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THE PROBLEMS OF DENSITY CURRENT
PART, I

Tokuich: Hamada

Synopsis:

In this paper three problems of interfacial waves at the boundary of two
homogeneous liquids are discussed. As the aim of this paper concentrates mainly
to clarify the dynamical characteristics of interfacial problems of salt and fresh
water, the properties of two liquids are confined to these in some cases of treat-
ment.

In chapter 1 the viscous boundary layer of the interfacial wave between salt
and fresh water is discussed. A very simple expression of the coefficient of
viscous attenuation of waves is obtained, and the characteristics of the structure
of interfacial boundary layer is discussed. The result shows the possibility of
the breakdown of the laminar layer caused by the viscous instability.

In chapter 2 the properties of interfacial waves of finite amplitude is examined.
The perturbation method by the slope of wave profile is used, and an ambiguity
in the approximation of the third order is pointed out. Then the possibility of
the inviscid breaking of the interfacial wave of the permanent type is discussed.
The result shows the impossibility of breaking, when the density of upper and
lower layers is comparable. :

In chapter 3 the detailed discussion of the Kelvin-Helmholtz instability is
expressed. At the first order approximation the dynamics of energy transfer
between the no-perturbed flow and the perturbed wave is examined. It is different
from that used by J. W. Miles (1959) in general. At the second order approxi-
mation the properties of wave profile are discussed. The characteristics of the
instability is obtained at the limit when the density of both layers approaches
each other boundlessly.

1. Viscous dissipation of interfacial waves

1.1 Characteristic equation

In this chapter we pursue some dynamical properties of viscous dissipation
of interfacial waves observed at the horizontal boundary of salt and fresh water
in stationary state. The main concept of this analysis may be extended to the
instability problems of interfacial boundary of usual estuaries. Some computation
(G. H. Keulegan, 1949) was already given for this problem, but the treatment
was an application of simpler problem of surface waves and was not conclusive.
The present computation is a treatment approximated pertinently, in which im-
portant factors for this boundary layer problem are carefully taken into account.

* Chief, Hydraulics Laboratory, Hydraulics Division.
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We consider the case of two-dimensional space at the incompressible state,
and the first order approximation of wave equations is treated. x-axis (abscissa)
is taken horizontally along the interfacial boundary of both fluids in still condition,
and y-axis (ordinate) is taken vertically upwards positive. ¢®, ¢tb, 42, ... are
notations concerned with the upper fluid, and ¢, ¢, 5, ... corresponds to the
lower fiuid.

In a reference of H. Lamb (1932), equations of motion and continuity of both
fluids are

(1 (13
ig? . p_{l_) agx DD (1-1-1)
auH 1 gpw

- =_F 5 — g uO Py (1-1-2)
QUL Gy

ox oy (449

(1 (1) 1) (93]
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From the above relations, > and ¢ are

p(l) _ a;o(l)
oD ot —9y (1-1-5)
=0, EZoywpyo (1-1-6)

....................

LA TP (1-2-1)

b A (1-2-2)

%ﬁ? %’;—2)—0 (1-2-3)

4™ = a;";) %ﬁ P = — 5’; ? a;[’;). (1-2-4)
From these relations,

L= @29

pev=0, Ll opgw. (1-2-6)

The dynamical boundary condition at the interface are as follows under the
assumption that waves are small amplitude.

(pw)(ﬂ) —(Z)w)m +T 332




or

B ) R AT/ AN B 3 — _
PP +2n P Taxﬂ P V+2p 2 at y=0 (1-3)
(7m) = (T)
or
Uy b TTAC R TTACY
e} — D — -
”(83:+8y>”(8x+8y> at y=0 (1-4)
Two kinematic conditions at the interface are
o

W=y at y=0 (1-5-2)

In these equations ¢ and ¢ (i=1, 2) indicate the inviscid (slowly varying)
solutions and viscid (rapidly varying) solutions respectively, and they can be
combinated linearly in the present approximation of the first order.

We assume a sinusoidal progressive oscillation.

90(13zA(l)gi(Ir.a:ﬂza) , Sb(l):Bu)eﬂﬂ::w-mo

and so k>0, R(#n)<0 is clear,
Using mY, which has the positive real part and satisfies the next relation,

in
mt = . (1-6)

(1-1-6) may be satisfied by

gg(l)zAz(l)e—icy, gitnt)

gbcl):Bﬂ(De—m(l)w.ei(kxMD) } (1-7)
Similarly using m®), which has the same property with m®@,

m‘””:kﬂ—i—% (1-8)

SD(9)=A1<2) e‘-ﬂf ei(i‘.x-l—'nb)

P =B gn Py gitkzinly } (1-9)
We aséume the vertical displacement of the interface as

5= Dettkztni) (1-10)

(hare D is taken as real and positive)
Expressions of p¢ and p of (1-3) are found in (1-1-5) and (1-2-5), and, by
making use of expressions given by (1-7), (1-9) and (1-10), from (1-3);

p gD —p®in AP _zpcs)szl(m +2P(2>,‘km(2331(2)
=—RTD+pPgD—pPin AW —2pME A - 2L im DR By (1-11)
from (1—4),



pDER A — BBy B 4D _m<1)232(1>)

=N (— 1R A1 D — BBy — {2 4D — DB ) (1-12)
from (1-5-1)

RAY V4 {RBy Y= —p A\ P +ikB1 P =inD 7 (1-13)
from (1-5-2)

—tkAs N +m OBy V= —k A, P —mD B4 (1-14)

Using (1-11), (1-12), (1-13) and (1-14), we can obtain the eigenvalue equation
of n as follows.

(p(a)g+k2 T_ptl)g)z_::z-[{#(l)(kﬂ+m(1)2)+#(2>k(m<1)_k)
— DRI D + B MR —m®)+ { O (B4 D) — Ok — D)
— O+ R)H = )] —(p Vit I o {2 (B )
+ B — B — k(O + B m® -+ k) + {p‘”(k”—i—m(””)
— uWOk(—m3) — uBDh(m® 4 ) mD — k)]
+2g<”ikm<”{,u<l)(k“+m‘”’)+p‘2’k(m<”—k)—p‘”k(mm—l—k)}
+ (i 2R O M)+ pD RO — )
— g OR(m D+ E)H b — m D) — (P (kP4 m D — O — D)
— 1R ® L YHm D + B+ 2u D im O R (kA m T
— yDk(k—m D) — DM+ Ry} =0 ; (1-15)

The general treatment of (1-15) seems difficult (8. Chandrasekhar (1961),
C.—M. Tchen (1956) etc.), but in the present problem we can estimate the value
of »# in the next section by making use of numerical data of both fluids.

1.2 The case in which the viscosity of both fluids is nearly equal

Some consideration shows that, in the present problem of two layers of salt
and fresh water, the relation of (1-15) may be approximately solved as the case
of same coefficient of molecular viscosity, so long as the temperature of both
fluids is moderate and the difference is not so large.

Accordingly the following approximations may be held in (1-15),

DR g OB 4 p D i DD — DR — gD g — O oWy
(2) L2 (2) |3 (B gag (1150 (1) 2y _ (2 (2) (2 B3 4(2)q
U R oD i — p DR gD R — y B oD — DR = B
and so (1-15) may be simplified to
2
(p‘”g-{-k’T—pﬂ)g)—%(p(ﬂ)+p<13)+2,u(3)kz'n+2y<”kin

LuPkm®pDin  AuDmOEp®in
p(l)m(5)+p(ﬂ)m(1) ptl)m(ﬂ)_{_p(ﬂ)m(l)
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_ (o®g+ET—pDg) D +p®)k 1™ — bm)n B
P(l)m(z) +p(2)m(1) p“)m(”-l-p(”mm -

(1-16)

By the use of approximation of pP=p®, the third, fourth, fifth and sixth
terms of (1-16) are disappeared. The primary solution of (1-16) is obtained by
the first and the second term of (1-16).

N HoP g+ BB T—p0g)
nn—-i‘\/ C i‘”'i'pu}p

As the motion is limited to progressive wave,

B o Dg L A T— o™
n"z_\[(p ij‘;)_‘_p(np 9) (1-17)

By making use of (1-17), (1-16) can be approximated to

34 501 408D
ndpDp =0 (1-18)

L
(P(s)g_i'knT—P(Dg)'—T(P(D'l_P(“)_ p(l)m(2)+p(ﬂ)m(1) =

The solution of (1-18) is

zptl)pu)k
n= m(l— (0P + p D) pPm D 4 p D)) ) (1-19)

A problem in the expression (1-19) is the estimation of m* and w®, and in
our case, if the wave number of the interfacial waves is smaller than about 3
(k=<3) (this is the wvsual case in experiment and in field observation), ‘> and
m™ can be sufficiently approximated by

mo=(Jaitg) (3] )

3 (1-20)
o))" )

Using (1-19) and (1-20), (1-10) may be transformed to

7)=Dcos[!e:c+nu{1— “/2‘0(1)&!13 I }t} \
(P“’-l-p‘”)(—ﬂo)l”( Vi JW)
-exp(‘* e A t) A 1-21
((1)+ (2)) 1 + 1_ (_. )
P e LoD y®
EF”:%(Z‘”“‘ ) = (—n0)2./2 oDk

1 1
(p‘”-l—p”’)()‘/ b +J vfn‘))

The expression of energy of interfacial gravity wave and its attenuation
ratio can be expressed by

1
(8 (1) 2 —lat
E 2(p pWygDYe l



dE 1-22
O = (o= p)agD? it (o= 2 | o

dt

In (1-22) the effect of interfacial capillary force is neglected, and D¢ %* is
expressed by D’%. The notation g means the common coefficient of molecular
viscosity of both fluids. )

In the above computations, we assumed pV=p® through fresh and salt water,
and this solution can be extended to the case when g is a little different from
£® by a simple numerical consideration. At an ordinary difference of temperature
of both fluids the correction term is small, and may be neglected in practice.

In the case when both fluids have non-perturbed flow in the horizontal direc-
tion, « in (1-21) should be modified by this primary flow, But, as the viscous
coeflicient of both fluids is finite and stillmore nearly equal, the velocity profile
of the primary flow in the present problem cannot jump at the interface and is
continuous smoothly. This allows the application of « of (1-21) to the case of
flowing water as a practical and effective approximation.

1.3 The case in which the viscous coeflicient of the lower fluid car be neglected

In this case the dynamic and kinematic conditions at the interface can he
put as follows.

aBT] avcl)

B = T— 1 (1) = .

P Py HO5 2 P at y=0 (1-23)
ol pud )

‘uu)( ;x 2 ):0 at  y=0 (1-24)

v‘”=v‘“’=g—g at  y=0 (1-25)

An expression which corresponds to (1-5-2) does not exist. The horizontal
velocity at the interface would be discontinuous, because the viscous coefficient
is not effective in the lower fluid. We can obtain the characteristic equation in
this case as;

(p(ﬂ)g.}e__ptl)g%+ k;T ) _(p(l).‘.p(ﬂ})z—: +4‘u(1)k29(1)

i pD papt — 4Dy Dyt =) (1-26)

The effect of viscid terms seems small, and the lowest approximation of
n (=ns) may be given by the first and second terms of (1-26),

_ kp®g—pWg4-%'T) (1-27)

o= PO D

The solution which includes the viscous term should be compared with the
result of section 1.2, and so we consider the case in which the density of the
lower fluid is taken to salt water (its viscosity is neglected), and the density and
the coefficient of viscosity of the upper fluid are from fresh water. Equating
three viscous terms in (1-26) by making use of these numerical conditions of
both fluids, we can find that the third and fifth terms may be discounted at the
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wave number now considered.

By this way

(1-28)

£ 41 b4
n:nu(l-i- 12# k )

(PP + o)

7=D cos(kx—+nit) exp (—

2#(1)}62 ;
p(l') +p(3)

(1-29)
S DY 4R
TGP\ T hw g pw
The expressions of the energy of interfacial waves are;

1 4#(1)]39
E=—(p®—p®)gD* exp(_p“”rpmt)

dE 2uhp 4pDp ) (1-30)
Ez(p(ﬂ)—pm)gDE(_p<1)+p(5) X (——pm_i_pcﬂ) )

— _Zy(l)kBCDBDFB_z _zp(l)nuﬂkDfﬂ

dpDp
4 p®
The previous discussion of the energy dissipation of interfacial waves given
by G. H. Keulegan (1949) was based principally on the mechanism shown in this
section, and it is clear that we should use the result in section 1.2 at the ana-
lytical treatment of interfacial waves of usual estuarial problems.
From (1-22) and (1-30),

Here we put D’-exp(— t) =0’?, and T in (1-27) is neglected.

dE _ ~2u O
E——(—nﬂ)mmDm (at D= p®=y) o
%f‘_‘= —2uDOn 3D {at u»=0)

and, putting c;—‘?—: —a1D'? and %=-—ﬁ1D’3 respectively in the above relations,

Table—1 shows the values of a1, /1 and a/f:1 against k. It is clear that the value
of ai/pi is far greater than 1, and the tendency is more distinguished for smaller
values of &.

Table—1
E ay i3} a1fPt
5 9.095 4.851 1.874
3 4.801 1.746 2.749
2 . 2.892 0.7760 3.726
1 - 1.216 0.1940 6.268
0.5 0.5116 0.04853 10.54
0.1 0.06840 0.001940 35.26
0.05 0.02876 0.0004851 59.29




1.4 Some properties of viscous boundary layer

Computation in section 2 and 3 shows vividly two different cases of boundary
layers of interfacial waves. Then the characters of vorticity in these two bounda-
ry layers are examined,

The vorticity in both layers is shown by

Gt Pu

C(l)— a — ay
z
) ) (1-32)
o e B uh
iz Yy
In the case of pV=u®, some computations show that (1-32) is expressed by
C(l)__.: _2n‘Dll)j—Le-m(nyeﬂk=+ﬂc) )
14 mY+j
mB+k L
. (1-33)
(2}
LD =_2p D% Py gitkztnty
mD+k

In the present problem we can use the approximate expression (1-20), and
stillmore <’ is nearly equal to m® in practice. Therefore

1/ —pp \ 12 1 /[ —ng\V2
L e Ve
FL =M = ﬂoDJz( v ) exP(+«/2( v ) y)) |

/

X gmat. [005(171-2:(

— 1/2
+sin(i%( vm ) yt+hkxt mt)]

—H#o

1/2
) Y+ kx+nd)

%(;—j?%—ﬂkﬁ (small difference between v’ and y® is neglected)
(1-34)
In the case pu»=0,
(D= —2pkD-em™ Py gitkein | rMh=() (1-35)

Expressions of (1-33) and (1-35) indicate that the boundary layer is clearly
concentrated to the narrow region of the interfacial boundary, and if the lower
fluid is inviscid, the vorticity of lower layer disappears, showing that the viscous
effect is limited to the upper layer. Because the relation of |m|=~|m®|>k is

existent, the strength of vorticity given by (1-33) is far greater than that of

(1-35).
The expression of (1-35) is transformed to

1 [ —m )\ 1 (—m )\
osr—anaD-exp( =75 i) )eos{ (o | e

ﬁ'=, v(.‘l)ka

(=0
{1-36)
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In (1-34), putting —ni=kcy, we take the limit at y-0. The vorticity at the
interfacial boundary is ;

¢ =P =peyDeet 1 (kco

1/8
® P = ) +{cos (ks -+ mot) +sin (ko + mt)}

Then we use the irrotational horizontal particle veloc1ty just outside the viscous
layer to rewrite the above relation.

[eb) 1723
cf,‘j;—fc;'fu':.[ +zm}%(%c—"~) {1+ tan (kz-+ o)} (1-37)

inviseid at
y—0
On the other hand, if we remark on the rigid and smooth boundary layer of
the bottom of surface progressive waves, we can obtain the similar form of
vorticity with (1-37).

1 [ kco \V2
Eyo= —inv;s_iﬁ.iod NV ( T) {1+tanlkx+ o)}

Co= A/ % tanh Bk , —mi=ke

In {1-38) # means the irrotational horizontal particle velocity just above the
bottom viscous layer. Stillmore if we examine the boundary layer of steady
flow, we can find the very similar expression from the Blasius laminar bounda-
ry layer along the flat smooth plate.

In this case the vorticity along the plate is;

Eyoz= —0.332204 /:‘_; | (1-39)

Here u: means the velocity of steady flow outside the boundary layer. z is
the distance from the tip of the plate. Expressions of (1-37), (1-38) and (1-39)
have the common character in their structures, and they are influenced by vis-
cosity by the expression of the same type. If we use the Reynolds number of

(1-38)

boundary layer defined by Re*:uTa*, [u means the irrotational periodic horizon-
tal velocity just outside the boundary layer in (1-37) and in (1-38), and &* is
taken to L ~/1 5 ( kcn) . In (1-39) % means the velocity of the steady flow
outside the boundary layer, and é* is taken to displacement thickness of bounda-
ry layer. a*=1.7208\/i_ﬂ, from (1-37) for interfacial waves (u= )
Loyt s —%Re*(— oY1 +tan (b + i)}y (1-40)

from (1-38) for surface waves

Cyo= ——;—Re*(—m){l +tan{kx+nd)} (1-41)
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from (1-39) for Blasius boundary layer
Ly-2=—0.193 Re*%— (1-42)

(in (1-41), #. is for surface waves, and #o/x in (1-42) means the elapsed time of
the main flow.) Expressions of (1-40), (1-41) and (1-42) clarify the close and
linear relation between the vorticity and the Reynolds number of boundary layer.
Re* is an important factor for the determination of stability criterion of the
boundary layer. For large values of Re¢*, Blasius boundary layer shows the
breakdown of the laminar characteristics indicated by the Tollmien-Schlichting
wave (C. C. Lin (1955)). For the bottom boundary layer of surface waves, there
is not yet the strict theoretical estimation of stability problem. But some experi-
ment (A. Brebner et al. (1966)) offers certainly some evidence of the breakdown
of the laminar layer. Therefore, if we disregard the difference of density of
both fluids, the expression of (1-40) for interfacial waves may be sufficient to
show the instability of laminar boundary layer at some value of Re*.

Stillmore in this case the periodic horizontal flow has an inflection point in
the thin laminar boundary layer, and from the up-to-date theoretical discussions
we know that the critical value of Re* falls down remarkably by the existence
of inflection point in the velocity profile of main flow. In our problem the flow
is periodic and is not steady, but Re* of (1-40) attains (1~5)x10 in model ex-
periment, and in usual field study it may be (1~5)x10%. Although the disregard
of the difference of density at the interface is a remaind problem, it may be
probable that the wviscous instability of the interfacial boundary layer is an im-
portant factor for the turbulent mixing of salt and fresh water at the boundary.

Then we return to the case of =0, and examine (1-36). The expression
of (1-36) has the same form of the vorticity of surface free boundary layer of
surface waves, which is already shown by H. Lamb (1932) as

172 172
(= w2iDee i exp | (1)) cosfums (e g )]
(1-43)

(In (1-43)} y=0, ¢ and », are concerned with surface waves.)

In (1-36) and (1-43) £ at y—0 does not influenced by viscosity except for the
attnuation effect of viscosity. The pure free boundary layer of the surface of
surface waves seems stable in experiment, and the interfacial boundary in the
case g*=0 may be also stable.

The instability problem of the interfacial laminar boundary layer at the case
of pP=pu® ((1-33) and (1-34) does not need the equality between p® and p®
strictly in their application.) seems important in the dynamical interpretation of
interfacial instability problem of salt and fresh water. Computation in Chapter
2 will show that the permanent type progressive wave of finite height at the
interface cannot break down easily when the density of the upper layer is com-
parable with that of the lower layer. This indicates the stable condition of in-
viscid wave at the interface of salt and fresh water. (A remark should be made
on the condition that the wave length is assumed small compared with the depth
of both layers.) Although some doubts may be contained for the inviscid stabili-
ty at the approximation of higher order in the existence of nonperturbed flow,




p—

the instability of viscous boundary layer at the interface may have important
roles for the occurence of the turbulent mixing and the additional energy dissi-
pation at the interface.

2. Interfacial waves of finite amplitude (permanent type)

2.1 Basic equations

The problem is limited to the case of irrotational and inviscid., The relations
of co-ordinate and notations are same as chapter 1.

[45] =E¢_Ui 1y — _@Qﬂ -
u aw Y 2 (2-1)
un =§(_2) , Pt =Q§5§)_ (2-2)
PeL=0,  pigP=0 (2-3)

The depth of both layers is assumed sufficiently large.

¢ — a function of £ only at  y—eo

(2-4)
¢ — a function of # only at y—->—co
Integrals of dynamical equations in both layers become
48] o _f_i gty 5 W X f 2-5
‘23—@-1—-2-{)‘”:;(”2+p(9>g'y+pm—F<53( ) (2—6)

When perturbed motions ¢ and ¢ become negligible, we have at the
interface,

PP =FO(f)=const.
D =F3)(f)=const.

and PP =p:!" is consistent. Therefore FO(f) equals F®(H) at the interface, and
stillmore they are independent of z, y. Putting pP=p®=(, we can obtain a
dynamical condition at the interface;

(1) ¢ L ¢(z

—2~p‘“q“’”+p‘”gn =p® —z-p‘”q"’”-Fp gn at y=p (2-7)

Kinematic conditions at the interface are;

g’; -uc1>g_g—v<l> at y=y (2-8)
%Jrumg_zzvm at y=yz (2-9)

From the condition of permanent type;
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¢(1)=¢C1)($_Ct)

¢(2)=¢(2)(x_ct) (2_10:.
n=n(x—ct)
From (2-10)
g 45(1)
ot ax
26D FRLEH)
/)
ot~ ‘oz

From (2-7), (2-8), (2-9) and (2-11)

. a (1) @ ¢(1) ¢(1) 2 .
LA™ +2‘° {( oz >+( oy )]J”) g

=—p‘“cﬁ¢—(£+— 2){(@@\2_{_(39‘5(2)

@ — _
500 () + (%) e at v @1

A at y=p (2-13)
—cax Yo 2w oy at y=y (2-14)

The slope of wave profile at the interface is used as the parametre of per-
turbation ;

SRS AU NIEL PP WP W NENS

PP =ad1 P+ a’d:s @+ 3Py oo
(2-15)
p=an+atptaipytee
c=Ctaci+alcataics -

Interfacial conditions (2-12), (2-13) and (2-14) are perturbed by (2-15), and
conditions at y=» are reduced to conditions at y=0 by making use of the
Taylor’s expansion around y=0. From (2-12),

—P(I)Cﬂﬁjg:—(o)‘i‘!)(ngﬁl—_ﬂ?(z)c w—i—p‘”gm at y=0 (2-16-1)
0O THOO o, B0
+2pm(a¢;;;;<°)) +; <n(a¢1;;<°>)“+pmgm
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2 (0) o) 3 D(0)
Ny % AN/ (1) 1y = 379 AN/
Oz L azay TP Y azay 7

33¢1(1)(0) 3@(1)(0) 32¢1(1)(0)
) ﬂ (D, —  NT7 (1)
2 Tazayr PN ap P N zay T

g 81 H(0) ot 31<1(0) 3952(1)(0) o0 31(0) dgat(0)
o e 0 o oy dy

29, 00) PHOO) |, WO0) FHOO),
oz azay T 5y ay?

PHDO) L, FgA0)
“azoy T ° O azay

1 0 gyt —— as¢ (2)(0) p(mclw_p(g) an¢1c2)(o)

.{..p(l) +P(1)g7]3

()
ox

=—pMD¢y —o®¢y

— oD, 8¢1(23(0) o A1 A(0) a¢ﬂca>(0) oD 361 (0) 3gs®(0)

31 P(0) 3”9151‘”(0) 91 *X(0) 3”¢1‘”’(0)

(2) (2) 2
+p e 213y o 2y mn-tp®gp at y=0
(2-16-3)
From (2-13),
_ O _ 91 0) _
Yop a at y=0 (2-17-1)
_Opm 9y 31 0(0) B 3aD(0) | 3 P(0) _ g
cn_a? aax-{- Py = + o m at y=0 (2-17-2)
[¢D)] 2.r (1) (1)

oI O om0 0) dp | PHDO) oy 9 AO) O

or ox ox ax ox | dxdy oexr T ax ox

_3i00) | B0 | Ph0) | L PhO)
T 3y . T P2 g P

From (2-14),

at y=0 (2-17-3)

_ om0 P(0) _ 1e
ar = oy at y=0 (2-18-1)

L Op 3771 8¢1¢(0) am _0a®(0) | 4 (0) N 1

B Dy, 0 o, P6O0) o 60O on

ox axr  ax dx  ox  dxdy Gy ox ox

A O A O ) 1 aa¢1<u>(0) p B o
=" oy - o - P ;;1-|—2 P at y=0 (2-18-3)

Stillmore, from the equation of continuity,
Vﬂ¢1(1) :0 , Vﬂ¢2(1)=0 . V2¢a(1) :0
PPoP=0, plep®=0, plgpP=0

(2-19)
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Relations of (2-16), (2-17), (2-18) and (2 19) are used to obtain the perturbed
solutions of this problem.

2.2 Approximations of the first, second and third order

The first and second order approximations are determined by making use of
the similar method with the perturbed solutions of surface waves.
The first order approximation is ;

m= A1 cos k(x—ct) (A:: real and positive) (2-20)

D= —coA1e7™-sin k(x—ct)
. (2-21)
P =co A1e* - sin k(x—ct)
oD — oD
b= \/ 3 p<n>+P<1) (€a>0) (2-22)
The second order approximation is ;
(2) _ {1}
vg:%‘Alzkpcg)_l_—Pm -COs Zk(l' Ct) (2_'23)
(2)
= _cDAlﬂkﬁe—m-sin 2k{x—ct)
(2-24)
_ oD .
Fr®= —COAI%—P‘”-FP‘D ¢ . sin 2k(x—ct)
c1=0 ‘ (2-25)

In the computation of the third order approximation, we use the notations
as follows in (2-23) and (2-24).

2 1
PC ).._.p( )

_Azk <2)+P(1)
2
o0 _po | ' (2-26)

—CoA12k——P(2)+P(1) =Dy,

e
_CUAlzkp‘”-l-pu) =B,,

In the present problem, the third order approximation may be assumed as ;
3= A1 €08 k(x—ct)+ Ass cos 3k(z—ct)

P = Bme—"’ﬂ -sin k(z—ct)+ B}, e~ .sin 3k(x—cf)

(2-27)
i ‘2>—B(2>e"ﬂ sin k(a:-—ct‘)+B33 e*.sin 3k{x—ct)
From (2-17-3)
Bm —CoA31—CzA1+%CoA13k2—anA1i+kA1B;;) (2-28)
Bc1 =—ce A+ A kBm-l- éCoA13k2—lCokA1Azz (2-29)
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From (2-18-3)

B;?=L‘0A31+L‘2A1—A1kB;i)—%CnA13kg—%CukA1Am (2-30)
) e 1 spa L ‘
Bss =|'I,‘oAsa—-z‘th22 —§60A1 k —E(_‘nkAu‘lsz (2—31)

Au, By, By and ¢ should be determined by (2-28) and (2-30), and As, B, and
Bgz) should be given by (2-29) and (2-31). One more relation for these computa-

tions is (2-16-3) (the dynamical condition of interfacial boundary). From this we
have two expressions.
The first one is

pPckAsi 420V eick A1 —pVcokl A1 By, —p et AMk 4 o g An

= —pPc?bAn—20Pacsk A1+ p Mk’ A 1B;:)+,Q(2’Cu“r’11sks+ngA31 (2-32)

If we use a first order relation {(p+p®)o=(pP—pM)g in (2-32), ¢ is
determined as

pc1)2_|_p<2>2
(oD +p®)?
1y

But Aw, B, and B;f) cannot be determined unanimously. If we use a simi-

C1 ='_;"CUA12k2 {2-33)

lar method with that of surface waves, the following two cases may be obtained
as the representative solutions.

(1) the case of B;i)zo
ABR?

Aun =W-(p‘m—2p‘”ﬁ‘”—11p‘”2) (2-34)
(D __ 410
B;i)= _%COAIWM (2-35)

P(2)+p(1)
(ii) the case of An=0 |

w_ 1 p(m—Zp‘l’p(Q)—llp(ﬂ)ﬂ
By __SHCUAIW (oD +p®Y
@ 1 11p2 4 260 p) — (D2
51 =§CuA13k2 (P pDYy

The second relation is

(2-36)

B

(2-37)

— p‘”coBlaB; ;) - pm%coﬂA %2 A g
+ pcl)CQZk“B;;)Al+%p<1)cU’A15k3+ pgAgs
- _pm.:ugleBgi’—pm%cﬂﬂkﬂAlAn
PP B A pPeR A + PG Ay ) (2-38)
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Ass, B;;) and Bm can he determined without objection by (2-29), (2-31) and
(2-38). |
BAS3 Bpthpt

AJS = 4 {_2‘_ (p(1)+P(g))2 } (2—39)
e¥ kAC 5t pt> 82t

By'=—a 1 {1-]- p® 4 p - PYCEUpEEE - (oD + gDy (2-40)
w kAP 51 P 8ot

Bas =co 1 {1 oD+ - PB4 pt - (oD +p®)e (2-41)

By this way the solution expanded to the third order approximation may be
expressed by

(i) the case of B =0,

p=A1cos k(z— ct)+-—A1”kP cos 2k(x—ct)

m
1 AlR
g (Pcn;_ Pl {p®F—2pMp® ~11pW Y} cos k(x—cf)
1 3 8ot p®
+IA13ka[E_———(Pm+ g }cos 3k(x—ct) (2-42)

¢V=—co A1 sin k(x—ct)—ci A1’k ¢~ .gin 2k(x—cf)

(%>+ (6]
3 @) — el
—E(:uflﬁk”ﬁe—w -sin k(:c ct)
1 5ot o goWp® ) .
—IC"A13k2{1+ p<) 4 pD - p® 4 pchd - (p -+ p)E ¢ ¥-sin 3k(x—ct)
(2-43)
¢ =codre? sin k(x—ct)—-co A1’k m o e .gin 2k(x—ct)
1 Bpth) o 8o .
+_4—C°A13k3{1+ P Fp® T B ot T+ ) ¢*¥-sin 3k(z —ct)
(2-44)
(ii) the case of Au=0,
1, pR—p®
= A1 cos k(m—ct)+§'A1 km cos 2k(xz—ct)
1 3 8oL (D
+5 ALK {E—(P(ﬁ—ﬁ(,,)ﬂ—} cos 3k(z—ct) (2-45)

¢V =—co A1 sin k(z—ct)—co A1k g .gin 2k(x—ct)

(9)+P(1)
i pII—2pWp _11pM
+—8—0nA13k’ (P D+ oY e .sin k(x—ct)
5p¢ PO Bpp®

—%CuAlakE % 14 } e~ %%v.gin 3k(c —ct)

P“)""Pm P+ pth (P(D+P(ﬂ))2
(2-46)
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PP =coA1e¥ sin k(x —ct)—coAi*k- ™. gin 2k(x—ct)

(2) + (1)

1 11pD 2 20t — pth? .
-|-§(::u¢l1"k2 (p® 1 p) e .sin k(x —ct)

1 5pt o< 8ppt?? ]
+'EC°A13k2{1+ pB +p» - PB4 oD - (o0 + p®): ¢ -sin 3k(z—ct)

(2-47)

¢ is common in both (i) and (ii).

1 p<1>2_|_p(2)3 pm_pcl)
c=c41—|——2—Alzkﬂm}, o= o[ 4 LB L (2-48)

Both cases of (i) and (ii) given here may be two representative solutions of
this problem, but they are influenced by an uncertain selection at the third
order approximation.

If we compare these solutions with those of surface waves, the expressions
of (2-42), (2-43) and (2-44) are in agreement with E. V. Laitone ((1962) P. 1561
relations (32) and (33)) at p’—0, and relations of (2-45), (2-46) and (2-47) corre-
spond with O. M. Phillips ((1960} P. 210 relations (5.9}, (5.10) and the one under
them) at p®—0. The difference of wave profile (y) is not remarkable at p©/p®
—0 in both solutions, but at /p®—1 it is not so small. Accordingly if we
treat the profile of interfacial wave at the interface between fresh and salt
water, this uncertain property of the third order approximation can not be negli-
gible in practice.

Some additional remark: (a) At pP/p®—1, 73 has the negative sign when
(x—ct) is equal to zero. This is opposite with the case of surface wave (p—0),
and stillmore at p®?/p¥—1, n approaches zero. So the wave profile at p®/p®—1
is very different from the case of usual surface wave. (b) The experimental
verification of (2-48) seems very difficult, because as shown by (1-21) viscous ef-
fect on the wave celerity is not so small at the interfacial wave of salt and fresh
water, and the existence of the thin mixed layer between both fluids will de-
crease the celerity of the wave of same wave number.

2.3 The problem of breaking of imterfacial waves

This problem seems a complicated one, and the deformation of wave profile
caused by the high order process (an example will be referred in chapter 3)
should be included. But here we treat the problem in its simplest form. The
result will show that the interfacial wave at the interface of fresh and salt water
cannot break at the condition of permanent type.

As the approximate solution in this chapter is limited within the third order,
it is not sufficient to determine the strict value of wave steepness at the break-
ing even in a case of surface wave. But, when p¥’ approaches to p®, a prob-
lem remains in which the procedure of perturbation used here can be available
to the analysis of breaking. Therefore the method used here is only applicable
to the estimation of breaking problem, in which the small value of pV/p™® is al-
lowed. So the present estimation is qualitative one, and does not give a decisive
conception,
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From (2-42), (2-43) and (2-44) «® at the interfacial boundary (y=z) may be
determined within the range of the third order approximation ;

_1 1’ _l E(ﬂ)_p(l)
n:":‘),, 200A13k5‘+cuA1k11+ 4 AP’k pt® - ath

3 o
+§A13k2 2A13k3——}cos kx—ct) ~

(1) +p(2)

+e0 AR [—;'-——ZP(D

p(2)+p(1)

}cos 2R(x—cl)

7 3 o 1 p®
+C°A18ka[§+'§ oD FpD 2 g o

_ B pt
(pc1>+p(2))2
If #® of (2-49) is equal to ¢ of (2-48) at x—ct=0, it may be considered as

ot y=%
the limit of stability of waves in the present approximation. By this way we
can estimate the approximate value of A%k at the limit of stability.

At p=0.000, p®=1.020

} cos 3k(x—ct) (2-49)

(Ak)+0.5(Ak)+ Ak —1=0 (2-50-1)
At o=0.200, p®=1.020

0.0054( A 1k)*+0.3092( A1k) + A1k—1=0 (2-50-2)
At p1=0400, o®=1.020

—0.355(A1k)+0.139(A k) + Ark—-1=0 (2-50-3)

Here we must recall the fact that the value of Aik should be smaller than 1
in the present method of perturbation, and we seek the value of Ak which
satisfies (2-50-1, 2, 3) in a condition 1>A:k>0. This shows A:£=0.602 in (2-50-1)
and A:£=0.775 in (2-50-2). But in (2-50-3) we cannot obtain the proper value of
Ak, and the procedure shows that the value of Aik at the stability limit in-
creases with the increase of p® in (2-50-1, 2, 3).

we can also compute #‘® from (2-45), (2-46) and (2-47) as same as (2-49).
ot y=3

) >
u® 2%001‘11%”—{-CnA1k11+—A19k2w—P+%A12k 2A1’k5 e

nb y=g @ 4 D PO
L)
+C“A12ks{%— “"2’1 & Icos 2k(x—ct)
L
—% pcﬂf_c:;m - (p?ﬁc_l;zz)))g }COS 3k(x—ct) (2-51)

From (2-51} and (2-48) Aik at the limit of the stability of waves is given by;
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At p©=0.000, p*»=1.020

0.875(A1k) +0.5( A kP + Ark—1=0 (2-52-1)
At p®=0200, p®=1.020

0.0793( A1k +0.309( A1k): + A1k —1=0 (2-52-2)
At p®™=0.400, p®=1.020

—0.250( A1k ¥ +0.139(A1k)2 + Afe—1=0 (2-52-3)

We obtain the proper values of A:k from (2-52-1, 2) {A:1£=0.612 in (2-52-1),
A£=0.775 in (2-52-2).} But we cannot have the proper value of Aik from (2-
52-3), and we see that the tendency is quite same in both cases of (2-49) and
(2-51). Therefore we can say that the value of Ak (wave steepness) at the limit
of stability increases with the increase of p®, and that in actual problems of
interfacial waves the existence of maximum value of Aik seems doubtful at p@
—o in the condition of inviscid permanent type.

The more rigorous estimation of this problem may be given as follows. We
use the dynamical condition of interface (2-12). J. N. Hunt (1961) transformed
(2-12) into the following form, in which he made a motion steady using the uni-
form opposing current with the velocity {(—¢).

dr

g (p—pM)e-sin § =pca)esf_gz_+Pu;e—nfE; (2-53)

Be?
Physical meanings of 8, + and ¢ are shown in Hunt’s paper. In (2-53) §—0
and r—{—)ec are consistent at the limit in which the particle velocity of the

crest of waves of lower fluid approaches the wave celerity boundlessly. On the
other hand there is a condition ;

uﬂ)-dx—f—v(”-dy:—-%da

(in this expression #‘® means the value {#® in (2-2)—c})
and so #¥--0, -0 at the limit of instability means d¢—0. At the same time
—{—)eo indicates that dr is finite. By making use of these conditions we esti-
mate each term of (2-53).

the left hand side—roo X0 . ]
the first term of the right hand side——0:x o0 (2-54)
the second term of the right hand side——oc0o x = j

(2-54) indicates that the order of the left hand side of (2-53) is in agreement
with the first term of the right hand side, and that the second term of the right
hand side is far greater than the other two terms. This inconsistency appeared
in (2-53) may be interpreted as the impossibility of breaking of waves under the
present circumstance. If p=0 is satisfied, both sides of (2-53) are of same order
at the extreme condition, and the breaking of waves is apparently possible.

The result of this analysis is in agreement with the approximate treatment
of (2-50-1, 2, 3) and (2-52-1, 2, 3), qualitatively, The discussion at the end of
chapter 1, in which we noticed the importance of instability of viscous boundary



layer for the turbulent mixing of superposed fresh and salt water, depends on
this tendency of interfacial waves.

3. The Kelvin-Helmholtz instability

3.1 The method of perturbation and the linear relations

The Kelvin-Helmholtz instability is an old treatment of the instability of in-
terface, and it contains some fundamental properties of the problem of instability
of superposed fluids. The remarkable point is its dynamical mechanism for the
energy and momentum transport from the non-perturbed flow.

The relations of co-ordinate and notations of physical quantities are same as
in chapter 2, In the present problem we set the non-perturbed uniform flow
horizontally. In the upper fluid the velocity of this flow is U® and in the lower
fluid it is U™, We assume U®>U®, The perturbed motion may be considered
irrotational except for the interface, where the velocity of the non-perturbed
flow jumps. Therefore conditions of the perturbed motion (2-1), (2-2), (2-3) and
(2-4) are also used in the present problem. Expressions of (2-5) and (2-6) are
just modified by the existance of the non-perturbed flow U< and U,

In the present problem, at the interface,

%.Pm U L= Fax§)

(3-1)
' %P(z) UL o= FO()

Putting W= =0, the dynamical condition at the interface is;

) a¢(

o +-§p<1>u<1>2+%p(1)v<133+p<1>u(1’ U+ pgy

=p<z)2¢_+5p<2>uc2)2+.%.P(a)vcz)ﬂ+pc2>ucﬂ> UD4p®gp  at y=yp (3-2)

Kinematical conditions at the interface are;

0 w4 gan L _

E-I—(U +u )£=v at y=p (3-3)

on [J 1¢5% an _ 5

= TUP+u®)s =v at y=y (3-4)
From (3-2), {3-3) and (3-4),

a¢(1 ( ¢(1) ) ( "¢(1) ) ¢ (1)
1 =P (1| 4= 48] ) (€D
P ot +2 ox +2P oy te U +00an

2y N2 (2>
=P(2)6q;t 2P )(39:5_) +%P(z>(2¢_) +P<n)3¢ UB+pPgn  at y=p

ox oy ax
{3-5)
ay o L By L B .
R ax+ ox oz oy at y=7y (3-6)




A similar method of perturbation with (2-15) is used.

) 58 06D 3y g
TR i

FDO=ag1 D+ D 4 @lhs e
q5<z) =a¢1(2’ +a2¢2(2) +a3¢3(2)+"“ .
n=am+a'ptatpiteee

at y=y

(3-7)

(3-8)

By making use of (3-8), the dynamical condition (3-5) is perturbed around

y=0.

=p® 3@;;(0) +p® @*¢:1(0) + o0 3'¢1(0)

.0 1;)(0) +pO T i ‘;;(0) +pDgn

3] [¢:3)
=p‘”—a%t(ﬁ+p‘“ AL 9 16.1:(0) + 0P gn;

s (0)
W o}
P T iy o
~r (1) 3.2, (1)
+pt U“’%@-l—pm U a 6:; P (0)771-!—5)(1’91;2

820 310 8610
___p(sh %t() pga ¢ () +2P(2)( b1 ())

atdy 0%

(&3] 25,5
+p® U(z’ﬁ%-l-(au’ Us 9 3.;? 3?50)7?1+P<ﬂ)gﬁ‘3

. Bqﬁs(”(O) 32¢2(1)(O) ot @(”(O)
e ot atay atdy
1 1c1>(0) o 31(0) 3gs(0)

_— (1)
T2 atay 2z oz

d¢1(0) 6‘%51‘”(0) , 0619%0) 9g2(0)

1)
e dx ox oy oy oy

A1 H(0) an¢1<1)(0) it mUmagbacn(O)
oy oy?

3“9’)2 & (0)

_|_p(1)

+

(=== r-/
+pU ox 6y 2

+p(1)U

7

atoy P atay

_l;hl_P( 5 0) i34 p® 6951(2)(0) s ®(0)
2 ﬂtayz ax

w0 PHO) | o

az W 1
@11(0) I

, 8612%0) 8¢hs*>(0)

@t
te ar ox oy oy ay

351P(0) 1 (0) 3 2(0)
(¢)] ($:)] [¢)]
T . TP U=

— 93 —

oy

oy

33¢1(1)<O)
dx oy oy 7

(3-9-1)

32451(1)(0) chl)( 8951(1)(0) ) 2 pm(_L‘”(O) )2

2 p“)( 3g1P(0) )z

(3-9-2)

2 + p(l)gva



P2 (0) Vi 951"3(0) 1 P Q)
COF SILIAA AN e PV P UL Y ca
+p2U aan m+p®U aw oy U awoy +o®gn;

. (3-9-3)
From (3-6) and (3-7) similarly,

am W 319(0)
ot TU% T 5 (3-10-1)
an mam 3 (0) I 3 D(0)  F<(0)
2 U m = oyt ap ™ (3-10-2)
978 32(0) O | PHDO) I FG0) By
I g d, LR o

o oz dxz oz oxdy "dw ' ox ox

0 (0) | @%a<(0) FPHD0) 1 3gMO)

— Py + " n+ oy 7 5 P n (3-10-3)
am @ 0 _ 061(0)
o VY% = (3-11-1)
M e 3G P0) In _ 3 P(0) | 2 (0)
e o e e TR o T (3-11-2)
95 ey 98, a¢3<2>(0) Oy Ph0) ap | 31(0) aps
ot Y ﬁ‘x dx Az a:cay arry dx oz
g P(0) | Pga0) | F$B(0) B D(0) _

ST oy T ey Mg r;n+3—ay—3—mﬂ (3-11-3)

The linear relations (the approximations of the first order) can be obtained
by making use of (3-9-1), (3-10-1) and (3-11-1).
Putting,

PV =R{B\ Vgt g7} (B>0, e=cr+ici)
$1D = R{ByDeiktz—etr. giry ' (3-12)
n=R{Ae"=}
Ai: real and positive

From (3-10-1) and (3-11-1)

CD—R{—M‘L( U(l)__c) giktz—ot), e""?”}
$D=REA(UD —c) gkt g } (3-13)
¢ can be determined by (3-9-1); -
_ ptl) U(1)+p(2) U pczn_ (15 DB [ B
c= ‘\/ p(z)_i_g(l) %_ £ p(P((l)_i_p(g))g ) (3_14)

pcl)_l_p[‘l)
In the present problem the second term of (3- 14) should be imaginary, and
stillmore we only treat the case of ¢:>>0. Therefore |
P(I]U(l)_l_.P(ﬁ)U(E) . p(l)p(ﬂ)(U(l)_ U(ﬂ))ﬂ g P(ﬂ)_P(l) 1/2
P 4 ot { (o)) 4 ptDY TR D 4 oD
' (3-15)

c=¢crtici=
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R

{

pDEM(UWM— D) g o® . pth
(o) B PYCIpRID

Here >0 is the condition for the existence

of instability.
(3-12) may be rewritten to

V= A;(U D —¢,) sin k(x—cd) e¥t -~ — A i cos k(z—c,t) g0t - ¢~
A1V =— A (UD —¢,) sin B{z—crt) €%t ¥ 4 Ascy cos k(z—crt) €498 e (3-16)

- m=A1c08 k(z—crt) ¢FE

3.2 The dynamical processes of wave amplification of the Kelvin-Helmholtz
instability

The perturbed flow of the present problem is amplified by the rate of %c
per unit time. Here kc¢; is expressed by (3-15). The expression of (3-15) indicates
that ¢, increases with the increase of |U®—{U®|, and at this point the mecha-
nism of instability of the present type is not so different from the instability of
general shear flow of heterogeneous fluid. The perturbed flow must be amplified
by the transfer of mechanical energy from the non-perturbed flow.

In the Kelvin-Helmholtz instability the value of cj¢ is not always small, and
¢ may be able to grow up extensively even in the linear treatment. Therefore
we cannot put (ci/c;*—0 in the present problem. On the contrary the amplifica-
tion mechanism of the Tollmien-Schlichting wave is treated at the condition
(cifc:*—0 in its linear treatment,

In concern with the Kelvin-Helmholtz mstablhty, J. W. Miles (1959) made an
attempt to extend it to the case of more general velocity profile of the horizon-
tal flow. The dynamical foundation of his treatment may he obtained at the
condition of very samll ¢; (almost zero). The present analysis proceeds along the
different way by making use of the uniform volocity profile, and the comprehen-
sive interpretation is found including the general case of ci/c,.

The kinetic energy of the perturbed wave motion in the present problem
may be computed as

%(p"“ — o) gAl?e“"t‘—l—%(p‘“ +0) Ar2ke? e?redt (3-17)
The potential energy is
%(p“D — o) gAi? cos? bz —crf) ¥t (3-18)
and so the time average of the rate of the increase of the mechanical energy
/! dE

kgt—) can be expressed by

dE =(p — ) g A1 ke 890 - (p 1+ o) A 1 2Re,d etort (3-19)

Then we compute the momentum transport of the perturbed wave motion.
This may be expressed at the upper fluid,
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1 Ja_[J
M(lJ:_EAIQkP(l)P(ﬂ)WZBk%G
-20
dM W [y [Jed (3-20)
T =_A12kEC£P(1)P(a>W€2kGiL
At the lower fluid,
1 U [
M('&) =.2_A12kp(1)p(2)——_P(1) +P(2) e?kcib
3-21
dM® vonn ety gy TD=UD ©-21)
_dt_'__Al k C‘EP( )P( )We kcib

The momentum transport expressed by (3-20) and (3-21) is one of the special
characteristics of growing perturbed waves in the Kelvin-Helmholts instability.
The momentum transport of the upper layer is negative at the condition of U™
>U®, and its absolute value is equal to that of the lower fluid. Stillmore M®
of the lower fluid becomes zero when p¢V of the upper fluid becomes negligible.

The momentum transport of the interfacial waves, which is not amplified by
the Kelvin-Helmholtz instability, is quite different from the above two expres-
sions. A good example is the case of U'=U®=0, and so ¢ is equal to zero.
In this case the momentum transport of the upper fluid is;

1 Ay __ 5D
M(1)=E'A1’kpu)#\/ %ﬁ%— (3-22)

The momentum transport of the lower fluid is ;'

1 {3y _ (1)
M”3=-2—A15kp‘”n/—%- 5‘”-1—2‘3’ (3-23)

By making use of the expression E=%(p(”-p(1))gA12, c= «/ %—2312 E:; , (3-
22) and (3-23) may have a well known simple relation E=c(M®+M®P)=cM, and
this is same as the case of surface waves. But at the condition of the Kelvin-
Helmholtz instahility M 4-M® =0 is consistent.

It may be considered that the transfer of mechanical energy from the non-
perturbed flow to the perturbed wave motion is made by the action of Reynolds
stress at the present inviscid condition. In the interior of both fluids this stress
is not active even at the present unstable condition, because we have assumed
that both fluids make an irrotational motion. At the interface this stress may

be controlled by —(::0—u1®)p:1 0 —11®) at y=0.
From (3-16),

—~ @V — DY 1D —9 D) at y=0
=—{—A(UD—c)cik et A, (U D —¢) ek €874t} (3-24)

When we compare the two terms of the right hand side of (3-24) with (3-20)
and (3-21), we can understand that the first term of (3-24) acts on the upper
surface of interfacial boundary (it is influential to the momentumn change of the
lower fluid), and that the second term acts on the lower surface of interfacial
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boundary (its effect is active to the momentum change of the upper fluid). In

other words the first term of (3-24) multiplied by p® is equal to (3-21), and the

second term of (3-24), multiplied by p‘® and if its sign is changed, is in agree-

ment with (3-20).

; By this way the Reynolds stress which acts to the direction of progress of
waves on the upper surface of interfacial boundary is '

Ty =p P AN U D —cr) cee? g4 (3-25)

and the one which works to the inverse direction of progress of waves along
the lower surface of interfacial boundary is

T—n=—pPA N U —c,) ok e¥00it (3-26)
The work per unit time by these stresses is computed as
B " Ty U —peny UR=(pP —p) g A1 cik €%t - (00 - p ) ArPe kP ¢4t
(3-27)

(3-27) is in agreement with (3-19).
The work at the flexible boundary, which is caused by the Reynolds stress

in the present case, must be appreciated as the work of pressure fluctuation at
the same boundary.

In the present problem at the interface,

pl(n: _p<l) ag';;D _P(Dum U(l) _pcljgm
(3-28)

PV = — oD a%f) —p DD T - oDy

These are computed as ;
D1V =—pD Arkc (U —¢,)sin ko —crt) e¥e
+ o A UD —c) ker cos k(x—c ) g™
+ oW A ke cos k(x—crf) it pD Aiciker sin k(x — o) €40t
.T '""O —p D UD A UW —cr)cos R(x—cot) ehers
— U D A ke sin fe(a—crf) €4t — p Vg A1 cos (x5 —cit) et (3-29)

DD =pP A k(U —cr)sin ko —crt) ekod
— P AU D — ¢, ) ker cos k(x—crt) et
—p® Aykei? cos B(x—crt) €%t — pD Arcdker sin k(a—crf) e¥
+o U DA 1R(UP —c,) cos k(x—crt) e
Fp P UMD A ke, sin k(x — ) € —ptPg A1 cos k(x—crt) ek’ (3-30)
By making use of these expressions and vertical velocities from (3-16),

(B (1)
P e.*eﬂkoil.
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In (3-31) and (3-32) the first and the second terms of the righthand side are
due to components of the same phase with the slope of wave profile, and the
other terms are from components with the phase of wave profile. From (3-31)
and (3-32) the work per unit time at the interfacial boundary given by the pres-
sure fluctuation is

— P DY D 4By, (D= (p> o) A 23 e out - A 3hcig(pt® — pthd) ghhost
(3-33)

This result coincides with (3-19) and (3-27), and it is clear from (3-31) and
(3-32) that the effective work of (3-33) is given by components of the same phase
with the slope of wave profile. This is a noticeable point and is different from
some previous discussion, which is effective at the stage of very small c: (see
J. W. Miles (1959) pp. 584~585). _

The result of these computations indicates that the Kelvin-Helmholtz insta-
bility may be an amplification mechanism which satisfies the necessitated dy-
namical conditions of momentum and energy transfer in its linear approximation.
But the assumption for the calculation of this instability is very strict, and in
actual phenomena this strictness and the peculiarity of the assumption may limit
the practical application severely.

3.3 The second order approximation and its remarkable properties
(3.3-1) Putting the first order approximations ;

¢1(1)= {:%&(U(I)_cr)_%ct}eik(?‘cfn.ekcic.e—w :

+ { i“g_l( U — Cr) . %m } g iklz—c 6y, e""i‘ Lo kY ( 3_34)
¢1(s) — 1 iz;h (Uczy —-Cr) -l—glct}e”‘(”"cr” . gkegt, gy
i { _‘_;’i( U®—c)+ %Cil g iRE-c b, gyt gy (3-35)

A
m= 2

‘é ! ikca—c,ty . gkoy (3-36)
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The second order approximation may be also expressed by ;
(SIS L N ]
¢ =(B, +iB,, ) =01 gkt g~y

+ (B;i) _ z-Bg)) g tikiz—c ), glke,l, o 2ky + COIlStzu)t (3_37)

(¢) I ) -
¢?(2)=(‘Bﬁl +EBEB )eﬂk(: cTc),ezkcic,ezky

+ (B;i) —iBzz)) gi3ktz—c,t)  plkeyt, o0k 1 Consty (D¢ 7 (3—38)

yg:(An—l—iAzz)e‘:zkc""“r‘)'62“1"-}-(1421—fAsa)e-‘%(”—cr”'em’“ (3_39)

Using the second order kinematic conditions of interfacial boundary (3-10-2)
and (3-11-2),

.B;i)=A22(U(D-—G)—Ana—%kfhch

1 (3-40)
B;;) =Aul(c,— U)— Ay Ci_IkAlg(Uu)—Cr)

B = Auler— U+ Anc—hArc
) (3-41)
By, = An(U® ~6)+ Anci—r kAN U D)

Using (3-9-2), next three relations can be obtained ;

3 H
Al (U(n —Cr)Cr"l-p(nsz:z ‘il

0D2ker By A p2kesBYY 4ok .

—p® U(1>2kB;;) — oD DR ‘%;2

(UD—¢)+pDgAn

n 12

: .
=pD2kc, By +p®2ke. By, +p("’)k9AT1(U‘B’—Cr)t:r-i-pmk“a” ‘t

Ayt 2 3
) (U —e)+pPgAn (3-42)

—p® Uczysz;:>_p(z) [k
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p‘l’ZkaB:;)—p(DZko,-B;i)—pmk”c,c{ 41 —}—p“’k”Aq: (UD—¢)es
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N It

2
=p®2ke, By, —p*D2kcr By, +P‘2)k20sAT1( U <”—cr)—p<”k”cmi

b
O UDRBY + oD USR AL  p g A (3-43)

o ConsteD +pME2 A it =p® ConstsP +pPk A ¢ (3-44)
From (3-44)
Const:P=Consts® = — k2 A%¢,? (3-45)
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By this way, if ¢:%0 is consistent, Const:®> and Const:®® are proportional to
¢ even in a condition that the both layers are sufficiently deep. Inserting rela-
tions (3-40) and (3-41) into (3-42) and (3-43), As and A may be determined as

AD B
A _Ct( E1 +_fi:)
13 = Yy
1+
4B D | | (3-46)
i
E* E
An= %2
1+ oD
Here
ARLp(U D — )+ p( U —g)}=A \
2 2
BLL (oo U —e)— p (U —er)) =B
A - (3-47)
41 {pB(U® =) —cd)— p(( U —g ) —e)}y=D

oD — p)— 2k pP(U D — £, 4 pI(UD — )} + 2k Hp® + pD)=E

In the deduction of (3-46) of the second order approximation, we used the
relation of c¢=c¢r+7ci, and ¢ is treated as a finite one. But the concrete relation
of the first order approximation (3-15) is not yet used. Therefore we can also
use (3-46) at the condition of UW=UM=0, ¢=0. In this case ¢ may be put

g p®—p®
o =?_PW , and A and Ax may be expressed by

kA2 p®—p (3-48) .

4 P(H)+p(1)

Ae=0
Az = }

The expression of (3-48) is in agreement with (2-23), and the term with a
phase shifted =n/2 is disappeared. The appearance of A: in the case of ¢:%0

should be remarked.
Then we use the relation (3-15) to obtain the clear meaning of (3-46) and

(3-47) in the case of the Kelvin-Helmholtz instability.

Here

_ pOYD DY PO UD—_U®Y g p®—ph
er= P 4 p® » 0= (o™ -+ p0)3 k p®4pm

(>0
(3-49)
From (3-47) and (3-49),
A=0 (3-50)
Therefore (3-46) may be simplified as
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A92=C¢% (3 1)
-5
Pl
2= E

(3.3-2) Here the properties of A and As of (3-51) will be examined at the
condition that (¢i/c,)* may be considered zero (¢; is very small).
From (3-47) and (3-49),

. BoDp@([J ) — [Tty

—2k{ oD =, P+ p (T D —¢,)2)

P(23+p(1)
= 2kpOHU D — g P = 2kp DT D — g Y —kpMWp (D U)—2¢,}*
- p(”-l-p‘n
<0 (3-52)
(3-52) indicates that E is always negative in the present case.
Similarly,
24.9 (1 TFCY 501 €23 5C1) — 5(D)

4 (o +p®Y

Accordingly An<0 is eatablished in the present case. On the contrary if
UO=D=0, and ¢;=0 are consistent, As is positive as shown by (3-48). By
this way under the condition of the Kelvin-Helmholtz instability, a quite peculiar
wave form may develop, if way consider its second order approximation.

The expression of B of (3-47) is computed as

(1)p(2)(U<2)_ U(l))
p(1>+p(2)

B=p AL (3-54)

Thus B changes its sign according to the sign of (U®—-U®), and as we
assume U®>U™, B0 is consistent. ¢ >0 is clear in the present problem, and
so we have A>0. This is a noticeable result.

From (3-39) the positive sign of As indicates that the upper part of wave
form deforms to windward side in inverse to its direction of progress at the
second order approximation.

Expressions of Az and A are

A D — kz:ﬁ g(pm_p(n)z
YT E T ok UP — o) 4 2p DU S — Y+ D p (U D+ U )26,y
(3-55)
An=cl— kAL DTS — TD)g,
n=EL e 2PN [ ® — ¢, Y2 2p DY T — ¢, )2 4 pDpD (T 4 DY —2¢, )
(3-56)

Under the condition of (ci/cr)?—0, if p* approaches to p®, these relations
become

AL U o

A0, Anﬁma, Cr—> 5

(3-57)
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When the interfacial wave generated by the Kelvin-Helmholtz instability is
seen at the boundary between fresh and salt water, the wave profile of the
second order approximation may be controlled by (3-57).

At the condition of p’—0 and of p®—1 in (3-55) and (3-56), we have

An—order of (—%412), A0, GolU® - (3-58)

When the wave generated by the Kelvin-Helmholtz instability is seen at the
boundary between air and water, its wave profile may be characterised by (3-58).
It shows that, although the deformation of wave profile caused by As is not
vivid, Au is still active, and that the water wave is flat at its crest and steep
at its trough. This effect of As of (3-58) is contrary to the usual appearance of
wind generated waves of water surface.

The Kelvin-Helmholtz instability has generally very special characters in its
first order approximation as given in section 3.1 and 3.2. The most distinguished
one is that the real wave celerity (¢) is not dispersive and does not depend on
gravity in its expression. In the second order approximation we have also above-
mentioned singular properties. S. Chandrasekhar (1961) introduced the picture
(Fig. 117 of his book) taken by J. R. D. Francis as an example of the Kelvin-
Helmholtz instability on oil surface. Although the capillary effect may be im-
portant at such initial stage of wave generation, it seems that the wave profile
is not agreeable with the computed result of (3-58).

(3.3-3) In (3.3-2) we used the assumption of (ci/c-)*—0, and so from (3-49) it
is clear that, if p approaches to p® beyond the degree of the case of fresh and
salt water, (U0 =Y =0 must be consistent. In such case UM —U® becomes
also sufficiently small. This means the rapid increase of A in (3-57). At the

2 1
same time under the condition of (cife,)*—0, the case of %%>cﬁ should
be considered in (3-49), and so p™’ cannot approach to o® indefinitely. Therefore
we must desert the assumption of (¢i/c-f—0, when we consider p? to approch to
" extremely.
Then we examine the behaviour of Axn and Az when pt approaches to p®

indefinitely. At the limit of this case, from (3-49)

ULy ., (Uo7 U7
CT—T y Ci°= 4 y Gi= 2

and, from (3-47)
A=0
kBA,2
2

(c:>0) (3-59)

B= (T D — )

(3-60)
D=0
E=0
We cannot clarify the properties of As and A of (3-51) by making use of
the result of (3-60). In (3-60) A is always zero at the condition of the Kelvin-

Helmholtz instability, and so it does not need the more strict analysis. The ex-
pression of B in (3-60) does not change when pt approaches to p®*, and B has

— 82 —

a I
the

the

and

beco:
prese
to ne

in in
tion

form
Ap—(



a negative finite value at the present assumption of U®>U®. D and E need
the more detailed analysis, and must be examined at the limit of (p®—p)—0.
Putting

Cr=Cro+dcr , ci=cu+dc; and p®P—pW=4dp (dp is very small)

1 P W]
% ’ Cw:% from (3—59))

the following expressions of 4dcr, de¢s can be obtained from (3-49).

(here Cro=

do U®H—UJw

der= D 1 (3-61)
de= '_% ﬁf) _;13" UcniUcﬂ) (3-62)
From the expression of D in (3-47),
4D= kaf‘z LU D —r0) =) — 2p DU D — r0) der— 20 Vcn e
+ 20T D —g0) der+2pWceodecs}
By making use of (3-61) and (3-62) into the above relation,
4D=— kgflg do (Um_z ywy (3-63)
In the same way from the expression of E in (3-47),
AE=gdp—2k{ dp(U® — (e} — 20 o (UD + UD —26,0)}
+2kci?dp~+8keioptV dey
Using (3-61) and (3-62),
JdE=—gdp (3-64)

and so at the limit 4p—0,

A ]ﬂA ] U(l)__ U(ﬂ) 2 3 2
Aalz_%=_d§=_ ezgl ( . ) =_k2§1 el (<0)  (3-65)
BB BAD (UO-UDp  pAso
An=c E —CIAE =" gdo 1 =" gdp Cio (3-66)

By this way Az has a finite negative value in proportion with ¢i?, and A
becomes infinitely large in inverse proportion with 4p. As dp is positive in the
present treatment, A becomes positive infinity, and, if dp is negative, it tends
to negative infinity.

When Ais is positive, the upper part of wave profiles deforms to windward
in inverse to the direction of wave progress. When A: is negative, the direc-
tion of deformation is leeward. The expression of (3-66) suggests that this de-
formation of wave profile may be treated as an initial value problem at the limit
4p—0, and so the gradual and explicit deformation of interfacial boundary, where



the velocity of both fluids is discontinuous, may be found in this case. The
direction of deformation of the interfacial boundary is controlled by the sign of
dp in the present treatment of the second order approximation, and this may be
compared with the analytical result of L. Rosenhead (1931), who used the condi-
tion of pV=p®,

Note : From the analysis of section 3.2, we can consider the Kelvin-Helmholtz
instability as an extreme case of the amplification mechanism of interfacial waves
by shear flows. The properties of the second order approximations of the Kelvin-
Helmholtz instability cannot be concluded to be approved also in the general
treatment of the amplifications of gravity waves by shear flows. But it seems a
matter of care that the existence of A in section 3.3 at the case when o™ is
comparable to ¢ (apart from the problem of the sign of Aj) may become an
important character for the development of interfacial waves under the shear
flow.
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