R) because a small difference in wave number
may produce a reversal of phase angle at a large distance.

The velocity potential @% is now obtained from Eq. 72 in a similar way
with that for progressive waves. Then, the result is substituted into Eq. 69 to
yield »¥. Finally the second order solution of bound waves with the approxima-
tion of Eq. 73 is obtained as

O =200 B sin (I+R)
ﬂg)=2 kabos cos (I—R),

(74)

where:

fro=—3 (34

boz=-]2;(C+C_‘) (75)

c=coth k4h.

(3) Third order solution of bound waves

The third order surface conditions of Egs. 4* and 5% are rewritten for @%
and 7% by substituting Egs. 61, 62 and 63 and by dropping the terms of pro-

gressive waves only and those of retrogressive waves only. The resultant equa-

tions contains the terms with 2 and those with 22 while the terms of &%’ and »%

do not contain 2 explicitly. Since the factor 2 can take any value between 0
and 1, 0% and 7 must be composed of the terms with 1 and those with 2%, and
they can be treated separately. First, Eq. 4 becomes

1
2 —A{gnP()+0F D} +0nr OF)
2 2
_ 1) (0 0 pH L 1 =
_—Zaong)@%zy—ZaonS;)(Dgr)y— 3 a‘ory%)@g‘:)y— P §°)d)§2y
0)..(0) 70 02 (70
—2007P 7P @E—By ) 7O sz
_2POPOP P IUD. 200 0.
03 500D (0 0) 750D 5CO 03 3(0) 50
2P0, 2P0 080, — 2P 0D, 05,

2 2
20 09200 08— 20P0P ~ ooy, on y=0, (76)

1
2 gr P +OBA)+0rr0P)

={same as the above except for the subscript
I to be changed to R} on y=0. W)

Similarly, Eq. 5 is written as
1
2 OB N1} —ome yR)=— 20 OF, — 2P O,

— 20 —
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2 1) (0 2 0) (1 0) (0 70 0)2 (750
—777(1") (l)§;y—717(, )Q%ﬁ)/zl_z77S 1% q)Su)w—’}S) @(R;w
2

2
+2082 0% +29R, 00+ 0, O+ i) OF,
2O AP OD $2POOP, 2P 0O, on y=0,  (78)

B OB — B o)
={same as the above except for the subscript
I to be changed to R} on y=0 (79)

The calculation of these equations with the first and second order solutions given
by Eqgs. 22, 38 and 74 yields the following:

%{g 1P+0Py— g—";" cos (R)=%k4 a¥4c+c ) cos (R)
0 .

+ %k,{ 053¢t +21c*—11c) cos (2I+R)

+%k403(365+903—5+20‘1) cos2I—R) on y=0,  (80)

1 . 1 .
{908, — g7} +gomr sin (R)=—ka 03(c*+2¢) sin (R)

-——i—k,i o3(c*—2¢) sin (214 R)— —Z’kA gictsin(2I—R)
on y=0, (81)
where:

(R)=(krx—o0rl)
} (82)

21+ R)=(2k; + kr)x— (201 L 0R)L.

In the above calculation, the approximation of ¢:=agr=a. as well as of Eq. 73 is
employed. The equations for 22 terms are omitted, since they can be written
down without difficulty. Thus the equation for #%(2) is obtained as

%{99)53;, +0P }=— [Zgam:-i-%k,u}g (c? +6c+c“)] sin (R)

+%k,4 a¥(9c®4-62¢*—31¢) sin (2I+ R)

+—}IkA 3(36 —Bc+2c1) sin (21— R) (83)

The frequency corretion terms of ozr and orr are determined from the peri-
odicity condition as

orr=—Fka00Cs, .
0’117=—22sz00 Cs, . (84
where: Ci= —i—(c? +6+c72). .
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The velocity potential @ and the surface elevation % are then solved from

Eqgs. 83 and 80 in a similar way with that for progressive waves as

OP =k4a0 B[ sin (2I+ R)+ 2% sin (2R+I)] cosh ka(y+h)
+ka 0o Br13[2sin (2]— R)+ 2% sin 2R—1)] cosh 3ka(y+h)

(85)
7P =F% bi[2 cos (R)+ 22 cos (I)]+ k% bui[2 cos (21+ R)
+2% cos 2R+ D]+ Fbis[2 cos (21— R)+ 2% cos (2R—1)],
where:

I SR NPYG
Bu=—"35 cosh & (¢ 162'—3lc)

__1_ —2 5__ —1
Pus= 32 cosh 3%k (14-3c%)(3c5—5¢+2c7Y)
bi=(—c+24c) (86)

1 e 18
b= 32( 3ct—18c*+5)

b13=3%(904+2702—15+c‘2+2£“).

(4) Correction of wave number

So far the correction to the angular frequency instead of the wave number
has been considered. This frequency correction can be converted to the wave
number correction under the condition of constant wave frequency. First, Eq.
63 is rewritten with the results of Egs. 51 and 86 as

O1=0 [1 +%(k4 a)(Ci—22 Cz):l
[ 1 87
or=0o| 1 +E(k.4 a)*(a? C1—Cz):| ,

where Ci and C: are given by Eqgs. 52 and 84.
Since the first order frequency of ¢, is related to the wave number of finite
amplitude waves through Eq. 17, the above equation is rewritten as

2
ot =g by tanh k; h[1+—:13—(k,1a)2(cl—zﬂ Cz):|
1 : )
o =gka tanh kghl:1+—2—(k4a)2(22 Ci— Cz)] .

The first order approximation to wave number k4 is the same for both the pro-
gressive and retrogressive waves, and is given by
oi=c%=gkstanh kah. ‘ (89)

As in the derivation of Eq. 59 for progressive wa{res, the wave numbers k; and
kr are related to k4 to the third order approximation as
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k[ =k4li1-——;“(k,4 0)2(1{1—22 Kﬂ)]
(90)
kr= -kA[l —%(k,; a)¥(2® K1—Kz)],

where:

_ 2C,
T 1+4kah(coth kah—tanh kah)’

K, €)Y

The above equation predicts the increase in wave number or the shortening of
wavelength for both the progressive and retrogressive waves as a result of the
interaction between them. Such change in wave number has been calculated for
two trains of deep water waves by Longuet-Higgins and Phillips'®. Their pre-
diction for the phase velocity change for the case of two opposing wave trains
with the same frequency is in agreement with the present calculation.

2.3 Standing Waves

When the amplitudes of progressive and retrogressive waves are equal as in
the case of perfect reflection, the factor 2 becomes 1 and the expressions for O,
7, and ¢ are simplified as follows:

3
L@:{Zﬁo +2¢? an of—2¢ pu1 sin af cos kx cosh k(y+h)

ago

—2¢? By sin 2gt cos 2kx cosh 2k(y+h)

—&% Bss sin 3¢t cos 3kzx cosh 3k(y+h)}

—{&* Bao sin 20t+¢* B sin 3ot cos kx cosh k(y+h)

+¢&! Bi3 sin of cos 3kx cosh 3k(y+h)} .
kp={(2¢+¢€* b11) cos gt cos kx-+2¢* bas cos 2gt cos 2kx (92)

+&% bss cos 3gt cos 3kx}+{e? bos cos 2kx V

+¢% by cos ot cos kx+¢&* b cos 3ot cos kx

+¢&% b1 cos ot cos 3kx}

a=ao[1+—é—e’(C1—Cz)]

with e=ka.

Here the wave number % is that of finite amplitude standing waves, common to
the incident and reflected waves; the approximation of Eq. 73 - has not been
employed.

These results are in complete agreement with those by Tadjbaksh and
Keller® if the first order amplitude of incident wave a is rewritten with that of
standing waves as @’=2a. In the present forms of representation, the effect of
wave interference is clearly identified as the terms inside the second braces for
® and 5, and as C; for ¢. These interference terms cause a shortening of wave-
length and increase of standing wave height more than twice the incident wave
height. . '

First, the change in wavelength is calculated from Eq. 90 by taking the
tems of ¢ up to the second power. This is given by
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Ls _ .1 00
L. =14 7€ [Ki— K. (93)

While the wavelength of progressive waves increases from the first order
approximation of L, by the rate of %eﬁ K, as the wave amplitude increases, the
wavelength of standing waves Ls decreases from that of progressive waves by
the rate of —;‘Sng. As seen in Fig. 1, the value of K; exceeds that of K; in the

range of i/L greater than about 0.17; in this range Ls is shorter than L.. This
shortening of wavelength due to wave interaction becomes less conspicuous as
the water becomes shallow relative to wavelength, because the value of K in-
creases more. rapidly than that of K, at shallow water. The above phenomenon
has been predicted by .Tadjbaksh and Keller although they did not identify the
wave interaction term of K;. Later Fultz!® experimentally verified the decrease
of angular frequency for a fixed wavelength in the relative depth of #/L>0.14
and the increase of angular frequency for 4#/L<0.14; the difference in the critical
value of #/L for the reversal of frequency change is possibly due to the effect
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Fig. 1 Wavelength Coefficients, Ki and K;

— 24 —




Apparent Coefficient of Partial Wave Reflection

of higher order terms more than the fifth which have been ignored in the theory.
Next, the height of standing waves denoted with Hs is calculated from Eq.
92 for x=0 as

Hs=4a[1+%ez(bu +bss)+%eg(b1 +b3 +b13)] . (%) -

Since the height of incident waves denoted with H; is given by Eq. 55, the
standing wave height is expressed with respect to H; as

1
—€¥(b1+bs1+b1s)
Hs —14 2
2H;

I . (95)
1 +—2“€2(b11 + bss)

The calculation of the coefficients &1, bs: and bis by Eq. 87 shows that the sum
of these coefficients, (b1+bs1+513), is always positive; hence the standing wave
height is greater than twice the incident wave height. The increase of Hs over
2H; is estimated as about 10 to 15% at most. For the accurate estimation of
Hs/2H;, the development of higher order theory of wave interaction is necessary
because the accuracy of the present third order approximation is only enough to
predict the increase of Hs over 2H; qualitatively.

3. Apparent Coefficient of Wave Reflection

3.1 Discussion of Healy’'s Method

Now let us consider the technique in measurement of reflection coefficient.
The most commonly used method is that of Healy, which was mentioned in
Chapter 1. This method is justified for waves of infinitely small amplitudes as
shown in the following.

By taking the first order terms of surface displacement, we have the follow-
ing expressions for incident and reflected waves: '

pr=a cos (kx—at)
(96)
pr=2a cos (kx+ot). :
The resultant surface displacement of partial standing waves is then given as
p=nr+nr=(142a cos kx cos gt+(1—2)a sin kx sin gt 97)

The above expressions is rewritten by means of the trigonometric identity as

n=a./1+22 cos 2kx+ A2 cos (ot—0), (98
where:
[ A=2)sinkx ]
p— 1 = 7= -7
f=tan [ (+2)coskz | 99

The amplitude of partial standing waves, therefore, varies with respect to x.
The maximum and minimum wave heights appear at the following positions with
the values of

— 25 —



Yoshimi GopA and Yoshiki ABE

Hyox=2a(1+2) at kx=nz or xz=nL[2 ' '

Hon=2a(1—2) at kx=02n+1)x/2 or x=(2n+1)L/4 (100)
with #»=0, 1, 2,..- j

Since the incident wave height H; is 2a¢ and the reflected wave height is 22a in
the first order approximation, they are recovered from the maximum and mini-
mum wave heights shown in the above as

, 1
Hl ='_2_(Hmax+Hmin)

; (101)
H;z='§'(Hmax‘_‘Hmin)y
which is the same with Eq. 1. The dashes for incident and reflected heights
are attached here in order to identify them as the values calculated with the
maximum and minimum wave heights. The reflection coefficient is then calcu-
lated as

H’R Hmax_‘ min

KR: HII - Hmax"'Hmin 'A

(102)

The above formulae are convenient ones for wave experiments. As long as
the periodic variation of wave height with a distance of L/2 is observed in a
wave channel, the heights of incident and reflected waves, and the value of re-
flection coefficient are easily calculated. The assumption of infinitely small am-
plitude, or the employment of first order terms only, however, causes some
errors in the values of these. As a preliminary calculation, let us employ the
theory of second order approximation. Since the wave number does not change
with respect to e to this order of approximation, the surface displacement is
given by )

%:l ebos cos 2kx+cos (kx—ot)+2 cos (kx+at)

+eba[cos 2(kr—at)+4? cos 2(kx+ot)]. - (103)

The surface displacement at x=0 is

% =2ebos+(1+2) cos gt +ebs(1+ %) cos 20t (104)

z=0

Unless the amplitude of the second harmonic become large to such an extent as
to produce a secondary crest at t=n/g, the wave height at this position is given
by the following

Hyox=(1+2a for (142)>4ebsa(l+24?) (105)

The surface displacement at the nodal point of x==/2%k is expressed as

—Z— =—2eboua+(1—2) cos gt+ebaa(1+4?) cos 20t (106)

z=n/2k
Depending upon the value of 1 as well as those of ¢ and bz, the relative ampli-
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tude of the second harmonic to the first harmonic can become large enough to
produce a secondary crest at {=n/s. For example, the first harmonic of cosat
vanishes for the case of 2=1, leaving the second harmonic only. Since the first
order theory gives »p=0 at x=mn/2k, the presence of second harmonic represents
a finite amplitude effect. As will be understood from the development of the
theory, this second harmonic is inherent to the original profiles of incident and
reflected waves.

Equation 106 is differentiated with respect to ¢ and set to zero in order to
find the time at which the surface displacement becomes the highest or the
lowest; thus,

%’Z—= —ao[(1—2)+4e bis(1+42%) cos a1] sin ¢t =0. 107)

The solution of the above equation for 0<¢<nfo is

tHh=0

L[ =D T o

h==cos 1[ 4sb“(1+lz)] i (1—2)<debu(l+17) (108)
ti=r/a.

If the solution of {=# exists, this gives the minimum value of 5; if not, f{=t;
gives ymim. Thus the wave height at x==/2k is obtained as

Hyn=2(1—2a for (1—2)>4ebs(1+2%) 109)
Hpin=2(1-2a+4H for (1—2)<4ebi(l+2?)
where:
__—.__a N (1 — 2
4H= 8oLt [4e bas(1+2)—(1—2))°. (110)

The maximum height of Eq. 105 and the minimum height of Eq. 109 are now
substituted into Eq. 102 for the calculation of the reflection coefficient. The
result is,

Kr=12 for (1—2)>4ebu(l+2?)

. i—4H/4a (111)

—_ 2
K e=114Hja for (1—2)<4ebss(142).

When the first equation of the above is applied, the reflection coefficient by Eq.
102 agrees with the amplitude ratio of reflected waves to incident waves. When
the second equation of the above is applied, however, the reflection coefficient
by Eq. 102 is smaller than the amplitude ratio because of the presence of the
term of 4H/4a; the application of Eq. 102 to such a condition causes an under-
estimation of reflection coefficient.

3.2 Calculation of Apparent Reflection Coefficient

The surface displacement of partial standing waves to the third order ap-
proximation is given by the following equation:
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%=25 bos cos (kr—kr)x+{cos (krx—at)+1 cos (krx—at)}
+ebas{cos 2(krx—ot)+A* cos 2(krx—ot)}

+%e2 bu{cos(kix—at)+2* cos (krx—at)}
+%/sZ bss{cos 3(kix—ot)+ 2% cos 3(krx—at)}
+%2 e*bi{2cos (krx—ot)+cos (krx—at)}

+%Ze“‘ bss{cos [(2ki+ kr)z—3at]+1 cos [(2ka+ke)z—30t]}

+%2 e?bis{cos [(2kr— kr)x—t]+ 2 cos [(2kz—kr)x—ot]}. (112)

Since the wave numbers of incident and reflected waves are slightly different as
expressed in Eq. 90, the average of |k:| and |kz| is defined here as

B Skl + lhal) =k 1- 1+ X~ Ko | oo

With this average wave number, k; and kz are rewritten as

kr=k+ A
kr=—Fk+ 4, } (114)
where:
b=t BNEA K. (115)
The surface displacement is then expressed with & and 4« as
%ze bos cos 2kx +[cos (Rx—ot')+ 2 cos (kx+at’)]
+ebalcos 2(Bx—at’)+ 2% cos 2(kx +at’)]
+%<~:z bssfcos 3(kx—ot' )+ 2® cos 3(kx+ot’)]
_+%e2 bu[cos (kx—ot')+ 23 cos (kx-+at')]
.+%2 e bi[2 cos (kx—ot')+cos (kx +ot'))
+%2 &2 ba[cos (kx—3at’ —24wx)+ 2 cos (kx+3at’ +24xx))
+ lz et bis[cos (Bkx—ot’ +24ux)+ 2 cos (3kx+ ot —24u)], (116)

2
where:
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ot' =at—dux. 117)

The calculation of wave height at arbitrary location from the above equation
cannot be made in explicit form; it is possible only numerically or at special
locations. Several runs of numerical computation, however, have shown that the
maximum wave heights appear at kzx=#ur and the minimum heights at kx=
(2n+1)x/2 as in the case of small amplitnde waves. The term of 24xx in the
third order interaction causes some variation in wave heights at nodes and anti-
nodes. But the amount of this variation is rather insignificant, and can be ig-
nored unless the distance from the source of wave reflection is large. Therefore,
the wave height at kz=0 is taken as Hm.x and the height at kxr=x/2 as Huyn for
the calculation of apparent reflection coefficient in Eq. 102.

From Eq. 116 the surface displacement at =0 is obtained as

i

=ebos+ [(1 +2) +%e*(l+23)bu +";‘62 1 +2)(b1+b13)] cos gt
=0

=

+ebas(1+42%) cos 20t+%s”[(1 +2%)bss+ A1+ )bu] cos 3ot. (118)

Since the amplitude of the twice frequency oscillation in the above is not large,
the wave height at x=0 is calculated as

Heox

T=2(1+Z)+63(1 + 23)(b11+ bss)+&2 21 + 2)(b1+bis+ bsy). (119)
The first and second terms represent the sum of incident and reflected wave
heights. The third term represents the wave interaction effect. As in the dis-
cussion of Eq. (95), this term is always positive; hence Hn.x is greater than the
sum of incident and reflected wave heights.

The surface displacement at kx=mx/2 is obtained as in the following by ignor-
ing the term of 24ux:

z = A sin ¢t— B cos 2¢¢— C sin 30, (120)

a |\z=z/2k

where:
A=(=)+3el(1—29bu— 21~ b1 +buo)]
B=e(1+2) bas (121)
C=—;—eg[(l-—23)bss—2(l—2) buil.

At this location, the amplitude of the twice frequency oscillation can become
large enough to produce secondary crest at wave trough; in such a case, the
" lowest surface elevation occurrs between ¢{=x/o and 37/2¢. The examination of
secondary crest appearance is made by taking the derivative of Eq. 120 with
respect to ¢ and by searching the time of pmi as in the derivation of Eq. 108.
By this procedure the minimum wave height is obtained as

%:2(,%0) if p=pmnw at t=37/2¢ (122.1)
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%zA +2B+C+2[B+4C sin ¢t1] sin® ot
if P=7Pmn at I=h, (122. 2)
where:
sin oh=(— B+ /BT 9CT—3AC)/6C. | (129)

Equation 122.1 is applied under the following condition:

B*4+9C*—3AC<0

or
B!4+9C!—3AC>0, A—4B+9C>0,
+ > +9C> » 124) .
B—6C>0,
and J{or
B—6C<0 and 5(37/20)<y(t). ¢

When one of the above conditions is satisfied, the apparent heights of incident
and reflected waves are calculated as

H}:Zal:l +—;—e“'(bu—I—bas)—i-—%—e2 2}y +b13+b31)]
. ) : (125)
H}g=22a[1 +§'2252(b11+bss)+’—2“62(b1+b13+b31):|.

The third terms in the brackets of the above equations represent the effect of
wave interaction, by which the apparent reflection coefficient may increase by
up to 20% from the true value. This increase occurrs for a small value of re-
flection coefficient, however. Hence the increase of apparent reflection coefficient

1.0
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Fig. 2 Critical Reflection Coefficient for Finite Amplitude Effect
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in the absolute value is not large. .

When the condition of Eq. 124 is not satisfied, the minimum wave height is
given by Eq. 122.2; the value of Hy, is larger than 2(A+C). In this case, the
apparent incident wave height is larger than that given by Eq. 125 and the
apparent reflected wave height becomes smaller than that given by Eq. 125.
This causes the apparent decrease of reflection coefficient. For a structure of
high reflectivety at the relatively shallow water, Kz may become smaller than
K=z/2. The region in which Kz is smaller than Kg is approximately shown in
Fig. 2, which has been determined by numerical analysis. For the data below
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Fig. 3 Apparent Reflection Coefficient and Incident Wave Height for 2/L4=1.0
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the curve corresponding to the specific value of %/L., the reflection coefficient
determined by means of Eq. 102 will be a little larger than the true value, but
the difference will not be large. For the data above the curve, some correction
to the calculated value of reflection coefficient will be necessary in order to esti-
mate the true value.

The incident wave height calculated by means of Eq. 101 also needs a cor-
rection, especially for the data in the region of Kz<Kz. If the maximum wave
height is approximated with
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Fig. 4 Apparent Reflection Coefficient and Incident Wave Height for h/L,;:O.Z
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Hpox=1+Kg)H; (126)
by ignoring the wave interference effect, then the apparent indident wave height

can be related to the true height as

1+ Kz

H,= 1+ K%

H; 127y

The ratio of H;/H; may become greater than 1.5 in certain cases.

1.5 2
L 5
NS
1
h/La= 0.15 o
Hil.4 2 S
Hr QO
/ S
1.3 £

1.0 3 — >
"0 01 02 03 04 05 06. 07 08 09 10
KR
1.0 I l
\, h/La=0.15
09 |—
’ \ \
Ke ~—~
08 \\‘ E
S~ \\\QO
07 T~ iy
06 : ol T |
- =0.6] ~—— —— —
\\ — P ——
o5 o5 \\\\‘ —t—)
. T
. 0.4
0.4
0.3
03
0.2
02
0.1 0.1
)
o0l 002 003 004 005 006 oo7 008
Hi/La

Fig. 5 Apparent Reflection Coefficient and Incident Wave Height for 5A/L4=0.15
— 33 —



Yoshimi GoDA and Yoshiki ABE

" The calculation of Kz and H; from the measured values of Kz and H; is
almost impossible even numerically, although the reverse is possible. Therefore,
the apparent values of Kz and H; have been computed for various values of
Kz, Hi/L4, and h/L4 and plotted in Figs. 3 through 8, which are prepared for the
relative depth of #/L4=1.0, 0.2, 0.15, 0.12, 0.10 and 0.08, respectively. The upper
part of each figure shows the ratio of H;/H; against the apparent reflection
coefficient K with the parameter of incident wave steepness H;/Ls. With
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Fig. 6 Apparent Reflection Coefficient and Incident Wave Height for 4/Ls=0.12
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several repetitions of interpolation, the actual height of incident waves Hr will
be estimated from the measured values of Kz and H;. The actual value of re-
flection coefficient Kz will then be estimated from the lower part of the figure.

15— ha =01 ——— 3 23’
S

/ g
Xo
/// /s ,5 Ve ARVARN
1o A [
0 01 02 03 04 05 06 07 08 09 10
KR
1.0
09 \
W L N\ n/La=0.l
0.8 AN
NN
NN
3 N
SIAANY
06 —1— I SN
ANASNNS
05 — I B O]
\\ \\ o8 Q\\_\
04 ~~os ~ T~
| B e Vi e e
0_'3 T ——
03 T
02
0.2
0.1
ol
0
o 0.0l 002 0.03 004 005 006 007
Hi/La

Fig. 7 Apparent Reflection Coefficient and Incident Wave Height for 2/L4=0.10
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Fig. 8 Apparent Reflection Coefficient and Incident Wave Height for %/L,=0.08

3.3 Apparent Coefficient of Perfect Reflection

The most sigrificant effect of finite amplitudes on reflection coefficient is ob-
served in the case of perfect reflection, in which the reflected wave height is
equal to the incident wave height. Since 2=1 for perfect reflection, the wave
numbers of k; and kr are equal to k2 and the surface displacement is given by
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Eq. 92. At the nodal point of x=n/2%, the surface displacement becomes

showing the twice frequncy oscillation. The apparent coefficient of perfect wave
reflection is calculated as in the following, since Hmsx is given by Eq. 94 and
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2ebag
14eba +-§-5“(bu +bss+b1+4bs1+bs)

Kr=1— (129)

As seen in the upper part of Fig. 9 which shows the variations of K% for vari-
ous values of %/L4 and Hi/L., the decrease of Ky from 1.0 is very large for
waves of large steepness at relatively shallow water.

The apparent coefficient of perfect wave reflection can be calculated more
accurately with the theory of standing waves of higher order approximation.
According to the fourth order approximation!®, the surface displacement at z=
w/2k has the fourth harmonic component of oscillation as in the following:

—Z—= [—eboz—%es(bﬁﬁbu)] + [ —Ebzz-l-%‘es(b;z-i-bu)] cos 2¢t

+%83(—b42+b44) cosdat (130)

where:
by = 6%1( —27¢%+288¢° +168c—210c! —45¢3418¢~%)

b;2=6—14(--—8109 —54¢7+423¢*—583¢* +108c—195¢ ! —18¢~%)

—_ ___1____ — Y 5 3 __ —1

b= g gosy (— 816~ 1053+ 63~ 283c +282¢Y)
1 (131)

oy = (547 +243¢5 +198¢"+6c— 198c+63c* +18c9)

IS SN 5115265 —
b= gy oy (3240 + 24840~ 11526~ 2072

+1092¢! +420c8—72c%)

__i_.___ 9 7 5 3 —1

bu =g oy 056"+ 816" +5220 2620 +c+-21c™)

The fourth order terms of (by+b2) and (—bsu+bu) generally act to decrease the
wave height at this location. Therefore, the decrease of Kz from 1.0 is a little
smaller than that calculated by Eq. 129 of the third order theory. The result
of numerical calculation for Kz by the fourth order theory is shown in the lower
part of Fig. 9. The comparsion of the lower and upper parts of Fig. 9 indicates
the improvement in accuracy is about 0.1 at most in terms of K. The differ-
ence of Kz in Fig. 9 may be taken as a guide to make a better estimate of Kz
with Figs. 3 to 8.

3.4 Discussion of the Subtraction Method

Murota and Yamada® have reported a direct recording of the profile of re-
flected waves from a sloping board with varying angle in the following way. As
shown in Fig. 10, they separated a test channel into two with a partition wall.
A model structure for which the reflection coefficient is to be measured is located
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Fig. 10 Channel Arrangement for the Subtraction Me.thod

at the center of one channel, A. A parallel-wire resistance type wave gauge is
set at an arbitrary distance from the model; the surface displacement of partial
standing waves is obtained with this gauge. Another wave gauge is set at the
same location of the other channel, B, in order to obtain the surface displace-
ment of incident waves in phase. The output of the gauge B is subtracted in
an electric circuit from that of the gauge A so as to yield the surface profile of
reflected waves.
) This method has two problems to be examined. One problem is the linearity
of calibration curves of both the wave gauges and of the subtraction circuit.
This is rather of electric performance; hence this will not be discussed in this
report though it is important one. The other problem is the applicability of
linear operation to partial standing waves. If the partial standing wave system
were a simple superposition of incident waves and reflected waves, the subtrac-
tion of incident wave profile from partial standing wave profile would yield the
profile of reflected waves. As seen in the preceding chapter, however, the inci-
dent and reflected waves interfere each other and produce bound waves as well
as changes in wavelengths.

If we limit our discussion to the second order approximation or to the case
where wave amplitude is not so large, the wavelength of incident and reflected
waves is considered unchanged. The difference of surface displacements in the
channels A and B is obtained as

norr=7ns—nr=a Acbos COS 2kax
+ 2a{cos (kax+0t)+ e bas cos 2(kax+0t)}. (132)

The bound waves appear only as the variation of mean water level as indicated
by the first term of the above equation. The second term is exactly the expres-
sion of reflected waves to the second order approximation; hence the subtraction
method is justified to this order of approximation.

If the wave amplitude is not so small, the change in wavelength caused by
the wave interference effect must be considered in addition to the presence of
bound waves. The subtraction of incident waves from the partial standing waves
of Eq. 112 yields the following:

yorr=nr+nr+ 41, - (133
where:
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“ 7r=2 a{ <1 +%ez b11> cos (krx—0at)
+2¢bas cos 2(kxx—at)+%2“ &%b3;s cos 3(knx—at)}
nr=2ab COs (kz—kx)x+%laszb1{2 cos (krx—at)+cos (krx—at)}

+%2052b31{cos [(2k: + kr)x—30t]+ 4 cos [(2kr+ki)x—30t]}
(134)

+%2ae”bls{cos [(2kr—kr)x—0t]+ 2 cos [(2kr—kr)x—0at]}
dpi=a (1 +%e’bu) [cos (krx—at)—cos(k;x—at)]

+ aebys[cos 2(krx—ot)—cos 2(k;x—at)]

+ —lz—aezbsa[cos 3(kix—ot)—cos 3(k;x—ab)],
with:

k}:kA[l—%e’Kl:' for incident waves without interference

1 (135)
k;:kA[1——2—ez(K1—zsz)] _, j
after interference by reflected waves.

The presence of bound waves y7r increases the height of yorr by about 15% at
most. The magnitude of the effect of bound waves is approximately represented
by Eq. 95, which is originally for the increase of standing wave height. The
term of 4y represents the effect of wavelength change of incident waves. If the
change in wavelength is denoted with 4; or kr=Fk;+ 45, then 4y is rewritten as

2
+éebas sin 4,z cos 2(kix—at+6s)

A>71=2a{ (1 +%s*bu) sin Az cos (krx—ot+61)

+%e”bas sin %A;x cos 3(kix—ot+ 03)} (136)

where:
, 1
Ak=—2“12 ek K;
137)

p —tan-l[ sin ndix ]
=

1—cos ndwx

For a small value of z, the following approximation is possible by taking the
terms of ¢ up to the second power

dpr=adix cos (krx—at+6:) (138)
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The above equation shows the increase of the amplituce of 4y with x. This
suggests for the subtraction method that the wave gauge should be located as
near as possible to the source of wave of wave reflection so as to minimize the
effect of wavelength change on »pir. If the deep water waves with Hi/L.=0.06
reflected totally and measured at r=L is considered as an numerical example,
the amplitude of 4y is calculated as 0.4a. The effect of 4y will not be so seri-
ous at relatively shallow water as in deep water, because the wavelength change
due to wave interference is relatively small at shallow water as expected from
Fig. 1. The presence of 4y, however, will cause some error in the determina-
tion of reflected waves; the value of reflection coefficient greater than 1.0 re-
ported by Murota and Yamada may have been produced by this effect.

4. Experimental Verification of Apparent Reflection Coefficient

4.1 Experimental Apparatus and Test Waves

In order to investigate the validity of the calculation for the apparent coef-
ficient of wave reflection, experiments have been carried out for the reflection
coefficient of a vertical wall and energy dissipators of horizontal wire-mesh
screens.

A wind-wave channel of 22m long, 0.6m wide and 0.8 m deep, glassed in
both sides, was used for the test (the wind blower was not used in this test).
The channel is equipped with a vertically-oscillating flow type wave generator!s16
as shown in Fig. 11. The wave paddle is a horizontal plate, which moves up
and down in a vertical slot of 40cm wide. The wave generator has the unique

4.7m . 16.3m _1.Om

103m ,

Sim Vertical wall
- - $_A B I c 4D \
by Z

= - ’
Absorbér i 6 o h =40cm ° o S A
TWove Generator

j !
‘Absorber for

Calibration Test

NS

Fig. 11 Sketch of Test Channel

characteristics of non-reflectivity because no vertical member of wave paddle is
present. Waves reflected from a model structure placed in the channel pass
over the generating area and are dissipated at the wave absorber at the oppo-
site side of the channel. The wave absorber is a mound of milling scraps of
stainles steel with a slope of 1 to 10, covered with one layer of crushed stones.

Wave profiles were measured with two wave gauges of capacitance type and
recorded on a pen-writing oscillograph. The head of capacitance type gauge is
a polyvinyl-formal wire of 25cm long with the diameter of 0.77 mm; another
wire of 30cm long with the diameter of 0.22mm was also used for the other
wave gauge. The calibration curves of these gauges were linear in the range
of +10cm; beyond that a slight non-linearity appeared.

A vertical wall made of painted plywood was set at the distance of 16.3m
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from the center of wave paddle. For the experiment of partial reflection, an
energy dissipator composed of horizontal wire mesh screens was placed in front
of vertical wall. The screens are made of stainless steel wires of $19 (0.91 mm
in diameter) in 5-mesh and stretched to frames of 56 cm x 38 cm, made of 9 mm
round bars. With 8 or 15 screens at the average spacing of 5.6cm or 2.8cm,
the dissipator was 42 cm high, 57 cm wide and 40 cm long. Figure 12 shows the
front view of the dissipator.

¢l e

Fig. 12 Front View of Energy Dissipator

The waves employed in the experiments were calibrated before the set-up of
the vertical wall. For this measurement, an absorber of milling scraps with the
slope of 1 to 10 was placed at the end of channel. Table 1 shows the wave
heights measured at the stations of A, B, C and D, shown in Fig. 12 as well as
the estimated height of incident wave to the vertical wall.” The waves are re-
ferred to with the half-stroke of wave paddle e¢. Each height in Table 1 is the

Table—1 Results of Wave Calibration Test

(sfc> em) | A gl (em), D (Zﬁ HiLa
125 | 5.0 | 400 3.55 4.03 3.54 3.67 | 0.0179
7.5 | 5.80 5.5 6.00 5.35 5.48 | 0.0269
0.0 | 7.50 7.75 7.60 7.10 7.26 | 0.0354
125 | 950 9.25 9.20 9.20 9.04 | 0.0440
15.0 |11.25 11.35 11.40 11.10 | 10.90 | 0.0542
2.5 | 5.0 | 2.70 250 2.40 2.50 2.43 | 0.0061
7.5 | 4.05 4.10 3.57 4.05 3.79 | 0.0095
10.0 | 5.40 5.15 5.00 4.90 4.91 | 0.0123
125 | 6.70 6.45 6.50 6.40 6.26 | 0.0156
15.0 | 835 7.90 8.10 8.00 7.77 | 0.0194
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average of 5 runs, each for 10 consecutive waves. Small variations of wave
heights at four stations are considered as those inherent in wave tests. Since
some decrease of wave height due to frictional damping at side walls and bot-
tom is expected, the incident wave heights were estimated from the distributions
of wave heights at A through D with the wave damping being taken into con-
sideration. The period of test waves was set to 1.25 and 2.15 seconds. At the
water depth of =40 cm which was kept constant during the experiments, these
periods yield the first order wavelengths of L.=205 and 401 cm, or %2/L,=0.195
and 0.100.

4.2 Total Wave Reflection from a Vertical Wall

(1) Examination of total reflection by a vertical wall

In the experiment of Greslou and Mahe®, a vertical wall showed a gradual
decrease of reflection coefficient from 1.0 to 0.88 with the increase of deep water
wave steepness up to Hy/L,=0.05. Since this is contrary to the concept of total
reflection by a vertical wall, the examination of total reflectivity was carried out
as the first of the experiments.

The best way to measure the reflection coefficient is to record the reflected
waves directly. By making use of non-reflectivity of the wave generator of the
channel, we have employed a special method which is described in the following;
this will be called the wave tail method in this report. Let us consider the case
where we operate the wave generator for a large number of cycle and then
switch off. A wave gauge is supposed to be set at A. In the biginning before
the wave front is reflected from the vertical wall, there is only the system of
incident waves. As the reflected waves come back, the zone of standing waves
is extended toward A. Until the arrival of the reflected wave front, the wave
record will show a constant wave height, which will be taken as the incident
wave height. After the arrival, the wave height changes to that of standing
waves, the value of which is dependent upon the phase difference between inci-
dent and reflected waves. Since the present wave generator does not reflect the
retrogressive waves, the system of standing waves will prevail without change
due to re-reflection from the wave paddle. After the generator is switched off,
the train of incident waves moves out with the group velocity, leaving the train
of reflected waves behind its tail. When the tail of incident wave train arrives
at the vertical wall, all the incident waves have been transformed to reflected
waves. Hence the wave record at A after the passage of incident wave train
can be taken as that of reflected waves.

Since actual wave records show gradual increase of wave heights in the be-
ginning as well as some variations as shown in an example of Fig. 13, the aver-
ages of the 3rd to 10th waves for 7=1.25 seconds and of the 2nd to 5th waves
for T=2.15 seconds were taken as the incident wave heights. The wave paddle
was operated for 50 cycles T=1.25 seconds waves and for 30 cycles for 7=2.15
seconds waves (Fig. 13 is a record of preliminary test for 7=1.25 seconds waves
with 30 cycles operation). At the rear of wave records, the passage of incident
waves was clearly recognized by both the change of wave height and the calcu-
lation of travel time from the wave generator to the wave gauge. Consecutive
records of 10 waves for T=1.25 seconds and of 5 waves for T7=2.15 seconds were
utilized to calculate the height of reflected waves. The reflection coefficient was
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Fig. 13 Example of Oscillograph Record in the Wave Tail Method




Apparent Coefficient of Partial Wave Reflection

then calculated as the ratio of the average height of reflected waves to that of
incident waves.

In the present test, wave gauges were set at the stations A and B. The
measurement was repeated five times for waves of e=5, 10 and 15cm with the
periods of 1.25 and 2.15 seconds. The average of the reflection coefficient for
each wave varied from 0.81 to 0.94 as shown in Table 2. The station B tends
to give smaller values than the station A for 7T=2.15 seconds waves; this seems
to have been caused by a small amount of wave reflection from the generating
area.

Table—2 Reflection Coefficient of Vertical Wall
by Wave Tail Method

K meas HH
(sec) | (cm) pmms ATy Kz

1.25 5 0.846 0.852 0.910 0.918 0.930
10 0.856 0.829 0.908 0.916 0.925
15 0.829 0.941 0.906 0.914 0.973

2.15 5 0.890 0.813 0.943 0.946 0.902
10 0.849  0.811 0.941 0.945 0.879
15 0.886  0.825 0.939 0.943 0.908

Note: 1) HJHy is for the travel distance of 26.4 m for A and
24.2m for B. ’
2) Kgz is the average of corrected values at A and B.

The results of Table 2 need to be corrected for the wave height attenuation
due to the fricitional damping at the side walls and channel bottom. According
to Iwagaki et al’»!®., The wave height attenuation in a wave channel with the
width of B is calculated as

H=H, exp (—€+wz/L), (139)

where:

o
e,,ﬂ,=4—’£- 1’;7:(1+%> / (sinh Eh+kh),

¢=(kB/sinh 2kh){1—(1.086 sech k2 +0.197)*} (140)
e*=(wHJL)/sinh kh
v:kinetic viscosity of water.

Since the reflected waves recorded at A and B had traveled twice the distance
between the vertical wall and the wave gauges, the attenuation rate of reflected
wave height is calculated for the distance of £=26.4m for A and x=24.2m for
B and is shown in the column of H/H, of Table 2. The effect of wave ampli-
tude represented with the term of ¢* is shown to be very small in the present
test. The measured values of reflection coefficient are then divided with the
attenuation rate of H/H, so as to yield the actual reflection coefficient of the
vertical wall, which is listed as Kz in Table 2. By this procedure, the reflection
coefficient was estimated as Kg=0.90 for T=2.15 second waves and Kzr=0.94 for
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T=1.25 seconds waves regardless of the wave amplitude. These values of re-
flection coefficient smaller than 1.0 seems to have appeared by the insufficient
correction for wave attenuation. The actual wave attenuation in a wave channel
is reported to be larger than the calculated value of Eq. 139 by the amount of
20 to 30% in the average in terms of €+,'"'!%; some data show the value of
more than twice the calculated one. The distribution of incident wave heights
listed in Table 1 suggests the stronger attenuation for 7=2.15 seconds waves
than for 7T=1.25 seconds waves, even though the calculation by Eq. 139 predicts
the opposite. The irregularity of side walls at the junctions between the glasses
and supporting frames is also considered to have caused additional damping.
Therefore, the vertical wall tested can be regarded to have the reflection coef-
ficient very near to 1.0.

(2) Apparent reflection coefficient of a vertical wall

The reflection coefficient of the vertical wall was also measured with the
conventional method of Healy’s one. A wave gauge was fixed at the distance of
lcm from the wall for the measurement of Hn.x and another gauge was set
around the first nodal point of a quater wavelength from the wall for the
measurement of Hni,. The latter gauge wave moved every 1cm in the range of
+3cm from the quater-wavelength point. The wave height at each location was
calculated from the record as the average of consecutive 10 waves, and the
minimum value of average wave height among the measured heights around the
nodal point was taken as Hmin. The wave height in front of the wall was taken
as H..x. The apparent heights of incident and reflected waves were then calcu-
lated by Eq. 101 and the apparent reflection coefficient by Eq. 102. The results
are listed in Table 3.

Table—3 Apparent Reflection Coefficient of Vertical Wall
by Healy’s Method

T=1.25sec T=2.15sec
e
(cm) Hpax Hmin K’ Hmax Hmnin K’
(cm) (cm) R (cm) (cm) R

5.0 6.90 0.68 0.821 4.70 0.51 0.804
7.5 11.20 0.75 0.874 7.00 0.93 0.765
10.0 14.65 1.55 0.809 | 9.55 1.50 0.729
12.5 17.65 2.31 0.769 12.70 2.27 0.697
15.0 23.46 2.75 0.790 14.85 2.75 0.688

It is seen in Table 3 that the apparent reflection coefficient decreases as the
wave amplitude increases; the decrease is greater for 7=2.15 seconds than for
T=1.25 seconds. This tendency is well predicted with the present theory as
shown in Fig. 14, where the data of K are compared with the calculated values
for the case of total reflection (In the range of wave steepness tested, the third
and fourth order theories give almost the same value of Kz). The increase of
apparent incident wave height also agrees with the theory as shown in Fig. 15,
although the data show some scatter owning to the difficulty to estimate the
height of incident wave accurately. The increase of standing wave height pre-
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dicted by Eq. 95 could not be recognized clearly, possibly because of the small
amount of increase for the range of experimental condition.

1.0
\
09 \\ \
\\ \\
o
08 |—+ 0
Ki +\\ o T~
Y\
0.7 e
NF
\\ Theory Exper.
— O T=1.25sec
06 ——— 4 T=2I5sec™ |
[ 1|
(o} 0.02 0.04 0.06 008
Hi/La

Fig. 14 Apparent Reflection Coefficient of a Vertical Wall:
Theory and Experiment
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12 - /.‘l' 0/
{ + "
=Ll /., /( o
T + v
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D /. o+
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' © T=l.25sec
——— 4+ T=2I15sec
09 ] ! I
(o] [o1e]] 0.02 003 004 005 006
Hi/La

Fig. 15 Increase of Apparent Incident Wave
Height

Another verification of the theory is exhibited in Fig. 16, where the wave
records at different locations are compared. As the wave gauge is moved from
the front of the wall (x=1cm) toward the nodal point, the second harmonic
oscillation becomes visible. The records at x=50cm for 7=1.25 seconds and at
z=100cm for T=2.15 seconds have been transformed into twice frequency oscil-
lations. Figure 17 shows the variation of wave height with respect to the dis-
tance from the wall for the waves shown in Fig. 16. The solid lines represent
the theoretical envelopes for the incident wave heights listed in Table 1. The
wave envelopes by the small amplitude wave theory are shown with dash-dot
lines. For the case shown in this figure, the difference between the finite and
small amplitude theories is small except for the neightbourhood of the nodal
point. The experimental data, however show better agreement with the finite
amplitude theory than with the small amplitude theory.
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Fig. 17 Variation of Wave Height in front of a Vertical Wall

4.3 Partial Wave Reflection from Energy Dissipator

Tests were also made for the case of partial wave reflection from the energy

dissipator described in Section 4.1.

10, 15cm were employed in the test.
First the wave tail method was applied in order to investigate the actual

value of reflection coefficient of the energy dissipator.

Wave of T=1.25 and 2.15 seconds for e¢=S5,

Two wave gauges were

Table—4 Reflection Coefficient of Wave Dissipator by Wave Tail Method

T e With 8 screens With 15 screens
(sec) (cm) A B Kx A B Kx
1.25 5 0.681 0.670 0.740 0.562 0.553 0.610

10 0.539 0.523 0.658 0.471 0.484 0.524
15 0.504  0.543 0.576 0.361 0.419 0.428
2.15 5 0.919 0.822 0.922 0.880 0.746 0.861
10 0.877  0.726 0.849 0.768  0.752 0.806
15 0.811 0.731 0.818 0.751 0.703 0.772
Note: 1) Colums of A and B list the measured values of Kg at the

stations A and B.
2) Kg is the average of corrected values at A and B.
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set at the stations A and B, and the wave records were analysed in the same
way as described before. The results are shown in Table 4. As for the case of
total reflection, the reflection coefficient listed in Table 4 has been corrected for
the wave attenuation with the ratio of H/H, listed in Table 2 and averaged for
the stations A and B. Although the attenuation rate of Table 2-is considered to
be smaller than the actual value, the absence of positive data for’ the appropriate
correction supported the adoption of the above value.: Different from the case of
vertical wall, the reflection coefficient of the energy dissipator employed decreases
as the wave amplitude increases. Such a tendency is considered as character-
istic to the energy dissipator of screen types, since a similar tendency has been
reported for the dissipator composed of vertical screens with theoretical analy-
sis!®. ' ’

The reflection coefficient of the énergy dissipator was then measured by means
of Healy’s method. The measurement was carried out in the same way as de-
scribed in the previous section; this time, the wave gauge for Hn.. was stationed
at the second anti-node of a half wavelength away from the vertical wall. Table
5 lists the result of measurement. It is seen from the comparison of Tables 4

Table—5 Reﬂection Coefficient of Wave Dissipator by Healy’s’ Method

With 8 screens With 15 «séreens
T . e .
(sec) | fem) | Hlows Hoin | Ky Ko | (s (S| Ki o |Ea)e
1.25 5 6.81- 0.87 | 0.773 | 0.78- | -5.88. .1.46- | 0.602 | 0.60

10 12.48 2.08 | 0.716 | 0.75 | 11.34 3.47 | 0.531 | 0.52
15 18.18 4.99 | 0.570 | 0.56 | 15.99 6.06 | 0.449 | 0.42

2.15 5 4.4 0.52 | 0.790 | 0.84 4.20 0.63 | 0.739 | 0.77
10 9.13 1.57 | 0.706 | 0.86 9.08 1.69 | 0.686 | 0.80
15 13.57 2.99 | 0.639 | 0.87 12.24 3.18 | 0.588 | 0.75

1 ]
% With 8 Screens With 15 Screens
el 0.9

R N Kr
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Fig. 18 Reflection Coefficient of Screen Type Energy Dissipator
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and 5 that the apparent reflection coefficient for the waves of 7T=1.25 seconds is
almost the same with the actual reflection coefficient estimated by the wave tail
method, while the apparent coefficient for the waves of 7=2.15 seconds is much
smaller than that by the wave tail method. Referring to Fig. 2, this is explained
as such that the reflection coefficient of 7=1.25 seconds belongs to the region of
Kz =Kz, while the data of T'=2.15 seconds waves belongs to the region of Ky <
K. The apparent reflection coefficients of Table 5 were then plotted in figures
similar to Figs. 4 and 7 in order to estimate the true values of reflection coeffi-
cient by interpolation. The reflection coefficients of the energy dissipator thus
estimated are listed in Table 5 as (Kr)es: and shown in Fig. 18 against the wave
steepness. The reflection coefficient by the wave tail method and that by the
corrected Healy’s method for finite amplitude effect are seen to agree each other
in Fig. 18; the difference is less than 0.09 in terms of Kz. The agreement is a
good indication of the validity of the present theory.

Another test of the present theory has been made for the estimation of inci-
dent wave height. Since the apparent incident wave heights are calculated by
Eq. 101 in Healy’s method, they are listed as H; in Table 6 for all the experi-
mental data. The estimation of incident wave height is also possible with the
aid of Figs. 3 to 8 from the data of Kz and H; without any knowledge on Kz
and H;. The estimation has been made for the same data and the results are
listed in Table 6 as (Hi)e:. Another estimation on the basis of standing wave
height with the aid of Eq. 95 has been made, too, as shown in the last column
of Table 6. It is clear in Table 6 that the estimated heights of incident waves
(Hr)es are almost the same with those by wave calibration test, whereas the
values of H; themselves deviate from H; with the increase of the reflection coe-
fficient or with the increase of wave steepness. The result of Table 6 shows
that the incident wave height if calculated by Healy’s method should be corrected

Table—6 Apparent and Estimated Heights of Incident Waves

T e HV HI, (cm) (Hl)est. (Cm)
(sec) | (cm) | (cm) ) @) ®) ) @ ® @
1.25 5.0 3.67 3.79 3.84 3.67 3.71 3.80 3.67 3.43
7.5 5.48 5.97 — — 5.55 — — 5.53
10.0 7.26 8.10 7.26 7.40 7.29 6.98 7.38 7.18
12.5 9.04 9.98 — — 8.79 — — 8.56
15.0 10.90 13.05 11.04 11.02 11.05 10.72 10.98 11.19
2.15 5.0 2.43 2.60 2.48 2.42 2.50 2.41 2.39 2.35
7.5 3.79 3.97 — — 3.67 —_ _ 3.48
10.0 4.91 5.53 5.35 5.38 4.93 4.86 4.98 4.74
12.5 6.26 7.49 — — 6.29 — — 6.25
15.0 7.77 8.80 8.28 7.71 7.30 7.14 7.08 7.27

Note: 1) Incident wave height estimated in wave calibration test and listed
in Table 1.
2) (1), (2) and (3) represent the cases of no dissipator, dissipator with
8 screens, and that with 15 screens, respectively.
3) (4) represents (Hi)ess. from the data of standing wave heights.
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for the finite amplitude effect with the aid of Figs. 3 to 8 or by numierical cal:
culation. A simple use of Eq. 101 for incident wave height will result in an
overestimation of considerable magnitude if the reflection coefficient of. a test‘
structure belongs to the region of Kz<K= shown in Flg 2.

5. Conclusions

From the theoretical analysis and experlmental 1nvest1gat10n descrlbed herem,
the following conclusions can be made:

1) The interaction of progressive and retrogresswe waves of finite amph-
tudes causes the shortening of wavelengths and increase of wave heights for
both waves. The standing wave height is therefore a little larger than twice
the incident wave height. FRNE .

2) The nodal point of standing waves has the oscﬂlatlon of tw1ce frequency,
chiefly owning to the second harmonic component of 1n01dent waves of finite
amplitude.

3) The presence of the higher harmonics in incident waves and the forma-
tion of bound waves by the wave interaction nulify the vahdlty of Healy’s
method for the measurement of reflection coefficient for a structure of high re-
flectivity. .-

4) The resolution of incident and reflected waves from a partial standing
wave system by means of Healy’s method should be ‘done with- due correction
for the finite amplitude effect; Figs. 3 to 8 will fascillitate the procedure of cor-,
rectlon -
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List of Symbols

first order amplitude of surface elevation

time function for the (r+1)th order perturbation of velocity potential
coefficient of elevation

width of channel

time function for the (r+1)th order perturbation of velocity potential
abbreviation for coth 2k (Eq. 42 or 75)

correction factor to wave frequency due to finite amplitude effect of pro-
gressive waves (Eq. 52)

correction factor to wave frequency due to third order interaction be-
tween progressive and retrogressive waves (Eq. 85)

half-stroke of wave paddle

acceleration of gravity (=980 cm/sec?)

water depth

wave height in general

incident wave height .
apparent incident wave height calculated by Healy’s method (Eq. 101)
deep water wave height or initial wave height

reflected wave height

apparent reflected wave height calculated by Healy’s method (Eq. 101)
wavh number in general (=2x/L) ‘
average of incident and reflected wave numbers (Eq. 113)

correction factor to wave number corresponding to C: (Eq. 60)
correction factor to wave number corresponding to Cs (Eq. 91)
reflection coefficient (= Hz/H;)

apparent reflection coefficient calculated by Healy’s method (Eq. 102)
wavelength in general

integer (0, 1, 2, -::)

integer (0, 1 or 2)

time

wave period

horizontal coordinate

vertical coordinate measured upward from the still water level
superscript referring to the (r+1)th order perturbation

subscript referring to the value of small amplitude wave

subscript referring to bound waves

subscript referring to incident waves

subscript referring to reflected waves

subscript referring to standing waves

coefficient of non-periodic term of velocity potential

coefficient of velocity potential

difference in wave number (Eq. 115)

parameter related to wave amplitude (=ka)

parameter related to amplitude effect in frictional damping (Eq. 140)
wave height attenuation factor (Eq. 140)

vertial displacement of the water surface measured from y=0

phase angle
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A . ratio of retrogressive to progressive-wave amphtudes in the first order

approximation _ :
y : Kkinetic viscosity of water ' : ‘
z : constant (3.14159.-.) '
¢ : angular wave frequency (2xn/T)

09, 01, 03: first, second, and third order perturbation to angular wave frequency
7 : non-dimensional time (Eq. 10) SR

@ : velocity potential

¢ : channel width factor in frictional damping (Eq. 140)

Appendix: FORTRAN PROGRAM for the Caiclilation of

Pratial Standing Waves
FORTRAN 'LIST 66/12

A

1 10000 € SURFACE pROFILE oF pARTIAL STANDING WAVES
2 10000 C ) : o . APRIL 1968» - Y,GODA
C PROGRAM UNITS(s)» MAIN» EPSLON AND HEIGHT ’ T
3 10000 C - .
4 10000 DIMENSTON REF(10?,x(12),Dx(12),T(387,0052p(12),5IN2D(12) ’
1 co<17(3’).cosdrt57)'00531(37).51~11(57)nsru27(37>-SIN5r(37).
2 COS1X(12),C0S2X(12),C0S3X(12),SIN1X(12),SIN2X(12),SINSX(12),
3 sURFEL(o7.12).Hf(12).Axxcxzy
5 10000 DIMENSION H(21) )
6 10000 € 4
7 10000 READ 1n00»(X(M)»M=1512) N
8 10025 1000 FORMAT(12F5.2)
9 10025 100 DO 101 M=1,12
10 10027 AKX(M)=3.141592654X(M)/180.
11 10045 COS1X(M)=COSF (AKX{(M})
12 10062 COS2X(M)=2,#COSLX(M)#m2-1,
13 10102 COSSX(M)=4,@COSLX (M) ##3-5. #COSLX (M)
14 10132 SINLX(M)SSINF(AKX(M))
15 10147 SIN2X(M)=2,%COSLX (M) #SINLIX(M)
16 10172 SINSX(M)=-4«#SINLX(M)#uS+3,#SINIX (M)
17 10223 101 CONTINUE
18 10233 T(1)=0.0
19 10240 102 DO 103 L=1,97
40 10242 ~ COSAT(L)=COSF(T(L))
21 10257 COS2T(L)=2,%COSLT(L) wa2-1,
22 10277 COS3T(L)34,%COSLT(L)##3-3,#COSL1T(L)
23 10327 SINLT(L)SSINF(T(L))
24 10344 © SIN2T(L)=2,#SINIT(L)#COS1T(L)
25 . 10367 . . SINST(L)I=-4+#SINLT(L)®n5+S,#SINLT(L)
26 10420 TOL+1)=T(L)+6.2831853/36,
27 10436 103 CONTINUE
28 10446 € .
29 10446 READ 1ng1» KREF .
30 10454 1001 FORMAT(I2) -
81 10454 READ 1002,(REF(I),I=1,KREF) -
32 10501 1 READ 1003, DLA,HLA,DELHLA,KHLA
83 10515 IF(DLA) 99,99,2

o4 10521 1002 FORMAT(10F5+2)
35 10521 1003 FORMAT(3F10.5,110)
86 _ 10521 2000 FORMAT(1H1,91HSURFACE PROFILE OF PARTIAL STANDING HAVES 117y
37 10521 ¢ :

38 10521 2 TANHL=TANHE(6,2832%pLA)

89 10525 PRINT 1000, ¢X(M),M=1,12)

40 10552 PRINT 1001,KREF

41 10560 PRINT 4002,(REF(I),L=1,KREF)

42 10605 PRINT 4003,ULA,HLA,DELHLA,KHLA

43 10621 TANH2=TANH1 ##2 N
44 -10625 - COTH1=1./TANHL. . .
45 10630 COTH2=COTH1##2 .

46 10634 COTH4=COTH2#e2

47 10640 BO2=( TANH1+COTH1)#0.5

48 10644 B14=(3,#COTH4+8,C0TH2-Y.)/8.

49 10655 B223COTH1# (9, #COTH2~1.)/4.

50 10663 B33=(9,wCOTH2#COTH4~3.#COTH4+3 ,#COTH2-1.)#3,/32.
51 10702 B1=(-COTH2+2.+TANH2) /4,

52 10710 B315(-3,*COTH4-18,#C0OTH2+5.)/32,
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B8132(9,#COTH4+27 . #COTH2-15.+TANH2+2 . #TANH2##2) #5,/32,
AK13{9,#COTH4-10,#COTH2+9,1/4./(1,+6,28328DLA®(COTHL~TANH1))
AK125(9.#COTHS-8,#COTH2+21 . +2. #TANHZ) /(L ++6.2832#DLA®#{COTH1-TANH1)
1 )/32.

H(1)=HLA

DO 201 J=1,KHLA

HLASH(J) .
EZEPSLON(3,141590HLA, (B11+B33+AK1)#0,.5)
EE=E~E

DO 301 I=1,KREF
ELEEPSLON(3+141598HLAMREF (I)»(B11+4B53¢AK1)#0.5)
ALAMZEL/E

AK3SAK12#EE* (1, ~ALAMS®2)

DO- 21 M=1,12

DX(M)==2 . #AKSHAKX (M)
COS2D(M)=COSF(DX(M))
SIN2D(M)SSINF(DX(M))

CONTINUE

PRINT 2000

PRINT 2001,ULA,HLA,REF(I),EsALAMsAKS

PRINT 2002, (X(M),M=1,12) .
FORMAT( 5X»0HD/LA = F7.4s5Xs6HH/LA = F7.4,5Xs6HREFK 8. F704,. 8%
4. SHE = F7,4,5X,6HALAM 5 F7.4,5X,6H Ak3 .5 F8,5 /7/)
“FORMAT( 5X,7HT(DEG) » 12(4H X=zF5.4).//) ° :
FORMAT( 5XsF5.122X,12F9.4) '

FORMAT(1H )

APL=1 . +ALAM
AP271 ,+ALAM# 2
AP3Z1,eALAM® S
AN1=1,-ALAM
AN2=1,-ALAM®#2
AN3=1.-ALAM® =S

DEG=0.0
DELDEG=10.
DO 31 L=1,3/
IF(L-7) 40,0,7
IF(XMODF(L=126)) 40,6,40
PRINT 8000
DO 41 M=1,12 .
SURFEL(L»M)=APLaCOS1X (M) #COSLT(L ) +ANL®SINIX (M) wSINLT(L) )
+EnBgo# (AP2#CUS2X (M) #COST(L)+AN2R#SIN2X (M) #SINT(L) )
+E%BQ2*C0S2X(M) ) :
SURFEL (L »M)SSURFEL(L+M)*0.5%EE R .
#(0110(AP3#COS1X (M) #COSLTIL)+*ANS#SINLIX(M)#SINLT(L))
+HIS# (APS#CUSIX (M) #COSITIL) ¢ ANI#SINOX (M) #SINIT(L)))
SURFEL(LsM) SSURFEL(L»M) +0,S#EE#BS1#ALAM
*(AP1#COSLX (M) #(COS3T(L'#C0OS2D(M)-SIN3T(L)*SIN2D(H}?
+ANL#SINLIX (M) #(SINST(L)#COS2D(M)+CUSST(L)I#SINZD(M)))
SURFEL(LsM) "SURFEL(L,M)+0,SwEEwBLS#ALAM
#(APL®#COSSX(M)*(COSLT(LI#COS2n(MI+SINLT(LI®SIN2p(M))
) +ANL®#SIN3y (M) #(SINLT(LI#COS2D(M)=CUSLT(L)*SIN2D(M)))
SURFEL (L sM)SSURFEL(L»M)+0.5EE#BLIRALAM
#(AP1#COS1X(M)#COSIT(L) -ANL#SINLX(M)2SINLT(L))
SURFEL(LsM)ZSURFEL(L,M)/7(1++0.5#EE#(B11+833))
CONTINUE

PRINT 2003,UEG,(SURFEL(L,M),M51,12)
DEG=DEG+DELUEG

N

W N

® No . us

31 CONTINUE
50 DO 51 M=1,12

HT (M) zHEIGHT (37,M,SURFEL)

51 CONTINUE

'PRINT 2004, (HT(M),M=1,12)
REFK1S(HT(L)-HT(22)/(HT(1)*HT(2))
REFK23 (HT(11)~HT(2))/{HT(11)+HT(2))
REFK3=(HT(11)=-HT(12))/(HT(11)+HT(12))
PRINT 2005,KEFKL1,REFK2,REFKS

2004 FORMAT(1HQ,9X,8HHEIGHT =,12F9,4)

2005 FORMAT(1HD,10X,7HREFKL =,F7,4,32X,7HREFK2 =,F7,4,32X, 7HREFKS =,
1

F7e4)

301 CONTINUE

HOJ+1)=H(J)+DELHLA

201 CONTINUE

G0 TO 1

99 CALL EXIT

END(0,1,050,0)
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Apparent Coefficient of Partial Wave Reflection

144 12442 FUNCTION EPSLON(A,B)

442 12450 X1=A

143 12452 1 X23X1=(BeX1®#3+X1-A)/(J.wBaxinu2+1.)!

144 12473, IF(X2~0.9999%X1) 2,8,3

145 12502 2 X1=X2

1¢6 12504 GO TO 1

17 12505 3 EPSLON sX2

148 12507 RETURN

149 12514 END(0,1,0,00)

190 12520 FUNCTION HEL{GHT(N,M,S)

191 12526 C o }

192 12526 DIMENSION §t37,12)

193 12526 [+

194 12526 SMAX= -1 «0E+100 |

195 12534, SMINR+1.0E+100

196 12533 10 DO 11 I=1LN

197 12535 IFCS(IsM) ~SMAX) 3,3,2°

198 12551 2 SMAXSS(IsM)

199 12562 3 IF(S(I,M)-SMIN) 4,4,11

140 12576 . 4 SMINSS(I.M)

141 12607 11 CONTINUE

142 12617 HEIGHTaSMAX~SMIN

143 12622 RETURN

144 12624 END(1,n,0,0»0)
PROCESSING COMPLETE OBJECT PROGRAM 02641
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