港湾技研資料

TECHNICAL NOTE OF
PORT AND HARBOUR TECHNICAL RESEARCH INSTITUTE
MINISTRY OF TRANSPORTATION, JAPAN

No. 18 July 1965

軟弱地盤における埋立工事施工例………(編集) 柳 瀬 重 靖

昭和40年7月

運輸省港湾技術研究所

1.	まえがき
	調查対象埋立地,上質記号,施工例写真
2.	各港概要
	広島港東部埋立地
	福山港臨海工業地帯埋立地19
	水島港 A. B. C. 地区
	尼崎港 東部埋立地
	大阪南港 1.2.3 区埋立地
	堺港 6.7 区埋立地 ·····63
	四日市港中起地区埋立地70
	名古屋港 2.3 区埋立地
	衣浦港 1.3.5 号地
	川崎港 大師河原地先型立地四工区の二 124
3.	特 記 事 項
	軟弱土上への載砂
	地表面が水面上の場合 131
	" 水上 "
	軟弱粘土による埋立土の地表部分の乾燥
	パンフロック
	粘性土に対するコンポーザー工法の施工
	特記事項図面
4.	調査結果のとりまとめ

まえがき

近来,産業経済の発展に伴い,海面の埋立による臨海工業団地としての土地造成が盛んに行われているが,我国の港湾地域では軟弱な沖積層の堆積している所が多く,地盤条件に対して多くの土質工学上の問題が存在する。臨海工業団地は港湾計画と密接な関係にあり,埋立土量は航路泊地の浚渫土量とバランスするごと計画される場合が多く,浚渫土が軟弱な場合は,造成埋立土に対しても重大な問題が生じてくる。斯様な地域の土地造成に際しては,各地の地盤条件,使用計画に応じて最も適した工法を合理的に施工すべく,基礎的な研究と共に,各種工法について十分な検討が必要であり,又,施工の途上においても状況によって常に最善の対策をとって行かねばならない。

現在施工されている各地の埋立工事においては、夫々、独自の方法がとられているが、これ等各 地の施工例を総合して検討して見ることは、今後の設計、計画に対して多大の意義を有するものと 考えられる。

この施工例集は昭和38年秋の予備調査により、臨海工業用地として代表的な埋立地を選択定し、39年夏再調査により資料を蒐集したものである。編集の方針として、一般的な軟弱地盤工法の見地からでなく、軟弱地盤における埋立工事に関する事項を主体とした。したがって、埋立工事に関する一般的な重要事項でも省略したものもある。記載事項は、土質概要、埋立護岸、埋立工法、造成地盤の状況で、工程、工費、造成後の構造物に対する地盤処理工法は表のみとした。はじめに各港毎に工事概要を述べ、各港における特殊な工事、試験工事等は特記事項としてまとめ、最後に各事項について総合的に調査結果の概要が述べてある。

調査の段階で施工中であった場所も多く、一貫した資料の蒐集できなかった所もあり、種々の事情で公表できない点もあり、又、調査洩れもあって、甚だ不完全なものとなったが、現在の軟弱地盤における埋立工事の実態の概略は掌握できるものと思う。

最後に, 調査に御協力頂いた関係諸機関の各位に対し深甚の謝意を表する次第である。

1965年6月

構造部 地盤改良研究室

業務担当

監修

設計基準部長

倉田 進

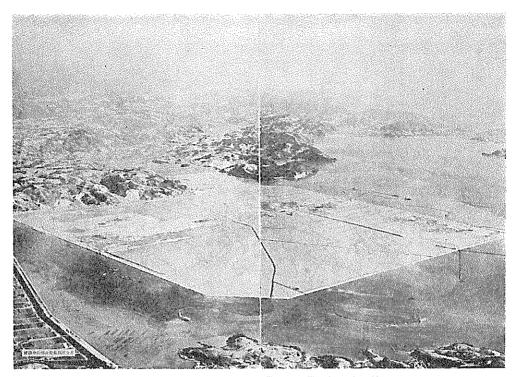
編集

構造部地盤改良研究室

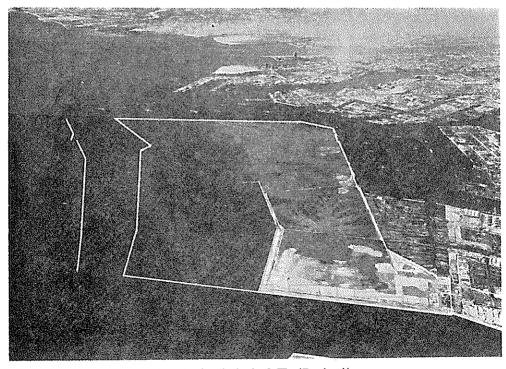
柳瀬重靖

資料整理

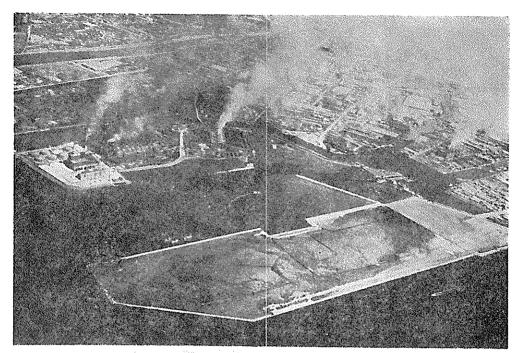
光本司石塚忠久


阿部喜代志

調査対象とした埋立地

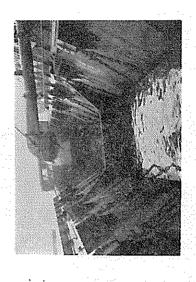


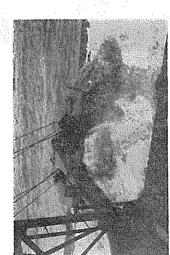
土質柱状図に使用した土質記号



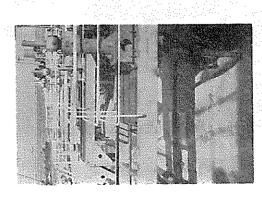
福山港臨海工業地帯埋立地

大阪南港1,2,3区埋立地


- 2 -



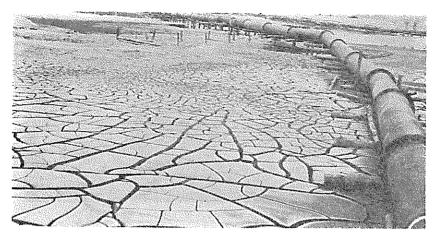
尼崎港東部埋立地



堺港5,6,7区埋立地

良質砂運搬に用いられる サンドキャリヤーの船艙

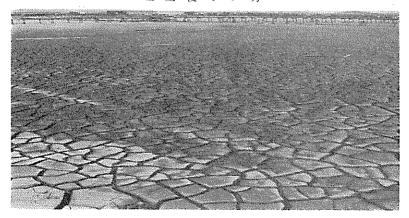
a

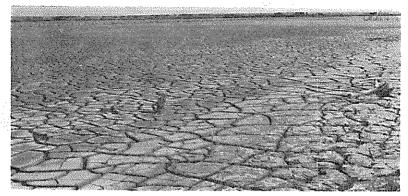

光

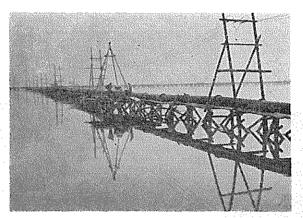
凶

拠

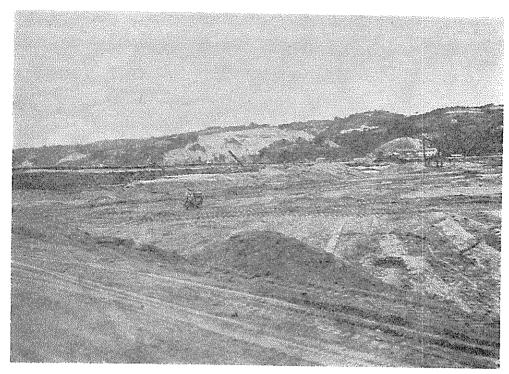
땥


К


埋立後4ヶ月

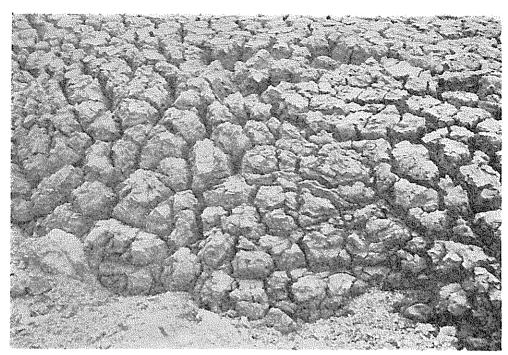

埋 立 後 4 ケ 月

同 上 内 部 軟弱粘土による埋立地


埋 立 後 4 ケ 月

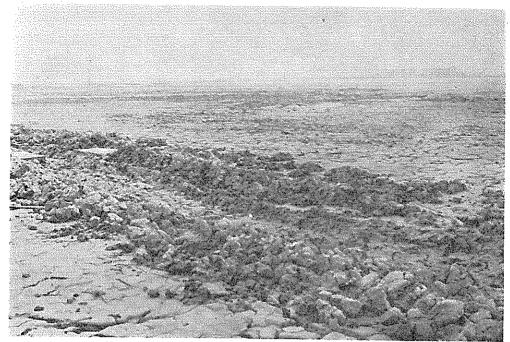
埋 立 直 後

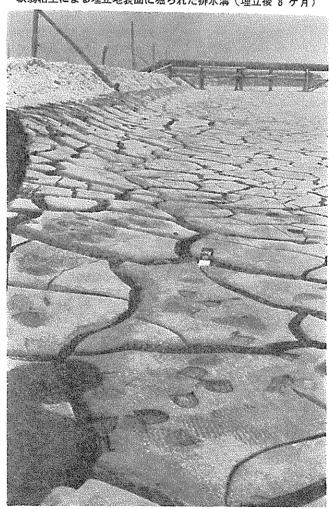
同上4ヶ月後(左は山土築堤) 軟弱粘土による埋立地



硬質土による埋立地

硬質土埋立による軟弱土の押出し


- 7 ---


押出しによる隆起粘性土の乾燥状態

ベーバードレーン 施工状況

軟弱粘土による埋立地表面に堀られた排水溝(埋立後 8 ケ月)

軟弱粘土による埋立地の築堤付近の表面乾燥状況(埋立後 4 ケ月)

\times (東洋工業用地) 広島 東 部 地

広島市仁保町日宇那地先

9 mのシルト層が存在し、以下は磔交り砂層となる。

工事概要

工期

昭和36年~39年

工費

設計

広島県広島港事務所

施工

水野組

埋立面積

1, 279, 900m²

理立十畳

5, 482, 600 m³

平均水深

-1.0m

埋立地盤高

4-5.0m

使用目的

東洋工業

造成目標

浚渫土による埋立を十4.0m 迄行いその

上に 1.0m 厚の山土を置いて地表面を + 5.0m に仕上げ る。

埋立工法 はじめに本護岸を築造し、次に浚渫によ る埋立を行った。その後重要構造物の建設部分は砂質シ ルトを吹込んで軟弱埋立土と或程度置換し、上部に砂質 土を吹込んで改良した。

十 皙 概 要

埋立地区

図-2~5に埋立地内部の土質試験結果、護岸線土質 断面を示す。

東部から西部へ、北部から南部へ粘土層厚が大となっ ており、boring No. 1の点では-40m 程度、 東護岸中 央部で-7m程度, 南側護岸線では-28~-35m迄粘土 **局が続き以下は砂層となっている。この粘土層の大体の** 土性は次の如くである。

含水比 60~100%

液性限界 60~120%

間隙比 1.5~2.6

 $qu = 0.05 + 0.03 Z kg/cm^2 (-18 m \pm v)$

qu = 0.59 + 0.016Z'kg/cm² (-18m以下, Z'は-18

m以下の深度)

浚渫地区

図-11に粒度分布を示すごとく、南側は大体粘土でそ の中央部は10~30%程度の砂を含んでおり、改良地区の 散弱埋立土置換に使用された。東部の猿猴川筋は図−13 の如く表層 2~3 mは砂で東護岸の付近はその下に 2~

埋 立 護 岸

設計条件

士質 南護岸法線は前述のごとくで, 東護岸法線上は 南部を除いては地表付近に粘土の薄層をはさんだ砂層で ある。

水深

南護岸 -1~-5m

東藤岸 $0 \sim -5 \text{ m}$

安全室

1.2 以上

型式構造 各護岸の標準断面は図一6に示す。

地盤処理 南護岸は安定計算の結果図-6.7に示す如 く施工期間を半年として-19mまで砂柱直径45cm, 間隔 3.2m 正三角形配置のサンドドレーンを施工した。

地盤改良を施工せず直接盛土した場合の安定断面は図 -8のごとくで大量の押え土砂を必要とし、工期的に困 難であるためサンドドレーン法を採用した。埋立完了時 期の護岸の安定計算結果は図一7のごとくである。尚図 - 9 に示すごとく西南偶の延長は矢板岸壁とし、巾約50 mにわたり-16mまでサンドドレーンを施工した。

埋 立 工

埋立土量の設計量及び実績量は5,482,600m³,5,742, 600m3で土質別の値は不明であるが、設計量に対する施 工実績量の比は約1.05である。

当初の送泥管の配置は図-1のごとくであった。

+4.0m 迄浚渫土で埋立て表面に 1 m厚の 地盤処理 山土を置くのであるが、埋立土が軟弱である為使用者側 の要望により中央部の重要構造物建設予定地231,000m2 の部分は特別に改良を行った。即ち、図―10に示す位置 より細砂20%程度を含む良質シルトを吹き込んで軟弱埋 立士を或程度置換し、吹止高を+2.5~3.0mとし、1~ 2カ月の間放置して、猿猴川口の良質砂を十4.5~5.0m まで吹込んだ。

改良工事の送泥管配置は図―10のごとくで既設線の中 央に増設間隔は56~75mとし、良質シルトは図-11のご とく矢印の方向に吹込み口を切換えながら送 泥 を 進め た。吹込み口の切換間隔は約30m, 一カ所の吹込土量は 7,000~10,000m3とした。

改良区域の砂吹込みに際しては試験区間を設けチラシ 板の位置、モラシ吹きの方法、一回の吹込厚、吹込口切 替問隔等を決定した。

吹込方法としては送砂距離の選い所及び吹込地盤の軟 弱な所に比較的粒子の細かい土砂を、逆の場合には粒子 の荒いものを吹込む方針をとった。

モラシ吹き間隔は30m, 吹込み口切換間隔は24~30m 一回の施工厚は50cm程度とした。使用ポンプ船は1,200 PS2隻,3,000PS1隻である。

埋立後の状況

改良地区の完成後の状況は図―12のごとくほゞ2m厚の砂が載っていることが分る。

ポンプ船能力が大きいと流量も大きくなるので、吹込土砂の攪散面積が大となり、めり込土量も少くなる。送 応管間隔は40~50m程度が望まれたが、経済上56~75mとなっており、3,000 PS のポンプ船では曲管の使用程度で堆積不足部分を補足できたが、1,200 PS では支管の増設が必要であった。

吹込砂の施工中の歩留量は51%程度であるがめりこみ量,流出量は不明である。

又, 砂吹込完了後3カ月間の地表面沈下量は, 20cm程度であった。

載砂後は直ちに山土を計画通り置土している。

改良区域外の地表面は排水管理を十分に行って1m厚 の山土を置いている。

広島東部	地区造成工事概要
工種	工程
南 護 岸	
敷 砂	36. 5 ~ 36.11
砂抗	n
荷重砂	36. 6~36.12
護岸上部	36. 7 ~ 38. 9
吐出口導流棚	36.11 ∼ 36.12
東 護 岸	
基礎工	36. 5~36.12
方塊工	36. 5~36.10
石積工	36. 5 ~ 37. 2
階段工	36. 7~36.12
西護岸	
基礎工	36. 5 ~ 36.12
石積工	36. 5 ~ 37. 2
埋 立 工	
受枠工	36. 6~36.12
配管工	36. 7~37. 2
浚渫工	36. 12 ~3 8. 7
付属工	36, 5~37, 1

図-1 広島港東部埋立地造成工事平面図

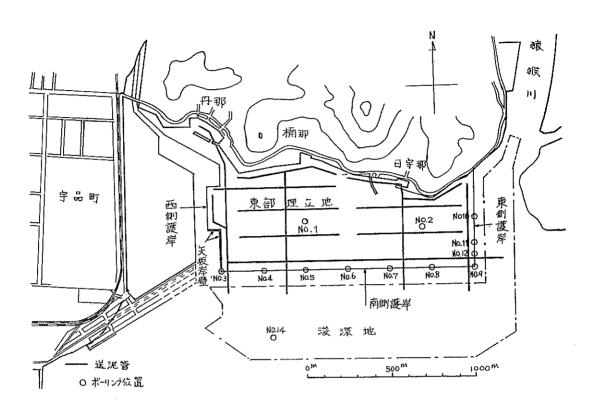
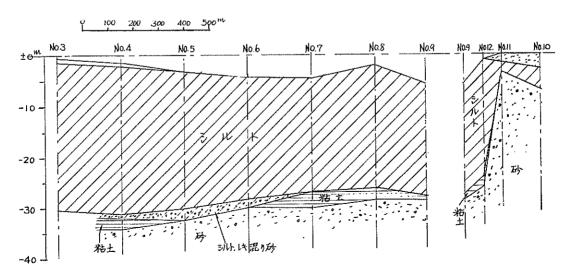
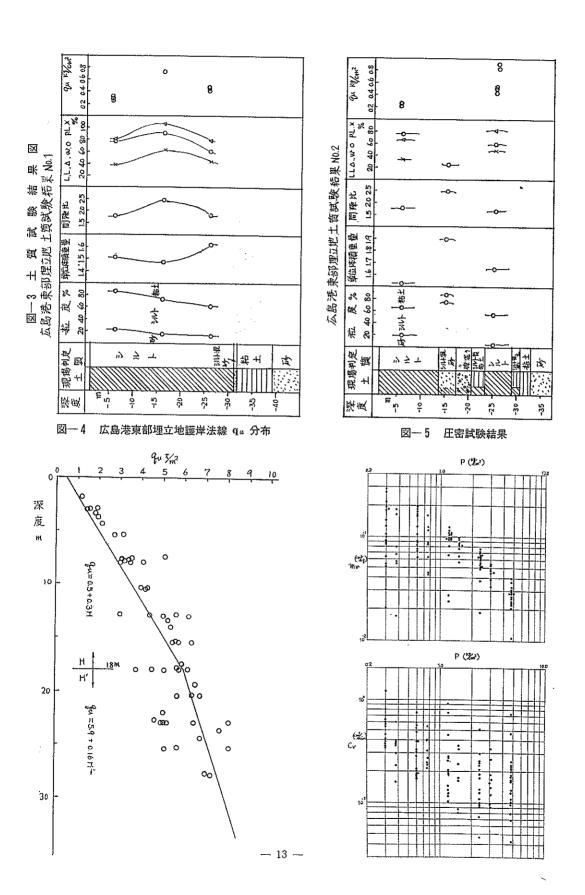
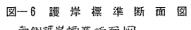
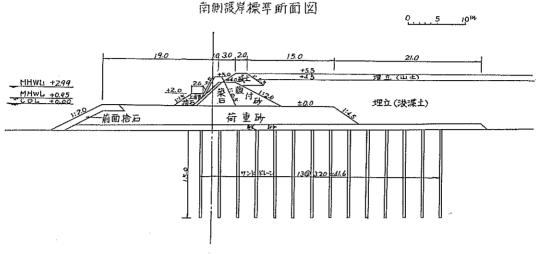
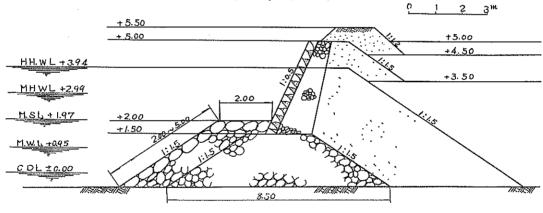






図-2 広島東部埋立地護岸部分土質断面図



東側護岸標準断面図

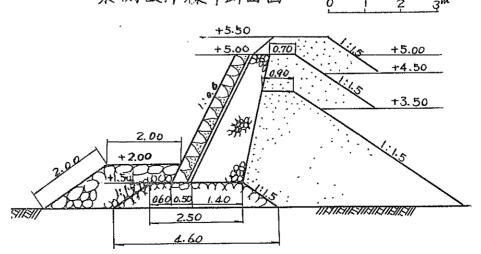


図-7 南側護岸安定計算

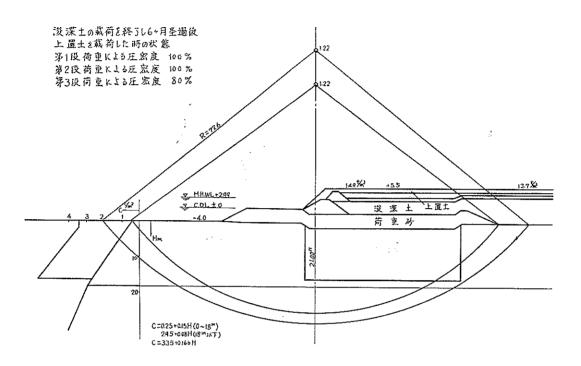
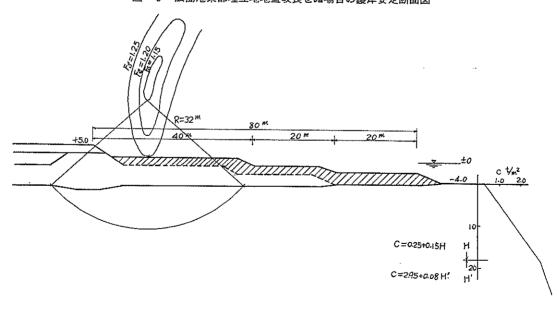
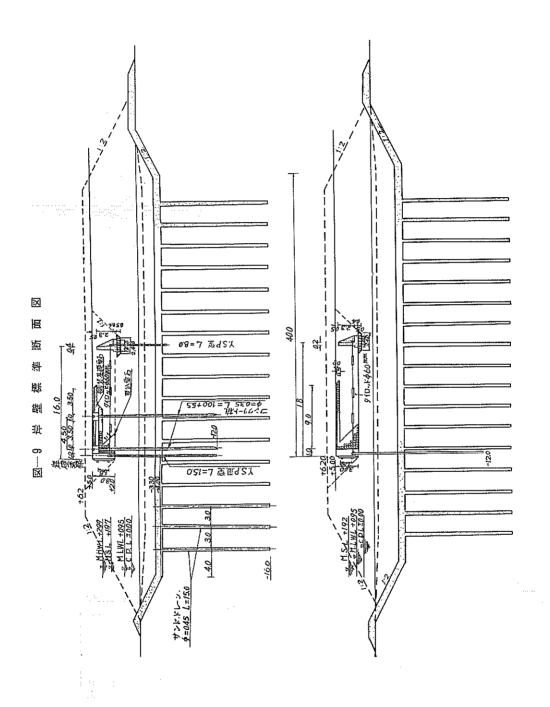
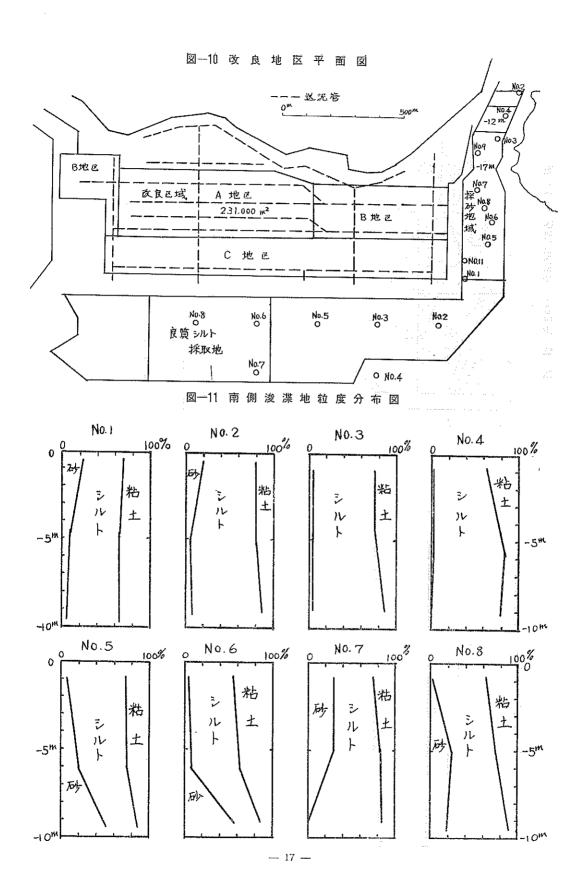
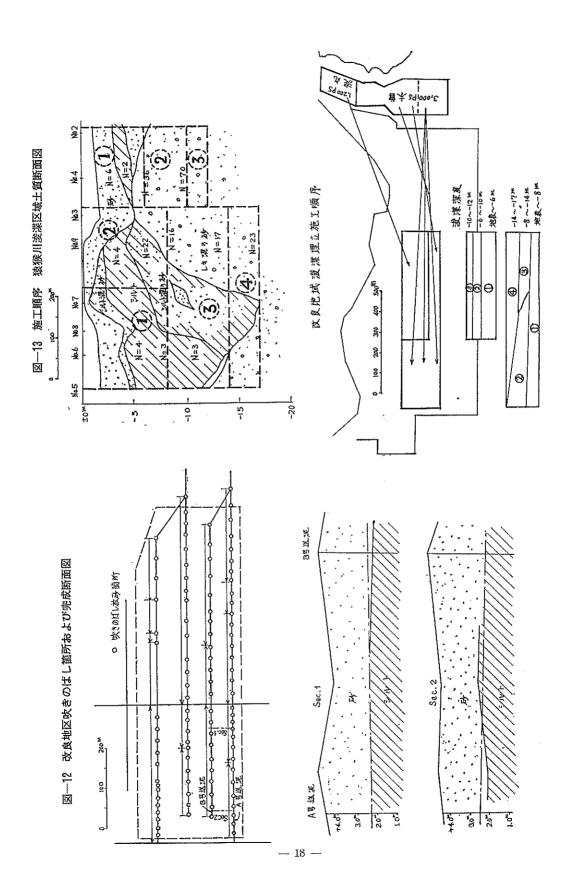






図-8 広島港東部埋立地地盤改良せぬ場合の護岸安定断面図

福山臨海工業地帯(日本鋼管用地)

福山市引野町沖浦

工事概要

施工

工期 昭和37年3月~昭和41年3月

工費 11,806,000,000円

水野組

改計 広島県福山臨海工業地帯建設局

埋立面積 7,348,000m²

埋立土量 72,400,000 m³

平均水深 —2.0m

埋立地盤高 +5.1m

使用目的 製鉄所

造成目標 工場建設計画に従い指定された必要な支 持力を有する地盤を造成する。

埋立工法 埋立地は1~5工区に分割され、護岸床 堀土、航路舶地の浚渫土(硬質土及び軟質土)及び山土 を、建設計画に応じて図—5のごとく埋立てる。護岸は 埋立工期前半に終了させる。

土 質 概 要

埋立地

海底より10m程度は軟弱な粘土及びシルト質粘土で、 $w=60\sim140\%$, $e=2.0\sim4.0$, qu=0.036Zkg/cm² で,所によりその下に $1\sim5$ mの $N=10\sim20$ の硬質粘土があり,以下はN>20の砂礫層となる。 $-20\sim25$ m付近よりN>5 の粘土が $1\sim10$ m程度存在する。

浚渫地

浚渫地は付近の舶地及び航路であり、浚渫深度は舶地では-20、内海航路は-4m、外海航路は-14mまでで土質は埋立地と同様である。

山土

埋立に使用した山土は宅地造成計画を基礎として掘削 した土砂で古生層の花崗岩及び洪積層よりなっている。

埋立 藤 岸

浚工期限の関係で護岸の基礎はすべて上層の軟弱粘性 土層を取除き良質砂で置換、その上に捨石を積上げる型 式とした。各護岸の標準断面、施工位置を図一7,1に 示す。

A護岸 南侧防波本護岸

設計条件

風速20m/sec, 吹送距離16Km, 吹送時間/hr 水深8.4m, 波高1.4m, 天端高+6.0m 安全率

B護岸 東西仮護岸(原料, 製品岸壁) 安全率 円弧すべりに対し1.1以上

安全率 円弧すべりに対し背後埋立土 + 2 m の とき 1.1 以上

背後土圧によるすべり 1.98

壁体の剪断変形 1.9以上

1.54

剪断破壞 D護岸 捨石中締切

水深大、波浪の強い所に採用

安全率 円弧すべりに対し背後埋立土 + 2 m のとき 1.1 以上

E 護岸 4 工区

安全率 円弧すべりに対し1.1以上

干拓堤防直前は床堀ができないので山土撤出により軟 弱土を押出し、結果的には殆んど山土で置換されている。

地盤処理工法としてはサンドドレーン、自然圧密工法 も考えたが、工期に対して工事量が膨大となるので不可 能である。

仮締切は埋立定地内にある航路の付替浚渫の土捨場の 外囲いと、一期工事(1~4工区)二期工事(5工区) の境界に施工した。

床堀は本護岸はプリストマン、仮護岸は主としてポンプ船でN>8の硬質地盤まで浚渫、ポンプ船では浮遊粘性土の沈降、法くずれにより1~2m厚の粘性土が残留するので置換前にプリストマンでさらえ堀を施工した。

置換及び腹付砂は他社より運搬、粘性土の流入を防ぐ 為床堀直後に投入し、腹付砂の流失は床堀捨土を法面に 被覆して防いだ。

護岸上部の漏水埋立土流失に対しては栗石採取の際生 ずる多量のズリを栗石の目潰として使用した。

仮護岸東側では腹付砂の代りに山土を捲出した所,腹 付砂断面の10倍程度の山土を要したが,その後の築堤が 簡単となり,材料置場として利用でき工程管理上非常に 有利であった。

腹付砂及び捨石の設計断面に対する実質量と施工量と

の比は失々1.45及び1.64であった。

埋立工

図一2の土質断面図に示すごとく上層は軟弱粘性土層 であるがその下には良質の砂、礫層があるのでこれを有 効に使用する。即ち

重量構造物の建設される部分

砂礫を主とした浚渫硬質土で埋立てる。

工場建設の早期着工と海底硬質土の不足を補うため山土で埋立て、硬質土の場合と同様に軟弱粘性土の押出しを期待する。

軽量構造物の建設される部分

先に浚渫粘性土で埋立て、一定の乾燥期間を置いて上層3m程度は硬質土を埋立てる。

その他

建設計画の遅い場所等は粘性土のみを吹込み或は航路 浚渫の土捨場とし将来発生する鉱滓等で上部 を 埋 立 て る。

埋立設計土量

浚渫土 硬質土 17,540,000m3 歩留 85%

軟質土 45,970,000 // // 70%

航路 7,000,000 //

山土

1,910,000 //

埋立土荷重による圧密

 $Cv=4.32\times10^{-3}$ m²/day, $Mv=2.6\times10^{-1}$ cm²/kg 硬質土単位重量 L.W. L以上 $\gamma=1.3$ t/m²

增加荷重 4P=7.5~8.8 t/m²

圧密層厚 H =10mとする。

最終沈下量 S =1.95~2.29m

80%圧密に要する時間 t_{so} は両面排水とすれば10年前後となる。

吹込方法

1工区冷延地区

西側舶地より3本の配管で吹きのばす

1工区熟延地区

100m ピッチの配管で洩し吹きにより+2~3m程度 迄一様に埋立て後50mピッチで吹きのばす。

2工区転炉地区 南侧泊地

高炉地区 南及び東側泊地

3工区粗鉱ヤード 東側泊地

各泊地の上層軟質土は図-5のB地区へ吹込み,下部の硬質土を各地区へ洩し吹きする。

5 工区 現在軟質土の捨場とし、将来発生する鉱滓等 で適宜埋立てる。 淡渫に使用したポンプ船の性能は 表−1 のごとくである。

図-1に送泥幹線の配置を示す。管径は 4,500 P S のもので 31 in 平均 24 inである。

送泥管口の流出土砂に対してはポンプ船の馬力が大きいため受板では転倒するので管口を切開いて流速を減少させた。

施工経過

冷延地区では60m以上のピッチの配管で吹込んだため 極部的に硬質土が集中し、図―12のごとく良い所でも原 地盤が 1 m前後変動し、要い所では軟弱層のすべりとこ れに伴う硬質土のめり込みがあり、-8.0m 程度まで原 地盤が乱された傾向がある。

熟延地区でも吹込土集中によるすべりが生じ各所に粘性土が盛上ったが、完成時には硬質土で表面を押え外周部の軟質土は硬質十吹込により押出置換させた。

初めに粘性土を2m程度吹込み,その上に硬質土を入れる場合の安定計算は図一10のごとくで熟延地区で+3.0m,冷延地区で+2.0m程度の高さが限界で,これ以上は徐々に全域の高さを上げてゆかねばすべりが生ずる。

B地区へ吹込んだ粘性土はA地区にも流動し硬質吹込 土砂の拡がりを妨げる一因となった。

転炉地区では渡し吹き配管と放水口を3~4時間毎に切替え砂質土を比較的均一に埋立てる事ができ、配管の中間に生じた小さなすべりは吹きのばしで押えて行った。

中変地区では山土埋立の進行と共にすべりが大きくなり、転炉地区側からこれを押さえるべく硬質土を吹込んだが、両方からのすべりが重なり、原地盤が計画地盤高以上に盛上った。これはC地区との境界の隆起軟質地盤と共に吹延ばし及び山土築堤工と併用して低地区へ押出した。

高炉地区は水深大で、南北方向の洩し吹きとその切替、東西方向の洩し吹きを行ったが転炉地区及びB地区の粘性土の流入があり硬質土の砂分の少い事と相俟って、吹込土の拡がり悪くすべりが多かったが5本配管の巾の広い南北乾線が倒壊しなかったので、これより吹延ばしを行った。

東側護岸からこの地区中心部への道路のために山土捲 出しを行ったが東側の粘性土の逃げ場のない所では多く のすべりによる隆起が生じた。隆起粘性土はできるだけ 乾燥させ押出可能箇所は吹延し配管によって処理する。 実際には硬質土がかなり潜入しているので今後の工事上 左程問題はないものと思われる。

粗鉱ヤード地区は渡し吹きを行ったが排送距離の短い 事、ポンプ船が高馬力であった事、水深の大きい事、浚 渫土の主体が便質粘土であった事から吹込開始後十数目 で受枠が倒壊し、以後は吹延しを行ったが、最悪のすべ り地域となった。

隆起粘性土は或期間経過すると押出し困難となり図― 12に見るごとき地盤状態となった。

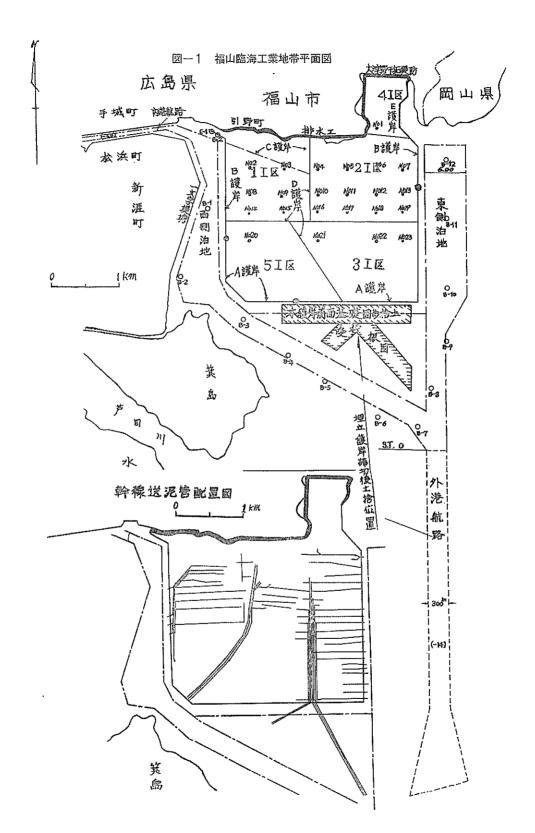
吐口は漁場から遠い所に設置したが、流出土が航路に入り、-20m の浚渫箇所がエコーサウンディング(200 KC)では-8m ではね返りを生ずる結果となり、流出距離は約1 Kmに 及んだ。

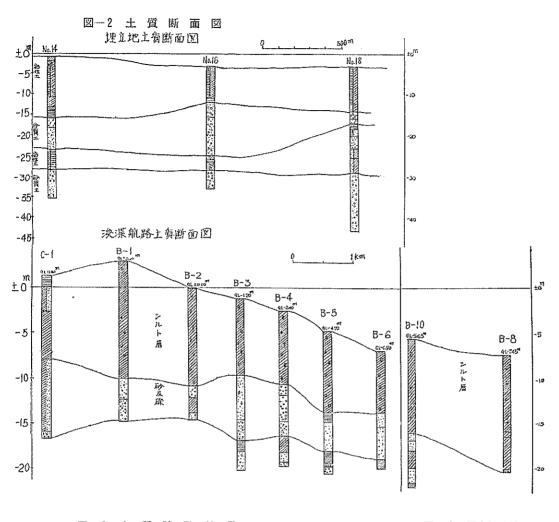
硬質土埋立部分の実績土量は次のごとくである。

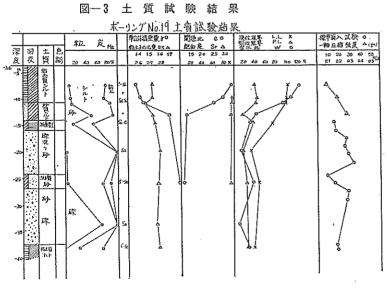
1 工区山土部分は先に砂分の多い粘性土を吹込んだた め計画 72万m³ に対し約 47万m³ で完成

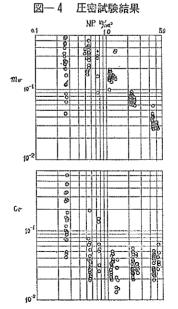
2工区中変地区は計画 61万m³ に対し約 80万m³, 転 炉高炉, 粗鉱ヤードの各地区では計画640万m³ に対し多 少不足する見込みである。

当埋立地では工期の制約を受け、軟弱粘性土層上へ強度的安定度を無視してかなりの原さの硬質土を吹込み、計画区域を完全に近い状態に仕上げるために、吹きのばし、洩吹後吹きのばす方式を採用したが余り好結果は得られなかった。軟質土硬質土を有効に利用するには建設計画に従い、仕切による使い分け、すべり沈下に耐え得る強固な受枠の使用、排砂方法を自由に切替え得るごとき方法等が必要であると考えられる。

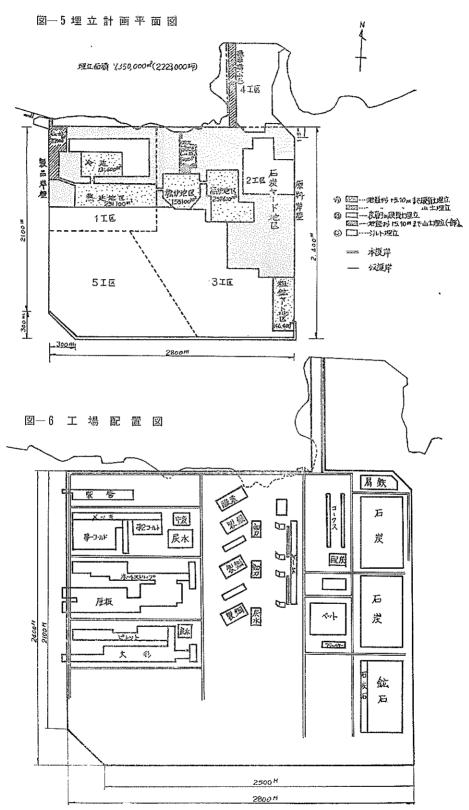

埋立後の状況


軟質土は浚渫により間隙を増大するので浚渫計画上造 成地盤高は十7mとなっている。 軟質上を埋立てた後の乾燥状態は埋立平均厚4mの所で図ー13のごとく吹込後1カ月で300%程度,6カ月で200%程度,1年後でも漸く120%程度で深い所では150%以上を示している。これは吐口付近の状態であるがその他の部分も同様な傾向を示すものと思われる。


表一1 使用浚渫船内訳ポンプ式


主馬力	浚渫能力	送砂距離	浚渫深度	隻数
	2, 100m³/b	4, 500 m	27m	1
ルディーゼ 4,000PS	1,200 //	3,000 m	21 m	6
ディーゼル 3,000PS	700 //	2, 500 m	19 ~ 21 m	2
雅	1,000 //	3,000m	20 m	1
ディーゼル 2,200PS	850 //	3, 000 m	21 m	1
電 気 1,500PS	650 //	2, 500 m	17m	1
	プリス	ストマン式		
グラ	ブ容量		隻数	
	4 m^3		1	
	3.5 //		4	
	3.0 //		3	
	2.5 //		6	
	2.0 //		4	
	1.6"		1	
	1.5 //		3	

IIII IVIJ 1 GO										1.07		4	3
工		種	37年	工 38	程 39	40	I	引	盘	工 総	· · · 額	334	費
越	岸	エ	71%	92%	98%	100%						単	価
床	<i>)</i> -T	堀	1170	3270	9070	100%	9	200	043m³	Zé	3%		
置	换	砂											
腹	付	砂砂							954m³ 500m³				
							3	, 032,	300111				
拾 栗		否}					1,	, 074,	723m³				
本	越	岸						3.	125m	8. 4	1%	273	3,000円/m
		石稅)							650m	7. 4		東 208	5,000 //
		4工区)							911m	1. 7			1,000 //
仮	締	切						5,	130m	5. 6		210	0, 000 //
埋	立	工	15%	80%	100%								
边	ç	渫											
	硬質						17	, 540,	000m³	32. 5	5%		
	軟質						45	970,	000m	39, (• .		
	疝	路					7	,000,	000m				
<u>1</u> 1	1	<u> </u>					1,	910,	000m	5. 5	5%		
£.	į,	- ii								11, 806, 0	000,000円	1	, 520円/m²
淮	(L	業	補 化	74						800,0	000,000		



-- 23 ---

— 24 —

図-7 護 岸 標 準 横 断 面 図

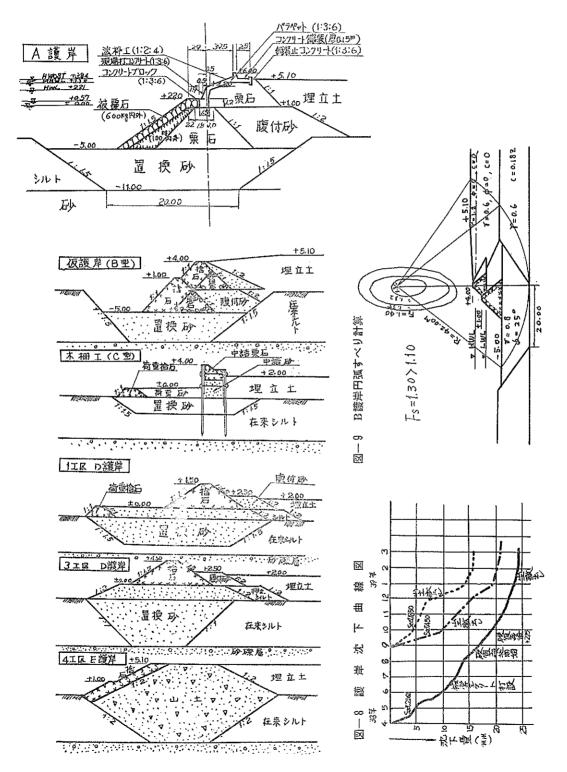


図-10 硬質土斜面の安定 (安定の場合) GH=1.00

砂砾层

94=036Z

qu(5/n2)

300 W % 100 200 +2.0 センンソレト 122m3 o_o EV 1=19562 E INTERT 10 C+131018821/2 シルト層 20 |ヶ月後 30 (政壊の場合) GH=2.00 4.0 あり5=1.9% 50 O シルト 層 C=0.1+0.183(%) 砂辟層 (安定の場合) 沙-02% 第-02% **参田部分田弧すべり計算** -12.00 (=0.6 C=0.10 Z(-600 120) 在来シルト C=01 10182(\$/2) 図-12 硬 質 土 埋 立 状 況 図 砂 +5 0

図-13 排出ロ付近の含水比

— 26 **—**

シルト思り砂磨

住来ジルトx埋立役ジルト

か(%?)

水島臨海工業地帯

A地区(三菱石油)岡山県倉敷市水島海岸通4 B地区(日本鉱業)岡山県倉敷市水島潮通2 C地区(未定)岡山県児島市

工專概要

設計 岡山県水島港湾局 施工 阪神築港その他

A地区 B地区 C地区 工期 昭和28~35年 昭和33~36年 昭和34~38年 工費 827,876,799円 1,893,542,078円 5,231,109,541円 埋立面積 906,000m² 1,055,000m³ 2,167,000m² 埋立土量 5,318,000m² 9,738,171m³ 12,255,386m² 平均水深 +0.4m-2.0 m-2.0m埋立地盤高 +4.6m +4.6m +4.6m使用目的 製油所 製油所 工場用地 造成目標 譲渡時地盤高 +4.6m

埋立工法

図一1に示すごとく各地区共航路泊地の浚渫土を以て 埋立て砂礫土を護岸付近に、粘性土を内部に使用し護岸 は最初から本護岸を築造した。

土 質 概 要

埋立地

A地区 図-2の埋立後の地質断面図に見るごとく、埋立土は非常に献弱な粘性土及び砂で、旧海底付近は数mのシルト混り砂,以下は-15m程度迄,所々に砂の薄層を狭んだシルト乃至粘土であり,下部の $1\sim5$ mは硬質粘土となり以下砂礫層となる。表層は N=0 ~1 、qu<0. 1kg/cm²、中間層は,N=0 ~3 、 $qu \doteq 0$. 2kg/cm²、下部硬質粘土はN= $10\sim30$ 、砂礫層はN>50である。

B地区 図-5に示すごとく埋立土は砂或は砂礫の部分が多いが所により軟弱性土の多い部分もある。旧海底面下-6 m程度までは砂或は粘性土で qu<0.2kg/cm², -13m 程度まではシルト質粘土で $qu_{max} \div 1.9$ kg/cm², 以下はN>50の砂礫層となる。

C地区 資料が少ないので全般的な事は不明であるが 図-6によれば中央部では、-16mまで粘土で以下砂混り粘土となり、北部護岸線でも、海底より-15m付近の砂礫まで粘土が堆積し、-4m ~ 9 m間は砂が混入し-13m付近から砂礫が多くなって来る。

浚渫地

A地区 図ー1に各地区に対する土取位置を示してある。A地区に使用した土の浚渫深度は-10m以内なので殆んどが軟弱な粘性土で、砂礫の入った割合は全体の2%程度とされている。

B地区 図ー1に示すごとく $-12\sim13$ mの浚渫土で-12m付近までは、粘性土、以下-13mまでは粒径 3 cm以下の砂礫である。

C地区 図-1の場所で、図-7の上質断面に見るごとく-12~13mの粘性土及び以下最大-16m までの玉石を含むよく凝結した砂礫層で、最大粒径は30cm、平均粒径は15cm程度である。高島から南側は粘性土のない礫と玉石となっている。

埋立漆岸

各地区の護岸の構造形式は図-10,11に示すごとく捨石を主体とするもので、各地区共地盤の悪い所では、捨石のめり込み量多く、C地区の例では設計数量の2.75倍に達した所もある。

すべり破壊に対する安全率は圧密進行による強度を見込み、且つ経済的見地からかなり低くとられており破壊 事故も多かった様である。

埋 立 工

各地区共仕切は作らず細粒土は流出する事を 期 待 した。

埋立土量算出に際しては原地盤の沈下量 1 m, 埋立土の沈下量50cm, 流出量5%, 余盛50cm程度を考慮した。

		1 理立工室	
	設計土量	浚渫土量	歩留実績
A		5, 318, 000 m³	
В	7,318,000 m³	9, 738, 171 m³	0.7
С	8,810,000 m ³	12, 255, 336 m³	0.718

浚渫ポンプ鉛の使用状況は次のごとくである。

A地区	1,000PS	6隻
B地区	1,000PS	10隻 1,500PS 1隻
C地区	4,000PS	16隻(4,000 P S × 2 とする)

図一6にC地区の送泥管配置例を示す。浚渫土が硬質

土が多いので間隔は40,80mとなっている。

埋立後の状況

A地区 この地区の最も新しい埋立部分は昭和33年度に施工されたもので、図ー2に示すごとく埋立土質は西側程制性土が多い。砂質土はN<2,粘性土はqu<0.2 kg/cm 2 程度である。粘性土の表面の乾燥部分は埋立後5カ月位で深度40cm位までで、これ以深の含水量は砂の混入が多いので90%程度以下である。

埋立半年後から6カ月の地表面沈下量は砂質土で10cm

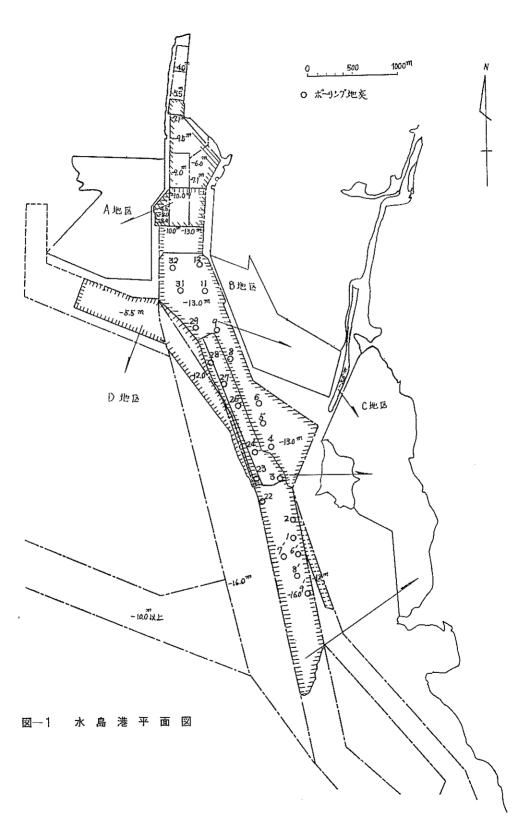
以下粘性土で20~40cm程度である。

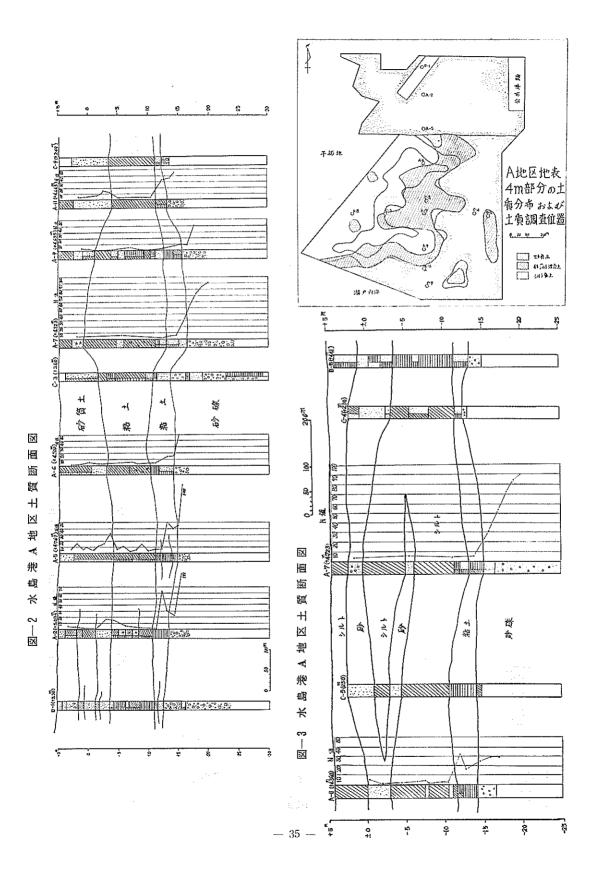
B地区 埋立土は砂礫がかなり入っており所によってはNが10程度の所もあるが、結性土の混った部分もあり中央東部ではかなり軟弱である。図一13の沈下測定記録によれば、埋立半年後より2年間の地盤処理を行なわない所の沈下量は7~50cm程度で、現在は非常に減少して来ている。

C地区 埋立後の土質調査の資料はないが、埋立土の 大部分は砂礫なので埋立土の支持力に就いては殆んど問 題ないと考えられる。

水島港 A. B. C 地区工事概要

T 405	TT 38		工	費
工 種	工程	工事量	総 額	単 価
A地区				
浚 渫,埋 立	28.11~35	5, 319, 466 m³	620,583,161円	
護 岸		2,320 m	103, 850, 656	
補 償			32,094,281	
その他	THE PROPERTY OF THE PROPERTY O		71,348,701	
計			827, 876, 799	
B地区				
浚 渫, 埋 立	33 ~36	9,738,171m³	1,436,780,374円	
護 岸		4, 940 m	343, 450, 547	
補 償			39,767,590	
その他			74, 588, 567	
計			1,893,542,078	
C地区				
浚渫,埋立	34 ~38		4,363,558,985円	
護 岸			485,804,152	
補 償			40,500,000	
その他			341,271,404	
ñl-			5, 231, 109, 541	


埋 立 地	水島港A地区三菱石	油		
構造物	油槽 50,000KL フローティ 直径 61.03m 高 18.15m	″ 10,000KL フローティ 直径 31.98m 高 18.15m	// 8,000KL ドーム ルーフ 直径 23.25m 高 18.15m	ル 4,000K L ドーム ルーフ 直径 17.44m 高 18.15m
荷重条件				
許容沈下量				
〃 不等沈下量				
基上質	シルトをはさむ 砂 粘土	砂をはさむ 粘土	シルトを シルトをは はさむ粘土 さむ 粘土	シルトを 砂をはさむ はさむ砂 粘土
層 厚	8 m 8 m	砂 約3 m 粘土約13m	5 m 16 m	8 m 9 m
強 度 土 土	$N = 2 \sim 17$ $q_u = 0.4 \text{kg/cm}^2$	$N = 0 \sim 5$ $q_v = 0.2 \sim 0.5 \text{kg/cm}^2$	$N = 0 \sim 6$ $q_v = 0.3 \sim 0.6 \text{kg/cm}^2$	$N = 0 \sim 3$ $q_v = 0.1 \sim 0.6 \text{kg/cm}^2$
圧密特性 性	$C_{\nu} = 3.65 \times 10^{1} \text{cm}^{2}/\text{min}$ $t_{80} = 19 \text{ H}$	$C_v = 1.63 \times 10^{-1} \text{cm}^2/\text{min}$ $t_{80} = 36 \sim 42 \text{ H}$	$C_v = 137 \times 10^{-1} \text{cm}^2/\text{min}$ $t_{80} = 38 \sim 62 \text{ H}$	$C_v = 1.97 \times 10^{-1} \text{cm}^2/\text{min}$ $t_{80} = 32 \text{H}$
処理後 地 盤 強 度	N=10~20 q _u ÷ 1 kg/cm³ (水張前)	$N = 2 \sim 10$ $q_u = 0.5 \sim 0.8 \text{ kg/cm}^2$	$N = 2 \sim 16$ $q_u = 0.3 \sim 0.9 \text{kg/cm}^2$	$N = 1 \sim 8$ $q_u = 0.5 \sim 1.0 \text{ kg/cm}^2$
安 全 率	1.8	2.2~2.5	2.0 2.0	2. 1
処理工法	サンド ウエル ドレーン ポイント	サンド ウエル ドレーン ポイント	サンド ウエル ドレーン ポイント	サンド ウエル ドレーン ポイント
" 面積				
〃 深 度	17m	17 m	17 m	17 m
〃 内 訳	サンド ライザ パイプ パイプ 直径43cm 長 8.3m 間隔 2 m 間隔 1.5m 正三角形配置 17mのジーメン スウエル 1本	サンドパイル 直径 35cm 間隔 1.8m 正三角形配置	サンドプイル 直径 35cm 間間 1.5~2 m 正三角形配置	サンドパイル 直径 35cm 間隔 1.8m 正三角形配置
戦 荷 方 法	水張5段階 地下水位 低下	水張2~4段階地下水位 低下	水張4~5段階地下水位	水張 5 張段階
" 荷 重	18 t/m ² 4 t/m ²	12 t/m² 2.5~4 t/m²	18t/m² 2.7t/m²	18 t/m ² 4 t/m ²
〃 期 間	62日 60日	35~52 H 60~71 H	47~55日 69~78日	32日 57日
改良効果				
工租				
工 期				
工費				
備考				


埋 立 地	水島港地 A地区三	菱石油		· · · · · · · · · · · · · · · · · · ·
構 造 物	油槽 3,000KL ド-ムル-フ 直径 18.40m 高 12.08m	装置塔類		
荷重条件				
許容沈下量				
〃 不算沈下量				
土 質	粘土、砂の互層			
礎 層 原	砂4 m 粘土12~13 m	The state of the s	The second secon	
強 度	$N=0\sim 12$ $q_u=0.15\sim 0.75 \text{ kg/cm}^2$		To realize a finished and the second	and the state of t
性圧密特性	$C_v = 1.46 \times 10^{-1}$ cm ² /min			
処理後 地 盤 強 度	N=2 qu=0.3~16 (水張前)~1.0 kg/cm²			
安 全 率	3.1			
処理工法	サンド ウエル ドレーン ポイント	サンド 抗基礎		
" 面 積				
〃 深 度	17m	16m		
" 内 訳	サンドパイル 直径 35cm 間隔 1.8m 正三角形配置	サンドパイル (例) 直径35cm 鉄筋コンク 直径35cm リート杭 間隔 2 cm ∮35cm×20 m 正三角形配置 25t/本		
歳 荷 方 法	水張 地下水位 4 段階 低下	CATALA MANA MARIPATRA DEL VA FARRA VA PER PER PARA MARIA MARIPATRA DEL CATALA MANA MARIA MARIA MARIA MANA MARIA MA	11	A A A A A A A A A A A A A A A A A A A
// 荷 重	12 t/m ² 4. 3 t/m ²			
" 期間	44 E 70 E			
改良効果				
工和				
工 期	*	A CONTRACTOR OF THE CONTRACTOR	Administrative of the second o	
工数				
備考				

埋	7,	<u>.</u>	地	水島港 B地区日本			
構	道	Í	物	油槽 80,000KL 径 71.5m 高 20m	// 60,000KL フローテングルーフ 径 69m 高 18m	// 30,000KL フローテングルーフ 径 50,4m 高 16,8m	// 20,000KL コーンルーフ 径 44.6m 高 15.3rr
荷	重	条	件		鉛直 17.7t/m²	鉛直 19.5t/m²	鉛直 16.0 t/m²
許	容认	: 下	虚		•		
"	不等	沈门	-				
基	土		質		シルト細砂互層, 粘土 及シルト砂礫	砂 粘土及シルト砂礫	砂粘土、シルト砂礫
礎	团		厚		4.6m 12m以下	9.0m 7.3m以下	7.5m 7.5m以下
土	強		度		$ \begin{array}{c c} N = 1, 5 \sim 3.0 \\ q_u = 0, 2 \sim 0, 5 \text{kg/cm}^2 \end{array} $		
性	圧額	*特	性		$C_v = 1.8 \times 10^{-1} \text{cm}^2/\text{min}$ $t_{90} = 51$ 日	$C_v = 1.0 \times 10^{-1} \text{cm}^2/min$ $t_{90} = 60$ 日	
処理地	里後 盤	強力	变				
安	全	:	率				
処	理	I	法	ペーパードレイン	サンド ウエル ドレーン ポイント	サンド ウエル ドレーン ポイント	サンド ウエル ドレーン ポイント
	7	Ιij	積		9,500cm²	7,800m²	6, 350 m²
	7	梁	度		17m 7.0m以上	17m 8.3m以上	
,	7	内	訳	敷砂 0.2m 山土 1.8m	サンドパイル1,583本/基 d = 40cm 間隔 2 ~ 4 m 正三角形配置 l=17m 砂震換 2 m 敷砂 2 m	サンドパイル1,110本/基 d=40cm 216m 間隔 2 ~ 4 m 正三角形配置 <i>l</i> =17 砂置換 2 m 敷 砂 1.5 m 盛土高 5.3 m	サンドパイル 900本/基 同左 盛土高 2.5m
軷	荷	方	法		盛土 水位低下	盛士	The state of the s
	// -	荷	垂		18 t/m ² 5 t/m ²		
	и 5	期	間		39日		
改	良	効	果				
エ			種		基礎工事		
I			期		240日	160日	150日
工			費		65,300,000円/基	41,700,000円/基 サンドドレーン 57% ウエルポイント 6.2%	26,700,000円/基 サンドドレーン 60% ウエルポイント 8.2%
備			考	サンドドレーン (ウエルポイントを含む	28,900円/本) 1,700円/m	26,300円/本 1,550円/m	20,750円/本 1,220円/m

埋	攻		地	水島	水島港 B地区日本鉱業										
構	进	Ī	物	油槽 10,000 コーン 内径 3 高 1:	ルーフ		5. 000KL フローテングルーフ コーンルーフ 内径 25. 2m 高 107m			3,000KL コーンルーフ 内径 19.5m 高 12.2m			2,000KL コーンルーフ フローテングルーフ 内径 15.6m 高 12.2m		
荷	重	条	件	鉛直 13.	. 0 tm²		鉛直 11	. 5 t/m²		鉛直 12	. 0 t/m²		鉛直 13	. 5 <i>t</i> /m ²	
許	容力	上下	显									•			
"	不等	沈下	最	150mmJ	以内		フローテ コーン150			150mm	以内		コーン 1 フローテ	50mm以p ング100m	勺 m以内
基	土		質	シルト 質細砂	粘性土	砂礫	シルト 質砂	粘性土	砂礫	シルト質細砂	粘性土	砂礫	シルト質細砂	粘性土	I
礎	層		厚	10m	9 m	以下	8.7m	8 m	以下	9 m	7 m	以下	9, 5m	9 m	以下
土	強		度												
性	压犯	密特	性									***************************************			
処理地	里後	強!	近												
安	á	<u> </u>	率												
処	理	工	法	サンドドレーン	ウェ ノ ポイ	ント	サンド ウエル ドレーン ポイント			サンド ウエル ドレーン ポイント 置換			ウエル ポイン		
,	′′	面	積	3,830r	n²		フロティコーン	ィング 1,(763m²)75m²	434m²			314m²		
,	"	深	度	18m	11 m		17m	9 m		16 m	8. 3n	1	1.1~2.	Lm 8.3	m以上
	"	内	訳	サー40c ドン40c 間正砂敷 が が が が が が が が が が が の の の の の の の の	- 4 m 杉配置 1.5m)本/基	コ間砂敷 正式	テング 269 199本/基 n.正三角用 1.5m	多配置	サンドル d = 40c 間隔 至 1 正 三 置 換 敷 砂	n 肜配置 1.4m	本			
祓	荷	ガ	法	敷砂	水位低	\$F	敷砂(1 盛土 2	フローティ k位低下	ィング)	敷砂	水位	& 下			
	//	荷	Æ												
	"	堋	間												
改	良	劾	果												
I			種	基礎工	ļī.		-	"			11			//	
I			期	130日			110日	90 E		60日	***************************************		フロー	ティング	60 E
エ			費		000円 ドレーンコ ポイントコ		フロー	テング 8,800, 6,400,		2, 500	四000円		1,600,	四000円	
備			考	19,000 1,055	円/本 5円/m		24, 400 1, 435							,	

埋		立	地	小自洲 口地气口小	ልት **	
 				水島港 B地区日本	I	
構	j	世	物	装置類 	塔類	ガスタンク 球形
荷	重	条	伴	震度 III	鉛直 70 t/m² 震度 Ⅲ	
許	容	沈 下	张			
"	不夠	等沈	下盘			
基	æ		質			
礎	層		厚		1	
土	強	····	度			
怹	Æ	密料	性			
処理地	里後 盤	強	度			
安		è	率			
処	理	I	法	サンド ウエル 杭基 ドレーン ポイント 礎	杭基礎	杭基礎
/	,	面	積			
,	7	滐	度			
,	. —	内	訳	サンド コンクリート パイル 杭 d = 40cm φ=45, 40cm 間隔 2.5m l=18m 25t/本	上部 コンクリートスラブ 杭間隔 1.2~1.3m	コンクリート杭 ¢=60cm l=18.5m 30t/本
載	荷	方	法	盛土 水位低下		
	"	荷	II.	7 t/m ² 3 t/m ²		
改	良	効	果	沈下殆んどなし		
工		***************************************	種			
I			期			
I			費			
備			考			·

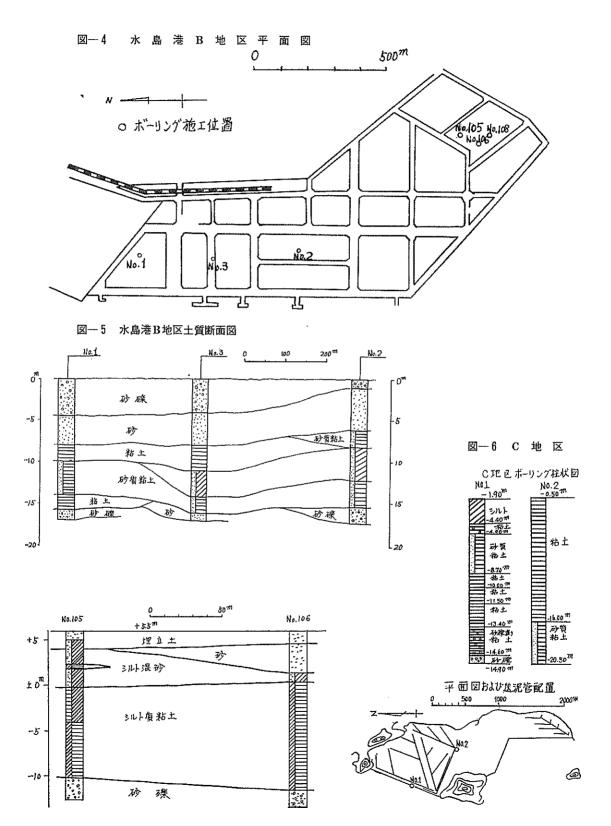
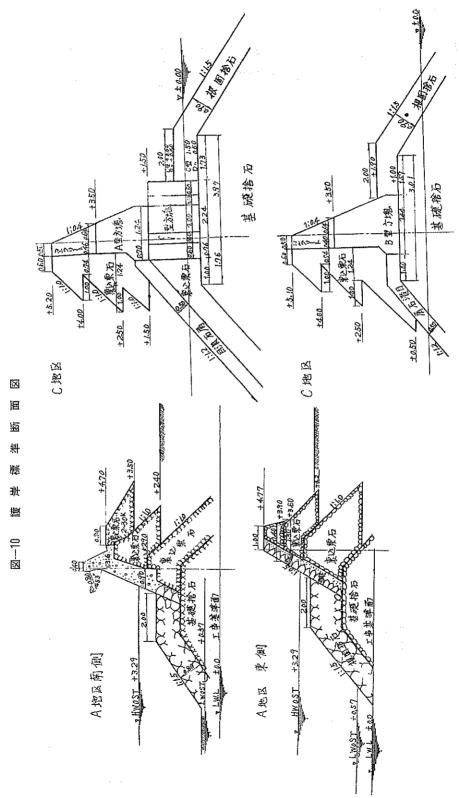
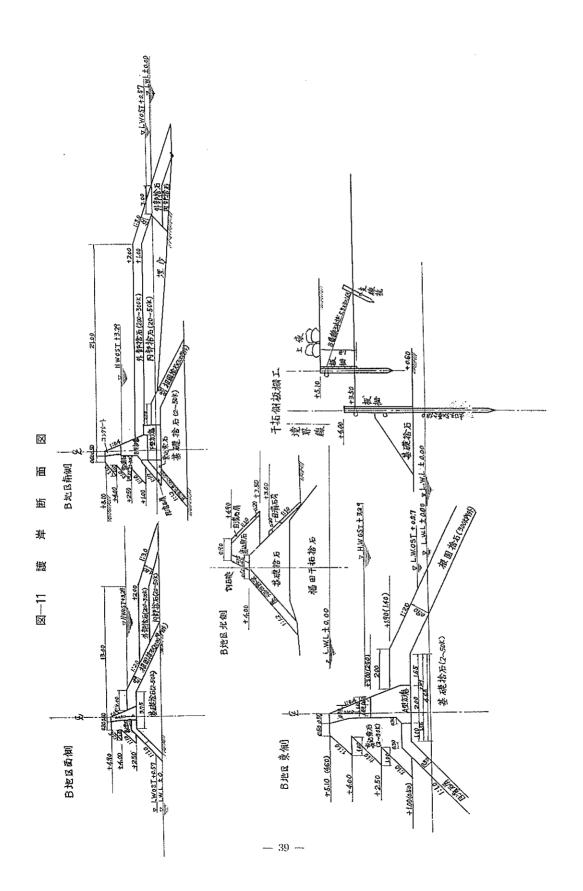
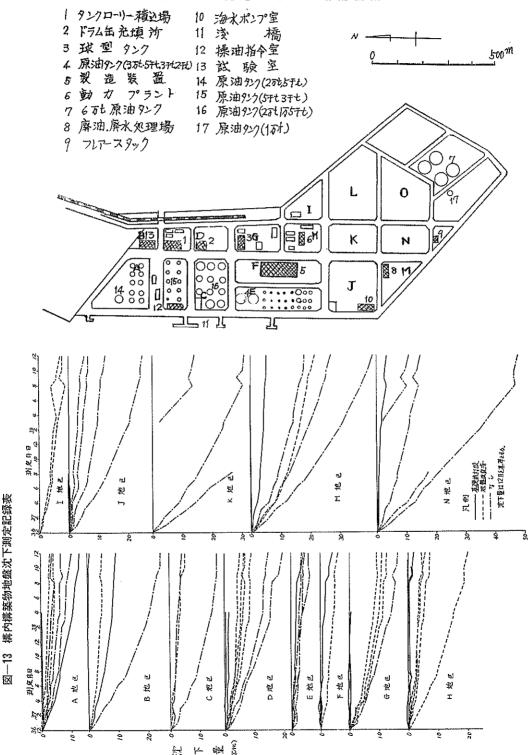
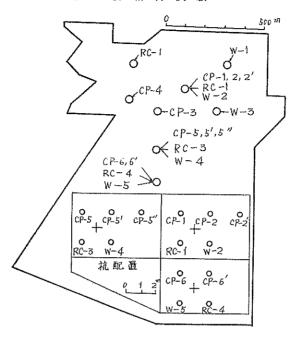
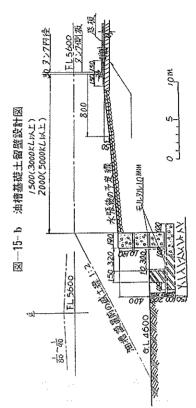




図-9 水島港B地区 M108 土質試験結果

Z	足	場判	È.	和	. Æ				好模束	量(1)	o ' E] 7/2	IT (C)	٠ <u>,</u>	1000	植水	平 東北	1.L P.L. W	°		直接	別長 近勢	g=. V -
定	杰	Ħ	搁	29	40	ø	** %	re	ij	مِدَ	Îô	20			. 43				10	خد		ķm.
	1988 H	砂.	茶灰色												<u>-</u>			y	>		•	
10-		シル上戦砂	髓 灰色																· ·			
- 5	H	1. 1. 1.	育灰色	孙	5 <i>ت</i> و 1	, \\	*i	· \			ļ	¢.		1	1		<i>,</i>		A.	• •	Δ,	
-10			庆色			1				•			,	ا	1				44 4			
15																						


図-14 A 地 区 杭 載 荷 試 験

水島A地区杭載荷試験結果表

杭 No	形状	杭 長	直圣	根入深度	更直	拖 抗	水平は	医抗
					Pmax	Dmax	Pmax	Dmax
W-1	松	7 m	18 cm	-2.95 M	20t	26 MM		
W - 2	4	18 m	18 cm	-/3.83M			0.8t	15 mm
R.C-1	鉄筋コンツト	18+2™	50 cm	+5.53 th	150t	/3 mm	15,5 [‡]	7 KM
C P-1	コアードや対外	19.8 m	51 cm	-14.83 M	150 t	30 mm	/3 t	10.5 MM
C.P-2	4	17.0 M	51 cm	-12.00 W			1.7 t	23 Hill
c, P-2'	4	19.4 m	51 cm	-14.43 m	270 [‡]	/3 HM		ļ
W-3	松	7 m	18 cm	-2.86 M	10t	8 mm		
RPc-2	鉄筋フンクリート	10+10m	35 cm	-14.29 M	100t	8 mm	/3 ^t	27 mm
c P-3	コアードペテスタル	1.7 ^{px}	51 cm	-/4.53 ^M	270 t	12 mm		
C P-4	4	19.4 M	43cm	-/4.83 H			q t	130 MM
W-4	松	18+2#	24 cm	-16.40 H	50 ^t	17 mm		
RC-3	鉄筋コンパート	18+5m	45cm	~1 5.70 H	150 t	7 mm	8.7 ^t	7.5 MM
c.P~5	コアードペラスタル	20.8 M	43 cm	-15.70 M	150 t	6 mm	1.8 t	7. MM
C P-5'	4	20,4 M	43 cm	-15.3 m	150 t	/2 MM	7.5 ^t	5 mm
C,P5*	4	20.8 M	51cm	-15,75KL	150 t	qum	15 t	8:5 MM
W-5	松	18 +37™	24 CM	~16.30₩	50 t	6 mm		
R.C-4	鉄筋コンパート	18+5 ^M	50 cm	-16.90M	150 [‡]	7.5 ^{##}	6 t	4 mm
C.P-6	コアードペデスタル	22.5 M	51 cm	-17.10 M	140 t	12 mm	7 t	20 ^{MM}
C P-6'	*	22.6 M	51 CM	-17.2 K	150 t	8 mm	13.5 [‡]	320 mm

B地区油槽および基礎地盤改良內訳表

	•	(11 00 00	ひをかんれ		1 4 m CVC		
タンク客量 [kl]	2,000	3,000	5,000	10,000	20,000	30,000	60,000
9ン2型式	ューン	コーン	コーン、フタラルグ	コーン	コーン	フローディング	
a (m)			1.5		25	5.3	7.5
b	1.0	1.0	14 14	1.6	1.5	1,5	2.0
С	1.5	1.5	1.5 1.5	1.5	2.0	2.0	2.0
d	<i>15</i> . 6	19.5	252 252	34.9	44.6	50.4	69.0
e	19.0	23.0	295 35,5	45.0	56.6	66.6	85.0
}	22.0	26.5	31.5 31.0	38.5	51.0	<i>\$</i> %.0	74.0
з	16.0	23.5	29.2 35.0	42.9	<i>54.6</i>	60.4	72.0
h				69.8	90.0	100.0	110.0
i	16, 0	16.0	15.5 15.5	18.0	22.0	16.5	17.0
j	8.3	8.3	10.0 10.0	11.0	8.0	8 3从上	7.0 KL
掘削量「m³」	<i>595</i> .	835.	6259 1/169	2061	4,206	5,890	8,380
サンドマットA [m³]	520.	737.	1.111. 979	1,943	4,006	4.996	8.380
サンドマットB [ゕ゚゚゚]	241.	363	821 1,235	2,249	3,467	4,766	10,560
載荷用盛士量[m²]			1.101	2249	4604	12,286	27,280
サンドルタル本数		33~37	199 269	504~506	890~908	1.112~1119	<i>1,583</i>
附 2m 關隔			199 269	421	673	823	1.189
4m間隔		33~37		85~/42	2/7~235	289~356	394
タンク高さ [m]	/2.2	10.7	10.7	/22	/5.3	16.8	
設計荷重4/12	13.5	12.0	11.5	/3.0	16.0	17.5	<u> </u>

尼崎港東部地区

尼崎市東海岸町地先

工事概要

工期

昭和34年~昭和40年

工費

2,500,000,000円

施工

大谷重工

埋立面積

620, 000 m²

埋立土最

5,500,000m²

平均水梁

, 500, 000111-

埋立地盤高。

O P -3. 3m O P +5. 0m

使用目的

石油配分基地

便用目的

鉄鋼関係野積場その他

造成目標

譲渡条件地盤高 OP+5.0m であるが,

OP+5.5mとして渡す。

埋立工法

埋立は図一1に鎖線で示した。航路泊地

の浚渫土で行なう。護岸背面の円弧すべり影響範囲外に 仮土留堤を築造し、埋立と護岸は独立に施工する。

土質概要

埋立地区

図ー4の如く海底より $OP-25\sim28$ m迄は、軟弱な第一粘土層で、 $w=60\sim100\%$, $e=1.6\sim2.6$, $q_u=0.5t/m^2$ m_v の平均値 0.2cm²/kg C_v の平均値 7.2×10^{-2} cm²/min, この下に $5\sim8$ m程度のN>50の砂礫層があり、以下第二粘土層となる。

浚渫地区

ボーリング資料はないが浚渫深度が -12m まで な の で、埋立地と同様な粘土と考えられる。

埋立護岸

本護岸は図-8のごとき構造で工期に余裕のあった事と経済的な理由から基礎地盤は、迄サンドドレーンを施工した。埋立地表面が十1.5m(平均潮位1.2を考慮)となった時、本護岸の35~40m背後に山上による築堤を行ない、本護岸の安定をはかった。

埋立工

埋立量算定に当っては、余盛高、流出量、歩留に就い ては、定量的に考慮しない。

表一1に設計土量、浚渫実績土量が示してある。埋立 未完了なので歩留は不明であるが、37、38年では計画に

表 - 1

		20			
年度	34	35	36	37	38
計画 土量	m² 184, 850	m² 366, 900	m² 1,084,000	m³ 1,806,820	m³ 1,775,200
浚渫 土量				m² 2,163,400	m³ 2,644,000

対して1.34倍の土量を浚渫している。

使用したポンプ船は 1,000 PS~2,000 PS のもの 2~3 隻であるが、浚渫土が粘土であるため、埋立表面は殆んど水平に仕上っている。管口50m程度の範囲には貝片粘土塊が多く他の部分より幾らか軟弱さが低い。余水吐は図一2に示す位置に巾8m及び6mの開渠を夫々2カ所及び1カ所、直径24°の管の3連の暗渠1カ所を設置した。

図一2に示す地点で埋立直後に行ったボーリングによる調査結果を図—11に示す。

これによれば浚渫前含水比が60~90%であった土が埋立てられた時に80~120%程度まで増加しており、体積が1.2~1.3倍に増加している事が分る。圧密特性の変化は明瞭でないので図に示していないが、液性限界は殆んど、浚渫前と同程度で、埋立土の土性は浚渫前と大差ないと考えられる。図一10に示す埋立地盤高の推移によれば埋立後半年間に40cm程度の沈下を生じており、築堤天端高との関係からその大半は表面付近の蒸発乾燥によるものと思われる。

この埋立地の一部は39年より使用者に譲渡されているが、軟弱埋立土の表面処理法として次のごとき方法がとられている。

使用地域周辺を良質土の築堤で囲み、50cm角に組合せた竹枠を地表に置き、 $30\sim40$ cm、 $40\sim50$ 、70cm、60cmの四層に分けて、全厚 2 mの良質土を敷いて建設工事を開始している。

尼崎工事概要表

		en.		1 0		~l-		Ţ	•		費
エ		種	工	程	11	Į.	虚	総	額	単	価
護	岸	工				3, 3	00m	1, 789),873千円	A護岸 810,	000円/m
護力	羊,胸	壁	37. 9	~40				1, 407	7,990	B護岸	000円/m
1	載荷		36. 10	~37. 10				306	6, 163	南部藩	
テト およ	ラポッ び根間	/ト 日工						75	5,720		
サンド	ドレー	-ンエ	35, 12	~37. 1							
埋	弘	エ									
築	堤	I.	,			769,5	00m³	293	3, 160	82,	300円/m
埋	立	エ			5,	400,0	00m³	178	3, 460		
泼	渫	I				110,0	00m³	2	1,250		
									:		
道	路	エ						58	3, 300		
仮	設 道	路						54	1,100		
幹;	線道	路							4,200		
付	帯	工						3	L, 300		
	,										
調		虚						28	3, 290		
そ	の	他						99	9,367		
総		٦ŀ						2.50	0,000		

図-1 尼ヶ崎港平面図

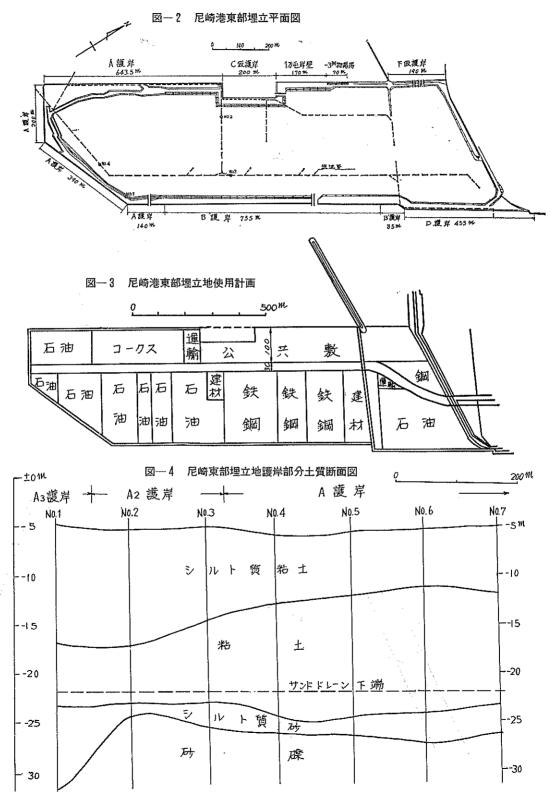


図-5 尼崎港東部埋立地ボーリング ん3 土質試験結果

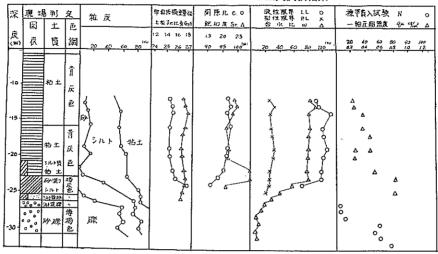
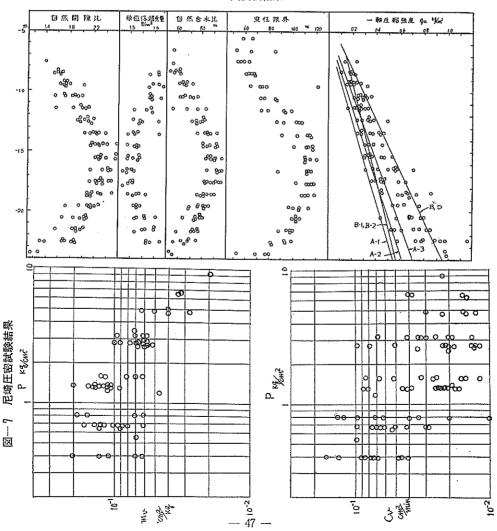
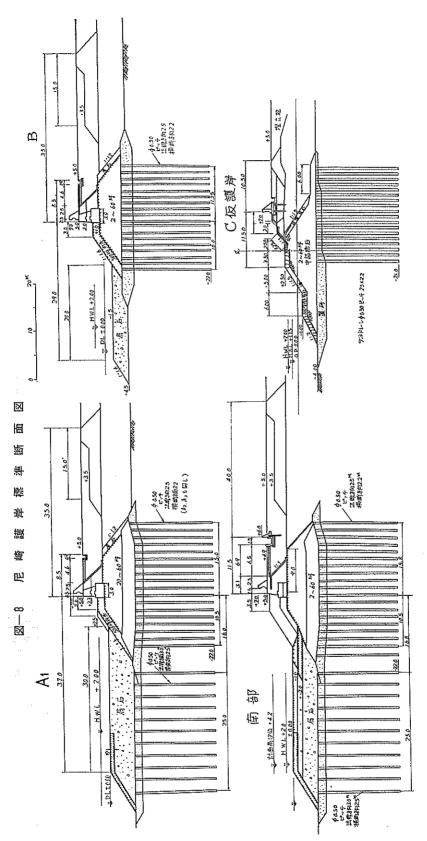




図-6 尼崎港東部埋立地 土質試験結果

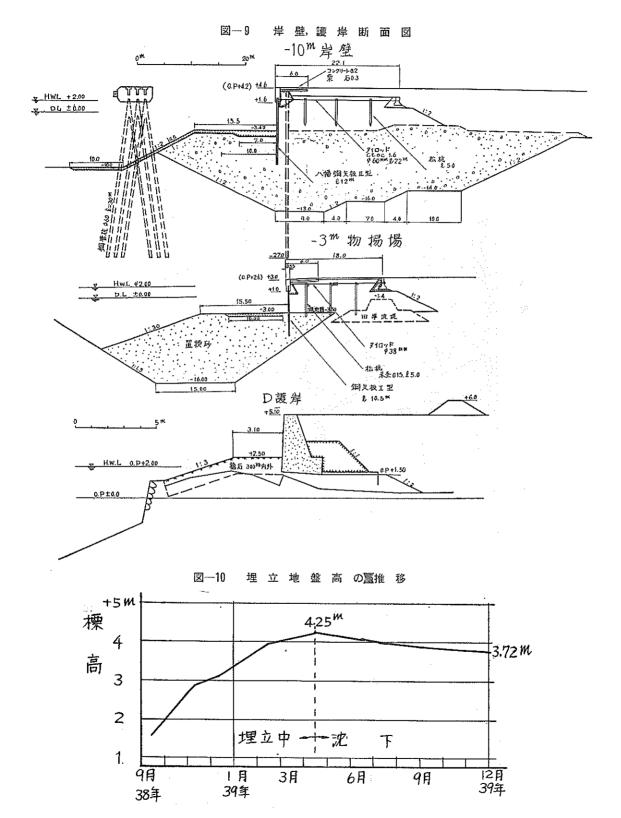
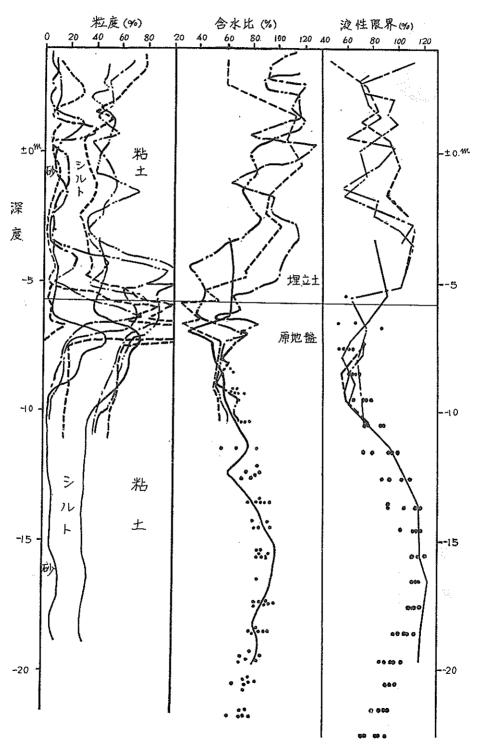



図-11 尼崎埋立後土質調査結果

大 阪 南 港 1,2 区

工事概要

工期 昭和32年~昭和42年

設計 大阪市港湾局

施工 大林組(陸上工事)

森田臨海 (海上工事)

埋立面積 3,373,000 m²

埋立土量 29,500,000m³

平均水深

埋立地盤高 OP+4.0m OP+5.0

使用目的 工業用地, 住宅用地, 公共用地

造成目標 当初計画では、譲渡地盤高がOP+4m, 及びOP+5mあればよい事になっていたが、その後使 用目的の変更により仕上方法は検討中である。

埋立工法 埋立は殆んど図-1に示す淡葉海底粘土を使用する。 $1\sim5$ 工区に分れるが図-1のごとく小さな仕切は設けない。2区は O P+3. 0m で一時埋立を中止3区がO P+0. 3mになってからO P+6 mに上げる。

土 質 概 要

埋立地

海底より $-20\sim-23$ m迄は20m程度の軟弱粘土層で、 $w=70\sim90\%$, $e=2.0\sim2.5$, $q_u<0.6$ kg/cm, 埋立荷重に対する m_v の平均値は $1.5\times10^{-2}m^2/t$, $C_v=2.16\times10^{-3}m^{-2}/t$ day, 以下 $4\sim5$ m厚の砂分50%程度 $w=35\sim40\%$ 程度の粘土質砂層があり,それ以下は所により粘土を狭む砂礫層でN>50となっている。尚,海底表面には $1\sim5$ m程度の炭ガラ及び砂質土が従来から捨てられていた。

浚渫地

浚浚は−8~−16mまでなので殆んど粘土であり、埋立地の土性と同様である。(表−1)

埋立護岸

設計条件

潮位 波高 護岸高
1 区南側 OP+4.40m 2.25m OP+7.00m
1,2区北側 OP+3.60m 1.00m OP+5.00m
1,2区東側 OP+4.60m 考慮せず OP+5.00m
土質 既設防波堤の部分で表面付近が、山土等で置換された部分を除いては埋立地に同じである。
安全率 1,2 以上

埋立に際しては各護岸、既設防波堤の背後15~70mの所に図一9に示す山土又は砂の築堤を施工した。各護岸の形式構造及び位置は図一10~15,1に示してあるが既設防波堤を利用する部分も多い。既設防波堤間を接続する本護岸はDL-15mまでサンドドレーンを施工、延長の短い部分は既設防波堤の影響でかなり良質土と置換されているのでそのままとし、夫々石積護岸を施工した。

仮護岸としては3区との境界のO型(木柵と3区均頭地区との境界のC, J型,がある。C, J型は初め本護岸として-15m迄サンドドレーンを行ったが,その後計画の変更で仮護岸となった。

〇型仮護岸は図一12のごとく先に良質砂をもらし吹きして表面の軟弱土を或る程度置換し、波の洗掘を防止するために前面70mの所に一重の木柵を設け、この間は一3mまで粘土で埋立て上部1.5~2m厚に炭ガラを置いためにた。この部分は押え盛土となるのであるが、比重が軽いために背後の埋立地面が上ってくると盛上り亀裂を生じ、先端の木柵部分から粘土が、流出する事もあった。二重木柵のもらし吹きの砂は300%位のめり込みがあり、破壊事故はなかったが埋立面の上昇と共に急激に沈下する事が多かった。

1区と2区の仕切堤は図―10のごとく二重木棚で中詰砂は吉野川砂を用い前面には捨石を行ったがめり込が多く設計上は2割増とした。

各護岸背後の盛付砂及びO型護岸のもらし吹きには団 子瀬より運搬した良質砂を用いた。

埋 立 工

図一9に示すごとく埋立地の周囲は護岸法線より20~100mはなして浚渫砂、山土による築堤を行った。 地盤が軟弱なため、かなりめり込を生じ山土築堤では略々倍の土量を要した所もある。前述のごとく原地盤、浚渫土共に軟弱粘土であるため、両者の圧密沈下を促進する目的で中間に透水層としての砂の層を入れる事を計画したが、都合により取止め粘土のみで埋立てる事とし、築堤嵩上期間にできるだけ埋立土の乾燥をはかる事とした。当初の計画では1~5工区を分割して順次譲渡するので最終引渡時は昭和47年度位となるが完成年度が昭和40年なので、放置期間の長くなる工区については手直しをする予定であったが、その後計画が変更されので仕上方法

は検討中である。埋立土量の算出にあたっては原地盤埋立土共に42年度までの沈下を考え歩留を80%として計算し他に表層2m程度の置砂を予定している。この場合は、浚渫による体積変化は浚渫前の土の間隙に対し吹込後の土の間隙が約倍になるとする。実際には埋立層の仕上り況状を見ながら工事を進めて行く。

図一1に送泥管仕切り吐口の配置を示す。 ポンプ 船4000 P S程度の送泥管は一本600kg の重量で一本当り二 箇の受枠を使用したが、これの嵩上げに際しては下部が 軟弱なため転倒事故が多かった。使用ポンプ船は 2,000

PS2,3,000 PS2,4,000PS4である。

施工は築堤、放水口、受枠、埋立の順序で行ない、埋立は約50万m³を一工事単位とし、一回の埋立厚が略々1mで3カ月位で完了し、築堤を嵩上する期間休止する。この休止期間を日照時間の長い季節に当る様に調整して埋立土の乾燥を効果的にする。この期間に表面が乾燥し、亀裂が20cm位の深さに達すればどうにか人間の立人が可能となる。これが寒期となって再び地表面に溜水が生ずるごとくなり立入り不能の状態となり沈下の速度も、非常に減少した。

表	 1	浚	洪	土:	の	+	性

	北	側	東	側	酉	側
粘 土	40~ 73 %	平均 54%	7~ 53 %	平均 37%	48~ 59 %	平均 55%
砂	0~ 12 %	6%	3~ 67 %	20%	1~ 12 %	45%
含 水 比	73~125 %	97.5%	49~153 %	75%	87~102 %	96%
L. L	85~103 %		61~111 %		90~102 %	

大阪南港区工事概要表

工種	工程	工事最	I	費
-L- 744	上红	工 事 显	総額	単 価
事 業 費			10,552,000千円	
土留護岸	33~39年	6, 463m	819, 431	
各種護岸	-	4,552m	53,746	
テトラ定作据付	33~34	21,000=	61,130	
付 帯 工	33~34, 38~39	1式	18, 312	
土質調査		1式	28,031	
	-			
埋 立 費	33~42	29, 132, 500 m ³	9,089,370	
送電設備	33~36	1式	72, 341	
集 堤	33~37	12,561 m	873, 983	
築堤嵩上	34~37	16,163m	532, 596	
世 立	33~42	29, 132, 500 m ³	6,980,019	
上置砂				
盛土	34~39	1,328,768m³	358, 263	
	35	1式	5,900	
付 帯 工	38~39		26, 586	
土 質 調 査	34~37		6,053	
漁業補償	33~36		201,200	
その他	34~38	//	32, 429	

大 阪 蓙 基 3 X

工事概要

工期

昭和36年~昭和43年

設計

大阪市港湾局

埋立面積

 $3,683,000 \,\mathrm{m}^2$

埋立十届 平均水深

埋立地盤高

使用目的

重工業及び埠頭用地

造成目標

北側の重工業工場用地については地表載 荷重,10t/m²以下の工場設備に対して将来原地盤の沈 下が問題とならぬ様、全域に対して埋立中に埋立荷重十 (3~5t/m²) の過圧密状態に改良する事を計画,許容 不等沈下量は 1/1000, 油槽類については総沈下量を直径 の 1/60~1/100 とする。埋立土表層は建設機械が入れる 程度とする。南側の埠頭用地に対しては検討中である。 埋立工法 1,2区の流出土と市内の残土により-3m 程度迄地盤を上げ、敷砂をしてサンドパイルを施工後粘 土を埋立てる。上層の1~2mは砂を使用する。南側は 上層4mを砂で埋立てる。

土 督 摂 要

1,2区に同じ。

埋立護岸

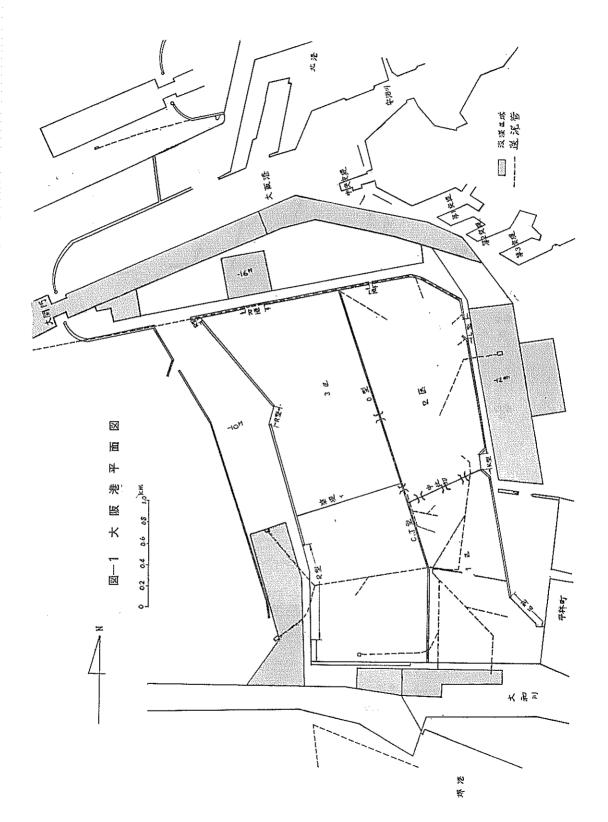
設計条件

湖位	波高	護岸高
西側	1, 5m	OP+6.00m
西側の一部 OP+4.40m	2, 25	√ +7.00
及南側		
北側 +3.60m	2.25	" +5.00
土質 1,2区に同じ		
安全率 1.2 以上		

各護岸の形式構造、位置は図-11~15に示してある。 中仕切の築堤イは-3m迄捨土をして直径30cm, 間隔2 mのサンドドレーンを-18mまで施工、上部は直径4m の鋼セルを使用,背後に天端高O P+3.4m, 天端巾31

mの良質砂を盛付けた。既設防波堤間の仕切堤R型もー 3 mまで敷砂、-18mまで前者同様のサンドドレーンを 施工、鋼セル及び上部工としてコンクリートセルラーブ ロックを使用した。鋼セルを使用した理由は、怪量、製 作容易、ヤードの不要、施工が簡単な事等で、石材を主 体とする構造は工期,防災上の天端高,石材の大きさ等 に問題があるからである。

埋立工

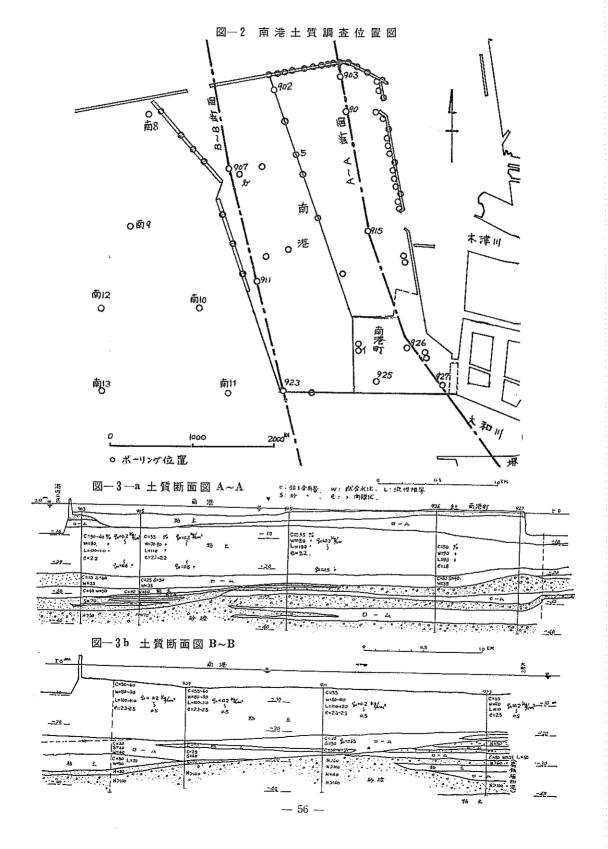
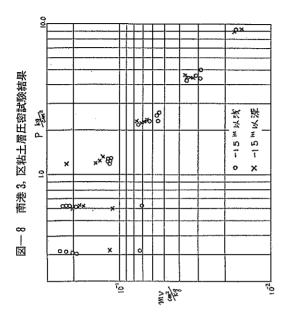
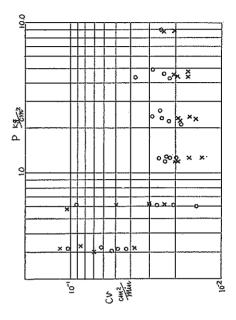

原地盤,浚渫土共に 1,2 区に同じであるが,水深が一 6.00m位で 1,2 区より深く, 1,2区の流出土と市内残土 でー3程度とし、敷砂を行ってサンドドレーンを行う。

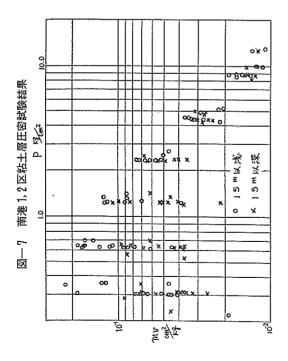
敷砂は図特―1のごとき砂撒布船を使用,一回の施工 厚20cm程度として軟弱な表層にめり込まぬ様 均 ー に 仕 上, 1.2m の厚さに完成した。次に図1-16のごとく-18m迄直径40cm, 間隔 3~3.5m のサンドドレーンを施 工,敷砂部分には図―17のごとく 100m 間隔に排水ポン プを内臓するウエルを埋設し、埋立土が±0~1mに達 した時に排水を開始し、敷砂層の透水を促進し地下水位 を低下すると共に、埋立土に対しては真空効果をも期待 している。このため敷砂は周囲の護岸より30~100離し て施工した。ウエルの間隔、敷砂厚とサンドドレーンの 問隔は敷砂の透水性を考慮して決定した。その考え方に ついては土と基礎 No. 66 に記載されている。初の計画 では軟弱粘土の埋立層中間に排水促進のため砂層を狭む 所謂サンドウィッチ工法がとられる計画であったが、非 常に軟弱な埋立土の表面に水中で2m厚の砂層が連続性 を保ち得るごとく施工する事の困難性、不確実性から、 この計画は中止された。

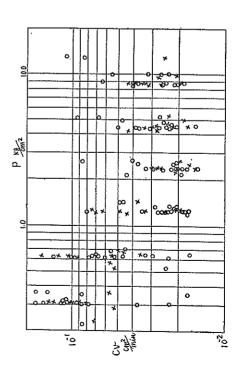
この区域内にある団子瀬より運搬した工事用砂の貯臓 ポケットは-12m迄掘削されていて、浚渫土で埋められ る事になるが、サンドドレーンを施工した原地盤と沈下 効果を近似させるために、埋立開始前に図―18のごと く、カードボードを2m間隔に配置したペーパードレー ンの組枠を3.5 m間隔に沈設し、ポケット底部の敷砂中 に下端を埋設して、埋立後ポンプにより排水を行う。

大阪南港区工業地区工事概要表

I		種	In		EI	I		費
			工程	工事	量	総額	単	価
事	業	数	昭和 36~42年			千月 9,221,000	-1	
土	留護	岸費	36~40年,42年	3,5	41 m	960,000		
	Q	型	36, 39年	1,1	69 //	200,800		
	R	″	36~40 //	1	73 //	242, 379		
	R′	″	37~39, 42 //	2	09 //	186,712		
	X	"	36, 38, 40, 42 //	1,9	90 //	330, 109		
埋	功	費	昭和 36~42年	17, 455, 2	00m³	5, 622, 223		
築	堤	: 1	36~40 //	9	55m	661,620		
9	Q +	R ¹	40 //	1,3	59	105,800		
敷		砂	37~38 //	2,065,2	00m³	1,843,260		
砂		杭	38 //	108,0	00本	617, 190		
ウ	x	ル	38 //		1式	75,530		
埋		立	39~41 //	12,430,0	00m³	1,540,650		
埋	立	(砂)	42 //	2,960,0	00m	690, 433		
灰	盛	土	39~42 //	430,0	00m	87,750		
防	波	堤 赀	36~38, 40~42 //	2,0	60m	2,328,000		
道	路	費	42 //	207, 1	78m²	207, 178		
下	水	費	42 //		1式	103,589		

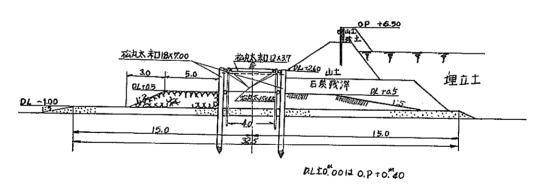
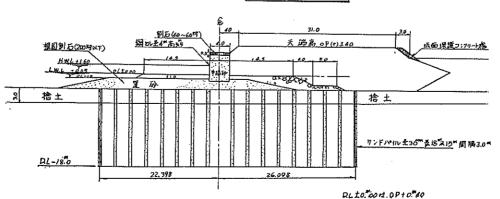
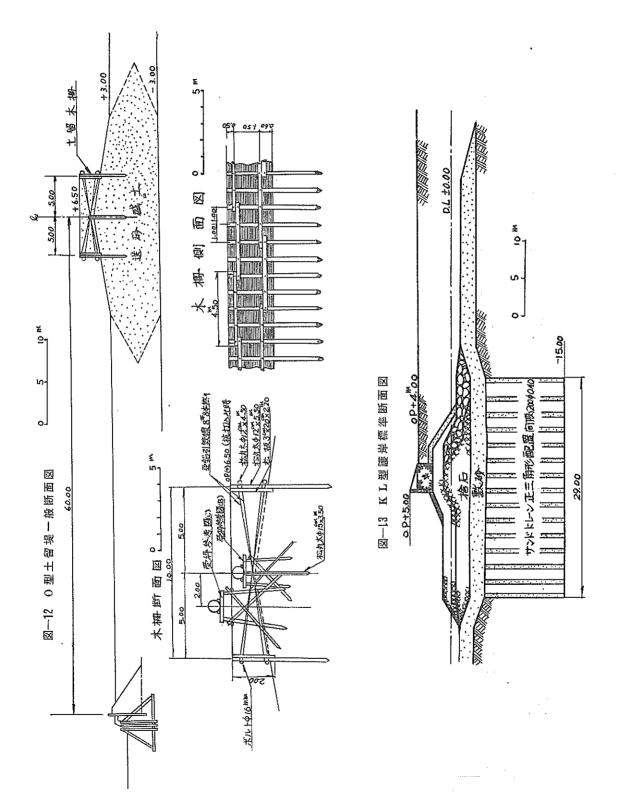
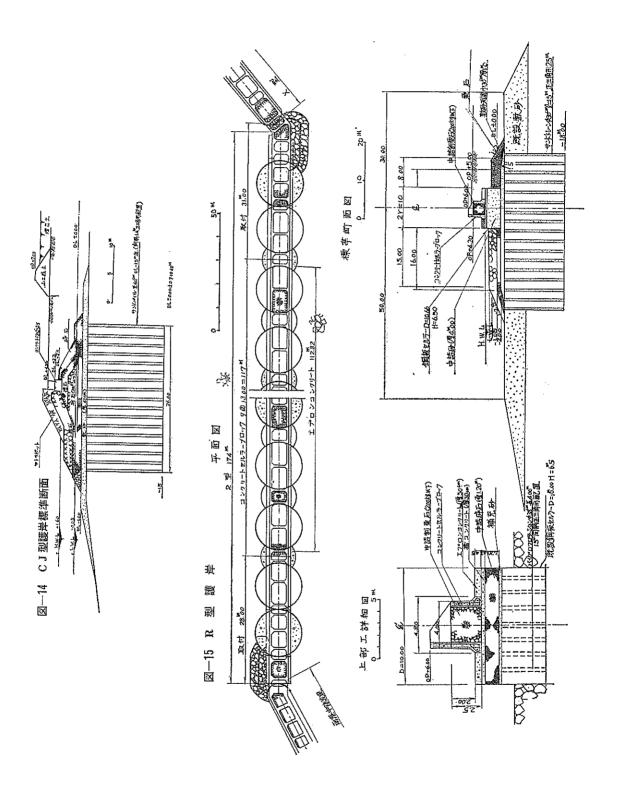




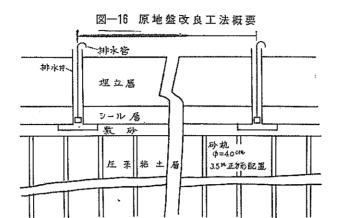

図--- 4 南港 2 区土質試験結果 No. 5 (埋立前) 現場判定 単位体際重量 7 0 土 粒 子のは象 Gs Δ 粒炭粗成 同原ルモの $g_{\omega}(Y_t)$ 土 色 調 团 湊 ٥ 帽 茯 ē 路 序 克 お上質 -15 粘土 暗靠灰色 产档 貴土 **砂ルル** 図— 5 南港 3 区土質試験結果 No. b (埋立前) 撃症体積量量 F O 土 和 J の 比重 G A 现 揭 判定 粒 展 报式 間除此 e o Sr (24) 土類 図状 产 良 調 15 16 17 ار در 169 灰色 シ質ル社 號 紿 Ť 1 灰 2 -20 站土泥了砂 猹 *25· 糜 図--6 南港1区土質試験結果 No. イ (埋立後) 网络特赖克曼 F O 工程子o形定 Gs a 現場判定 図 土 色調 衣 質 調 問題にもの gr (K2). 四次 皮 暗灰色 時長色 粘 B¥. 灰

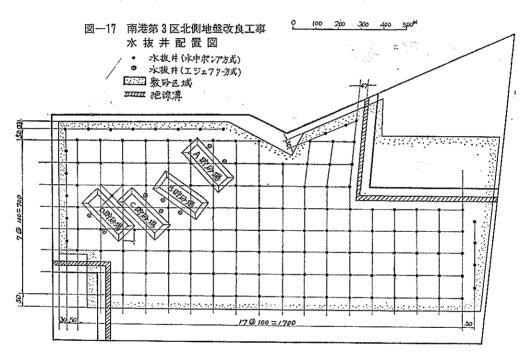

— 57 **—**

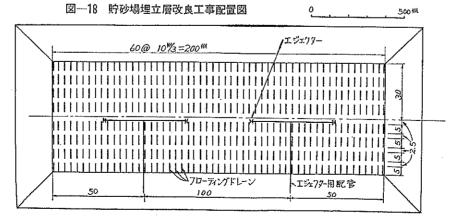
色

図―10 南港第1区北側土留堤標準断面図


図-11 築堤(イ)標準断面図 20**




— 59 **—**

港 6 区, 7 — 1, 2 区 (施工中)

工事概要

工期

昭和35年~

工費

設計

大阪府企業局

施工

6区 三井不動産

7区 国土総合開発

6区

7一1区 7 - 2 区

埋立面積 1,994,800m²

825,900m² 1,579,500m²

平均水深 -6.0m

埋立土量 27,316,900m³ 13,255,000m³ 27,047,500m³

-7.5m

-7.5m

埋立地盤高 +4.35m

+4.35m

-1-4.35m

使用目的

鉄鋼, 石油, 重化学工業及び公共用地

造成目標 譲渡条件としては土質にふれていないが, 地盤高はOP+4.5~4.6mとし地表面は2t/m²程度の支 持力(湿地ブルが入れる程度)を有する地盤とする。

型立工法

埋立は図一1に示す地区の渫浚土を使用する。同図に 示す護岸及び仕切部分に砂質土を放砂、内部に粘性土を 入れる。護岸は始めから本護岸とし埋立に先行させる。 7区北側の護岸部分は天端巾50m程度の良質砂を先に入 れ (1,000m³/m) この吹きのばしと内部の埋立を併行し て施工した。

土 質 概 要

一般的に図一3の土質断面のごとくN>20の数m厚の 第一砂礫層は西南から北東へかけて深くなり,その深度 は浅い所でOP-6m前後、深い所でOP-30m程度と なり、それより上は図-4に見るごとく $w=60\sim100\%$ 、 Lw=60~110% の粘性土で第一砂礫層の下は粘土砂礫 の耳層である。

埋立地

 $6 \times$ 第一砂礫層はOP-7~-11mで表層は礫混り ローム或は粘土である。

7-1第一砂礫層はOP-9~-12m, 西側の方 は表面数mの粘土がある。

第一砂礫層はOP-9~-16m, 上部は1 7-2区 ~6m厚の粘土層がある。

浚渫地

6区 南泊地 OP-8m~-24m, 北部は部分的に シルトをはさむ所もあるが、全体としては砂質土が多い。 南部の-18m~-20mはシルト乃至粘土, 以下はN >15の砂礫、砂質シルト、シルト質粘土

北側航路 OP-21mまで

OP-10~13m迄シルト乃至粘土以下N>10の砂礫, 砂、粘性土の五層

西泊地 OP-18mまで北端は殆んど粘性土であるが 内部は-15m前後から砂質土となる。

OP-18~24mまで N>10の粘土, 砂, 浜寺泊地 砂礫の互層

7-1区

浜寺泊地 OP-18mまで 表層 1~3 mはシルト乃 至粘土,以下はN>10の砂,砂礫,粘性土の互層となる。 7-2|X

浜寺泊地 OP-18~OP-24mまで表面所により1 m程度の砂があり、以下はN>7のシルト乃至粘土とな 3.

7-2区酉側 OP-18mまで、一部OP-24mまで OP-18~20m迄軟弱な粘性土,以下N>10の砂,砂礫, 粘性土の互属

西泊地 OP-18~OP-21m, N>10の砂礫, 粘土 の耳層

埋立藤岸

設計条件としては、天端高のみを考え、上載荷重は考 慮せず、従来の経験から埋立地が保持出来る事を目標と した。形式構造及び、位置は図-5に示すごとくで、水 深の大きい事、急速施工の要があったこと。捨石の入手 が容易である事から、捨石を主体とするものとした。基 礎の地盤処理としては,一部砂礫層上の粘性 土を 浚 渫 し、砂礫で置換した所もある。粘性土地盤で置換を行わ なかった所でも捨石のめり込量が多く相当程度置換され ているものと思われる。

捨石修了後, 法線より15~20m背後に送泥管を設置し, 放砂により腹付けを行い、護岸上部工を施工した。腹付 砂の天端は、その後でならした。

埋立工

設計条件

表一1 埋立土量

	48 -5 757 Fts	भा-क्रज स्वान	沈下盘(設計値)	۵٫۵۵	設計埋立	実 績	実 績
	埋立面積	埋立平均厚	原地盤	埋立土	余盛	土 涨	浚渫土虽	歩 留
6 区	m ² 1,994,800	m 10, 74	m 0.84		0. 3	m³ 23,700,000	m³ 27,316,900 (見 込)	86. 7
7-1区	825,900	11. 15	0, 54		0.3	9,900,000	13, 255, 000	74.7
7-2区	1,579,500	12. 53	1.10		0. 3	22,009,000	27,047,500 (見 込)	81.5

大潮平均満潮面 OP+1.80m

最大波高

+)2,55m

埋立地盤高

+ 4.35m

(第二室戸台風の際, 4区埋立地でOP+4.00mの所は 冠水したが, OP+4.35mの所は冠水しなかった事実の 参考とする。)

沈下母 原地盤 畝弱十厚の1/4

埋立土 粘土に対し0.7~1.0m

余盛 0.3m以上

割増量 沈下余盛を含めて28%

表-1によれば設計時に対する実施工の見掛けの土量 の比は1.15~1.34で沈下流出を含めて75~86%の歩留り となる。

送泥管配置の詳細な図面はないが図―1に示した仕切及び護岸位置に砂質土吹込むごとく、内部に粘性土を吹込むごとく配置れている。

送泥管口は放出土砂の分散をはかる場合には、長さ2 mのスプーン状の多孔板を取付けた。

受粋は埋立地内は、木枠、海上は6~8 inのスパイラル鋼管を使用した。

余水吐の位置は図一1に示すごとく,押出下流に設置 してある。

使用ポンプ船の主機馬力は900~8,000psである。

仕切堤の天端高は護岸と同一で最大粒径3cm程度の良質土砂を吹きのばしにより施工した。

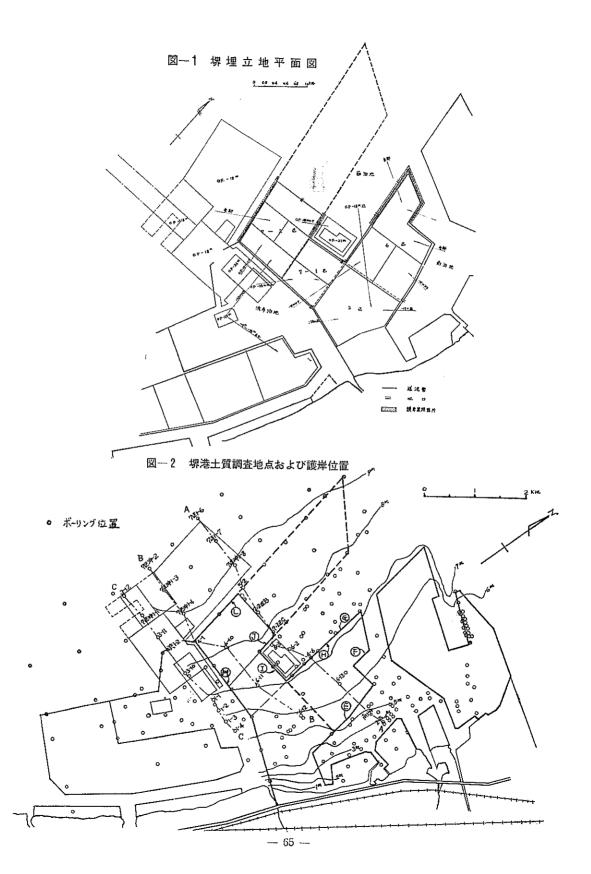
埋立前、中の地盤処理は特に行わないが、埋立表面が 水面に達してからは、工事単位間の放置期間中にできる だけ排水溝をつくって乾燥を促進させる。

埋立後は1年間放置、乾燥させ、1m厚の上置砂を施工する。

埋立後の状況

浚渫地の成層状態の複雑な場所の土が入った所では送

泥管口付近に大粒径の土が集まりこれより遠ざかるに従って粒径が小さくなり、埋立土は垂直、水平両方向共に不整となった所もあるが、内部の粘性土の入った部分は 原地盤砂礫層の浅い部分を除いては埋立後半年位は立入 りできない状態である。


図一6の6区中央部の埋立土質調査結果によれば埋立 土は殆んど粘土で含水量は地表の数mで120~140%で原 地盤に向って減少しており平均80~100%の値を示して いる。浚渫時の粘性土の含水量が80~100%と推察され るから埋立土の下部ではこれに近い間隙になっていると 思われる。

7区の表面処理実験を行った場所では埋立後ほぼ半年で含水量は表面で120~160%, 1 m下で140~160,%8 カ月後で表面が85%,1 m下で150%程度となっている。

堺6区,7区埋立工事概要

工種		工事量	工費単価
護	岸		
港内	E	1, 340 m	244, 000円/m
	G	800m	743, 000 //
	H	1, 280m	764, 000 //
航路	F	1,480m	723, 000 //
埋	立 23,	700, 000 m³	
護	岸		
	ľ		711,000円/m
	J ₋₁		619, 000 //
	L_{-1}		1, 161, 000 //
	L -2		951, 000 //
	M		657, 000 //
	7-1	9, 900, 000m³	

7-1 9, 900, 000 m³ 7-2 22, 009, 000 m³

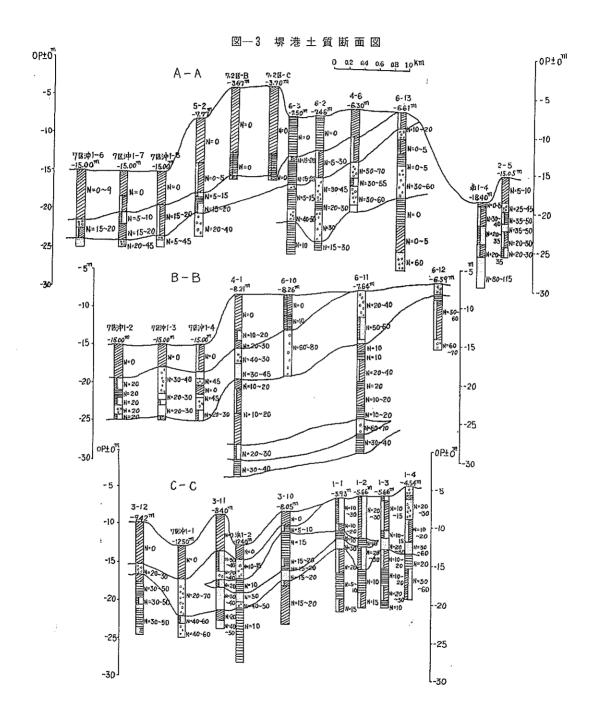
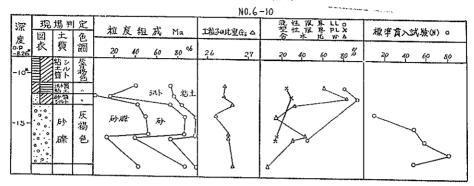
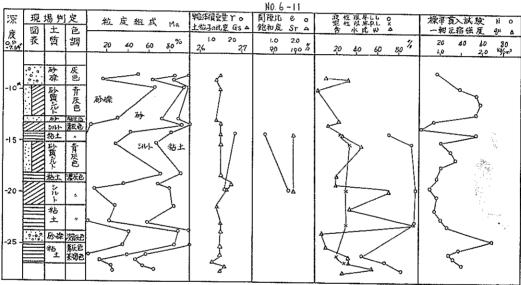




図-4 土質試験結果

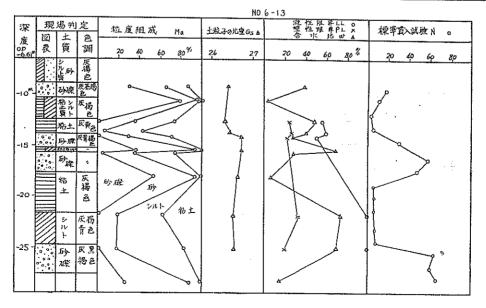
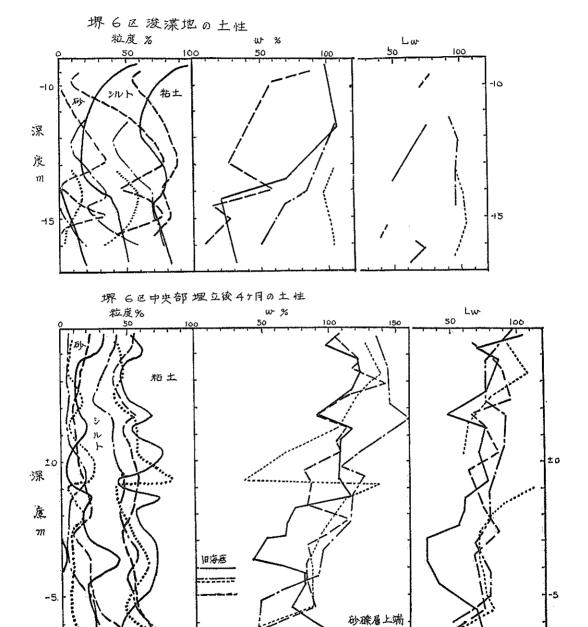



図-5 各種護婦標準断面 Him Don-k

-- 68 --

図-6 浚渫土と埋立土の土性

四日市港午起地

四日市市午起地先

工事概要

工期 昭和32年11月~36年10月

工費 2,000,000,000円 設計 三重県四日市港務局

施工 埋立 佐伯建設

護岸 大成建設

 埋立面積
 684, 319m²

 埋立土量
 5, 253, 000m³

平均水深 -1.0m 埋立地盤高 +4.0m

使用目的 中部電力四日市発電所

大協和石油化学株式会社

大岛石油株式会社

造成目標 使用者との協議により、良質土砂で埋立 地を造成する事を計画した。

埋立工法 埋立は図ー2に示す地区の浚渫土(粘土 質30%, 砂質70%)を使用し、仮護岸、仕切は設けず、 本護岸の建設と浚渫土の吹込みを併行して行った。

土 質 概 要

埋立地区

図一3に示すごとく海底より3~5mはN値0~5の砂或はシルト,その下に1~3m厚のN値10~40の砂礫層をはさみ,12~15m厚のN値8前後の粘土層が存在し,以下はN値50以上の砂礫とN値10以上の粘土の不規則な互相となる。成層状態はほぼ水平であるが幾分沖側に下向に傾斜している。

上部粘土層は含水比60%前後, $g_u1.5~2.5$ kg/cm 2 で,上層の数mを除いては比較的支持力の大きい良質な地盤である。

浚 渫 地 区

浚渫深度は南部で-9m, 中部及び北部で-12mで, 図-3のごとく南部は殆んどシルト又は粘土, 中部, 北部は殆んど砂又は砂礫である。

埋立護岸

設計条件 H.W. L+2.57m L.W.L. ±0,0m

既往最高潮位十4.55m 波高 3.3m (¹/₁₀最大波) 上質 図ー3の通り

型式構造 図一5に各護岸の断面を示す。

東側護岸、基礎に置砂を施工,この上に石枠を設置, これを核として上部に上型,前面に捨石,およびテトラポットを置く。石枠は埋立途中で外周堤として利用された。 地盤処理としては、置砂の施工および前面の捨石が押 え盛土の効果をもつ。

図一5に施工順序を番号で示す。即ち,

- ① 石枠に約200m 先行させ、砂船で置砂を施工する。 置砂天端は -1.5m とする。
- ② 石枠を作る。枠は1m間隔,中詰石は20~30kgである。
- ③ 裏込砂を +1.5m までもらし吹きで施工する。石枠 背後はむしろをあて洩止めとする。
- ④ +1.5m まで埋立てる。
- ⑤ 前面被覆石および斜面部にテトラポットを施工する。
- ⑥ 上部壁体,背後土留壁を施工する。
- ⑦ 前面法肩のテトラポット,堤防盛土,十4.2m までの背後埋立を施工する。

北側、南側の護岸も以上に準じて施工された。

埋立工

計画及び経過

前述のごとく浚渫土は北、中部が良質で南部が軟弱であるため、南部の浚渫深度を浅く、北部を深くし、できるだけ砂、砂礫で埋立てる様にした。埋立ては必ずしも航路泊地の浚渫と一致していない。最初の計画では表面に山土をのせる予定であったが、でき上りが、さほど悪くなかったのでこれは取止めとした。土量算出及び浚渫実績量は表一1のごとくである。浚渫土の膨張は考えず地山1㎡。は埋立後も1㎡³とした。埋立土量は掘り跡で検収したため埋立地盤高は計画の+4㎡をこえて+5㎡となった。その後3年間に約30㎡沈下し+4.7㎡となった。従って埋立直後の歩留りは、80.5%程度となる。機械施設

使用したポンプ船は次の通りである。

金剛丸 500PS (E) 33年南側護岸腹付用

金祥丸 1,500PS(E)大半はこれを使用。

金鳥丸 1,500PS (E) 一部使用

送泥管支管間隔は50mを原則とした。図ー6に配管例を示す。

漁業補償については工事区域の外,隣接地の富州原まで行い,補償額は970万円である。

地盤処理 特に施工していないが、仮道路に50cm厚の 山土を置土し、テトラポット置場も地表面は山土で被覆 した。

埋立後の状況

浚渫土は良質のものを選んだので、埋立地盤は南半分の下層に粘性土がたまったが、全体としては、砂質土で、特に上層部は殆んど砂、砂礫となっている。ボーリ

ング結果によれば次のごとくである。

上層 約3m 砂 N=2~15

下層 3~5 m部分的に粘性をはさむ砂又は砂礫。粘

性は、沖朗、南部よりが厚く最大5 m 程度の所もある。

粘性土 N=0~2

砂,砂碟 N=5~25

埋立後建設作業開始までの放置期間は次のごとくであ る。

大協石油 7カ月

大協石汕化学 4ヵ月

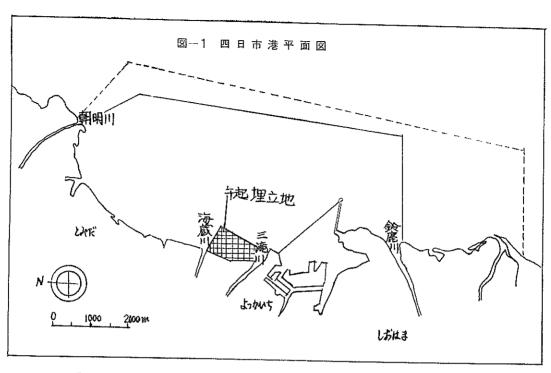
中部電力 なし

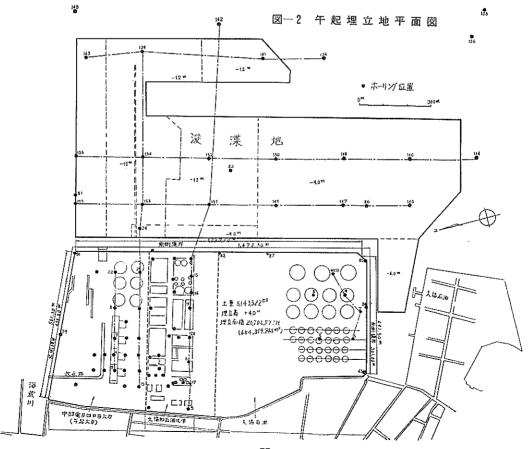
表一1 埋立土量算出

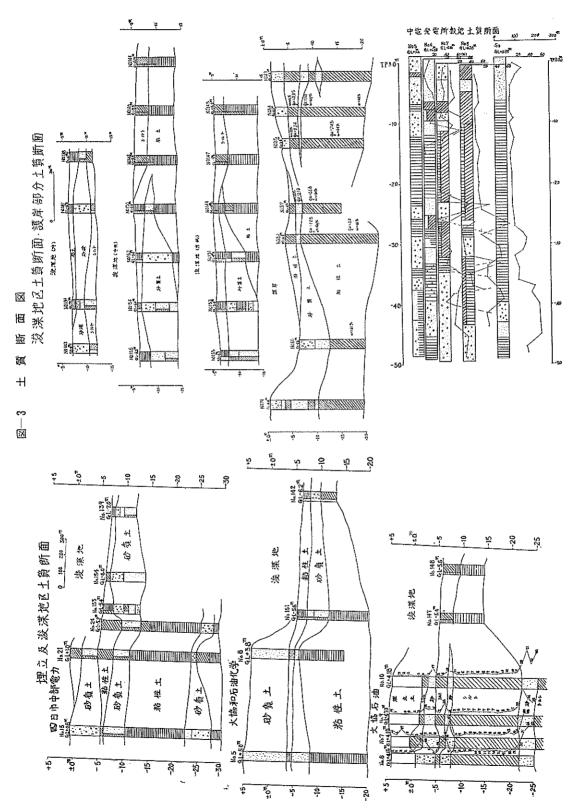
埋立地	埋立面積	平均埋立厚	埋立容積	沈一	下 盘	余	盛	埋立純土産	歩 留	設計埋立	游谯(知寺)
435.77.1E	A	В	$C = A \times B$	原地盤 D	埋立土 E	F		埋立純土量 G=A(B +D+E+ F)	(設計値) H	主 <u>最</u> I=G/H	浚渫(埋立) 土量実績 J
午 起	m² 684, 319	4. 98m	m³ 3, 414, 000		10cm 下量は	0		m³ 3, 550, 000	0. 676	m³ 5, 253, 000	5, 253, 000
				50cm 2	する。						

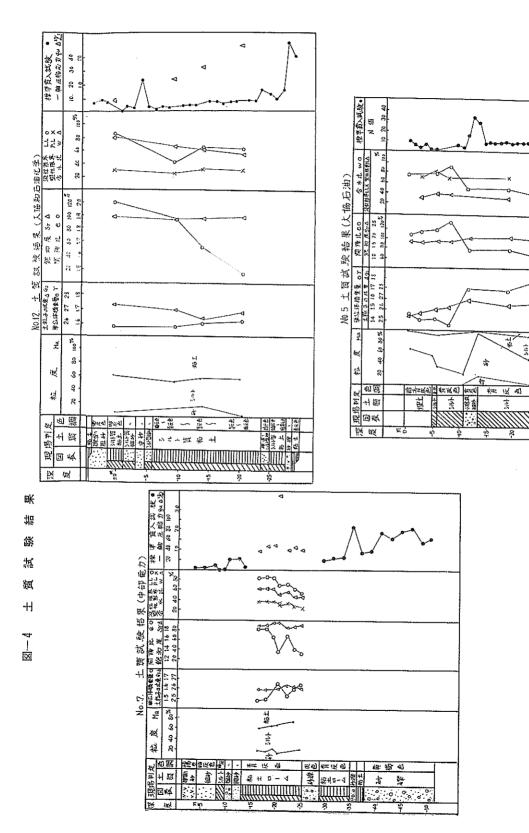
四日市港午起土地造成事業概要

33		種	工	程	I	事	撒	工			費
		192		T.3.2		41	Ш	総	額	単	価
4	業	費						1, 823, 50	円)1, 216		
IJF.	務							62, 47	6, 417		
I.	ijŧ	費						1,661,51	8, 804		
護	掃	費	32年~	36年		2, 261	. 5m	883, 24	4, 215		
南	側護	岸	32, 33,	35年		301	. 0m	28, 45	8, 825		
東	11		32年~	36年		1, 472	.5//	796, 01	8, 388	***************************************	
北	//		35年~	36年		488	.8″	58, 76	7,000		
埋	7,7	費						759, 36	5, 606		
浚		渫			5, 25	3, 000	m³	"			
表		土			8	36, 000					
付	帯	工						4, 78	3, 000		
間	接	- 費						99, 50	5, 995	·····	


理		立	地	午起 大協	 石油						· · · · · · · · · · · · · · · · · · ·		
構	j	企	物	油槽 22,000 コーンルーフ 径 50m 高 12.2m	K L ィング		油槽 7,000K L コーンルーフィング 径 28.09m 高 12.2m						
1110	<i>Ja</i> 5	ж		101/111			12.01/						
許	容:	北 下 ——	显										
//	不领	统工	下量										
基	上		質	砂	シルト	砂礫,シルト 互層	砂,シル ト互層	砂	シルト	砂	シルト		
礎	層		厚	3 m	8 m	以下	6 m	3 m	1 m	2 m	14m		
1	強		度	N = 4 ~17	$N = 1 \sim 5$	N = 4 ~50	N=0~2	15 ~ 25	2	25~40	5~13		
性	圧	密制	产性	$C_v = 0.3 \sim 1.2$	×10 ⁻² cm/min				,	1			
処理地	里後! 盤	強	度										
安		全	率							·			
処	理	I	法	ウエルポイント	バイブロ フロテーション	ディープウ エル	大成十年	ジイブロ	千	代田式			
	"	面	積	1,960 m ²				*****					
	"	深	度	8. 2m	7 m	30m	7 m						
	"	内	訳	間隔 1.2m 対角線67m の8角形	砂杭 1,479本 l = 7 m d = 30cm 間隔 1.5m 三角形	タンク中心 1カ所	十字バイ 125本 盛土輾日		1	土輾圧ニール敷			
娰	荷	方	法	揚水	水張		盛土		盛	±			
	"	荷	重	5 ~ 6 t/m ²	12. 2t/m²		14. 2t/m	2	14	. 2t/m²			
	"	捌	間	53 頁	42日		45 E		45	E			
改	良	劾	果						<u>'</u>				
I			種		W				<u></u>				
I			期	100日/基			140日/8	基	<u> </u>	60日/3月	 !:		
I			費	15, 000, 000円/	/基		3, 000, 00			3, 000, 00			
備			考	揚 沈下量 22c 不等沈下	em 20	張 ~24cm ~ 5 cm	沈下昼 不等沈	25cm 5cm	Ī	30cm 3cm			


埋		У .	扡	午起	大協石》	lı								
構	ì	告	物			グ	46	// コーティン 5.5m 5.5m	Ĭ,	油槽 5,000K L コーンルーフィン 径 27.12m 高 10.7m	グ	フェ	// !ーテ _ィ ン //	Ď.
荷	重	粂	件	13. 6t/r	n²		13	. 6t/m²		11t/m²		111	:/m²	
許	容力	七下	、量									<u> </u>		
"	不等	沘	下显							÷				
基	上		質	シルト, 砂の互屑	砂	シル	/	砂	シルト	シルト、砂の互居	シ	ルト	砂	シルト
礎	屑		厚	6. 5m	3 m	1~2	2m	1~2m	14m	6 m	4	í m	3 m	13m
土性	<u>強</u>		度	N=0~7	10~25	2		25	6~10	N=1~9		0	14~31	6~15
	圧犯	名 特	性										<u>.</u>	
処理地	I後 盤	強,	度								<u> </u>		<u>.</u> 1	
安	全	:	率											
処	理	エ	法	十字バイ	ブロ,	ウエ	ルポ	イント		バイブロ フロテーショ	ン	バイン	ブロフロラ ディープリ	テーショ ウエル
//		面												
		深					-			6 m			6 m	
	•	内	訳	バイブロ 299本	杭					バイブロ杭 233本		350 ディ 1オ	ープウエル	
祓	荷	方	法							盛土			"	
	"	荷	重	15t/m²			,	"		11t/m²			"	
			問	20日			/	7		20~30日			40 FI	
改	良 —	効	果											
<u> </u>			種	····										
I			期	40 FI										
工			費	10, 000, 0)00/基					24,000,000/11基				
備			考	載荷による 総沈下 不等沈下	25cm					戦荷による沈下 総沈下 20cm 不等沈下 2~5 c	em			18cm 4cm


埋 立	地	午起 大協和	石油	化学(第一ヤー	- ド)			·	
構造	物油	曹 763K L 10. 6m		" 489K I, 8.7m		// 106K L 5, 8m			// 4K L 5m
荷重条	件 8	~9. 6t/m²		8.5 /	/	6. 3	″	4. 6	5~6.3 "
許容沈下	R								
″ 不等沈下	II.								
基土	質 砂	,砂礫	シ	ルト質砂	中粗砂		シルト		粘土変り礫
	享	4. 7m		5. 3m	2 m		12m		
土 強 (度 1	V=8	N	= 8 ~10	N=20	~30	N = 4 ~10		N>50
圧密特	生								
処理後 地盤強度	N>	>17(予定)		"		"			"
安全	率 > 3	3(予定)		"		//	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		"
処理工	生 バ	イブロフローテ	ーシ	ョン					
" 面 🤅	遺						-		
// 深!	变	9 m		6 m		4 m		4	(m
" 内;		イブロ杭 隔 1,3m							
報 荷 方 ;	生								
	Ē								
	lij								
改良効果				- "					
工	Æ								
	У								
工	_								
備考				-	<u> </u>				


埋	27.	地	午起 大協和石	i油化学(第二ヤード)		
構	造	物	油槽 2,130K L 径 15.5m 高 11.3m	// 1. 620K L 15. 5m 9. 0m	813K L 10.6m 9.05m	" 489K L 8.7m 8.25m	" 220K L 6.8m
荷	重系	华	11. 6 t/m²	8. 9 t/m²	9. 6 t/m²	8. 5 t/m²	6. 5 t/m ²
許多	容沈门	下盘					
"不	等沈	下盘					
基	土	質	砂, 砂礫	シルト粘土砂互扇	砂	シルト質粘土	粘土交り礫
礎	層	厚	3. 3m	5. 3m	1 ~ 2 m	15m	
土性	強	度	N=8	N=2	N=15~25	N=5~10	N>50
131:	圧密	特性	$C_v = 4 \times 10^{-3} \text{cm}^2/\text{s}$	min (仮定)			
処理	里後 也盤強	度	C=0.26kg/cm² N=15 (予定)	"	"	"	"
安	全	率	> 3	"	//	"	"
処	理 工	法	サンドドレーン	"	//	"	載荷圧密
	面	積					
	深	度	8.5	8. 5	8. 5	6. 5	
//	内	訳	サンドパイル 数 109本/荘 d =45cm P=1.8m 1=8.5m	11 11 11 11	61本 " " "	43本 " 1 = 6.5	
載:	荷 方	法	盛土 3 m	"	"	//	
"	荷	重	6 t/m²	"	//	"	
"	期	間	15日	23日	23日	23日	
	良 歾	-					
エ		種					
エエ		期					
備			載荷による沈下 総沈下 不等沈下	43~46cm	48ст	80~83cm	

埋	立	地	午起	中部電力									
構	造	物	油槽 20,000K 径 46.5 高 13.6	5m	タービ 基礎 30m:	ン ×65m		基	[突]] 36m	取水口 36.3×50	.6×11m	放水路 全長 4191	n
荷	重条	件	14 t/	/m²	30 t/r	n²							
許須	字沈 下	盘		J	··								
"不	等沈了	虚						•					
基	ıĿ	質	砂,粘土	粘土	砂	粘土	砂花	樂	粘土	砂	粘土	砂	粘土
礎	層	厚	7 m	5 ~ 8 m	6	2~3	2 ~	3	10~14	3~5	2~5	8	14
土性	強	度	N= 2~25	1~10	N= 5~25	0~2	5 ~:	25	$N = 5 \sim 10$ $q_u = 1 \sim 2 \text{kg/cm}^2$	N= 5~10	2~5	5~20	8
171:	圧密	寺性	$C_v = 1.2 \times 10^{\circ}$	⁻¹cm²/min									
処式	里後 心盛強/	吏	N=5~	42									1
安	全	率											
処	理工	法	砂置換 サンドド	レーン	鋼管材	1、置換						コンポー	h; —
	面	積											•
"	深	度	−10.5m	n	30m				"				
"	内	訳	置換およ 厚1m 砂杭 1,201本, 1=15n P=1.3 正方形	/基 ì	$\phi = 50$ $1 = 3$ $80t/z$				"	鋼管杭 157本		砂杭 l = 4 m 間隔 1.5s	
載	荷方	法	盛土							-			
"	荷	重	13. 6t/m	2			·						
	拁	間											
改	良効	果											
工		種											
エ		期										· · · · · · · · · · · · · · · · · · ·	
工		費											
伽		考	載荷による 総沈下 1.			フロテー			は砂で置換, バ , コンポーザー				

4

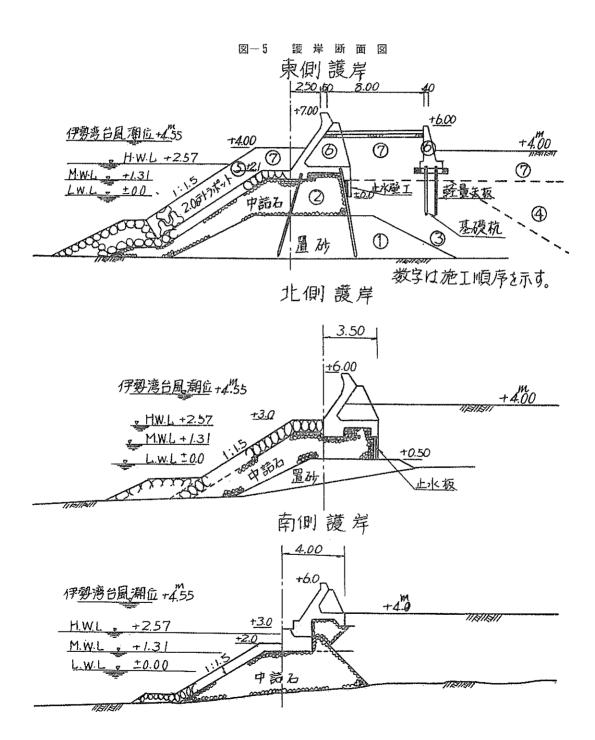
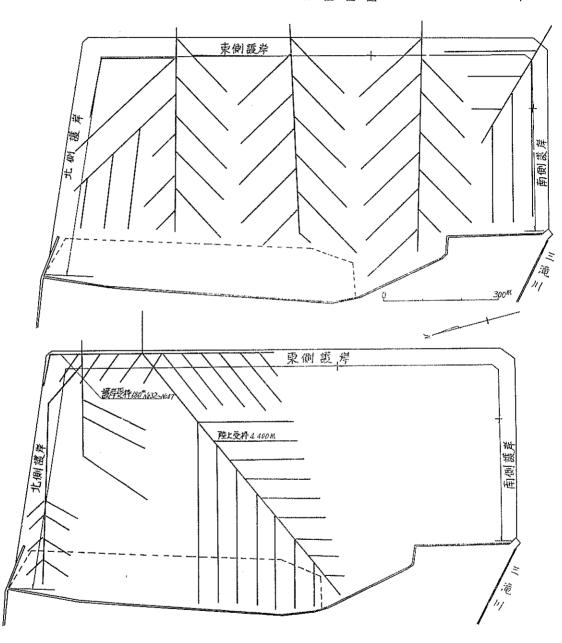
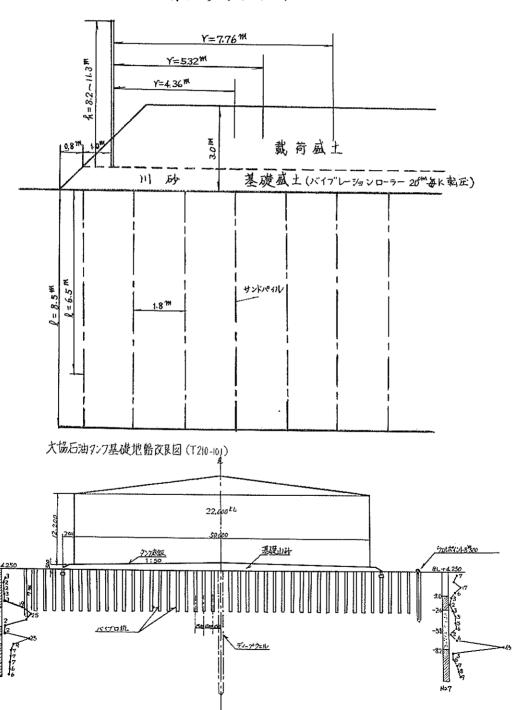
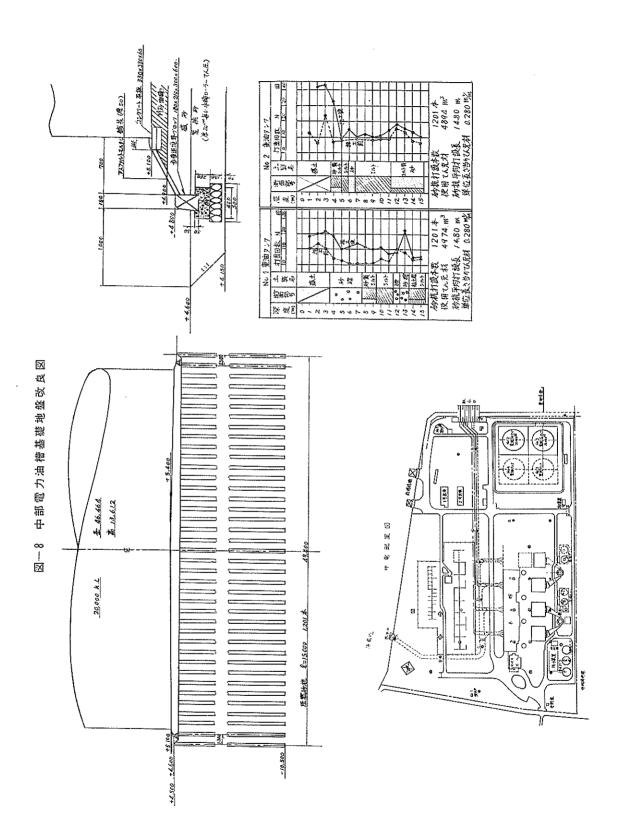





図-6 午 起 受 枠 配 置 図

図-1 油槽基礎地盤改良図 四日市 大協和石油化学タンク基礎地盤改良図 第二 タンクヤード

名 古 屋 港 2 工 区

知多郡南昇錄新田地先~大田川河口

工事概要

工期 昭和36年2月~昭和37年10月

工費 4, 137, 224, 128円

設計 名古屋港管理組合

施工

埋立面積 3,368,800m²

埋立上量 30,145,300m³ 平均水深 -2.5m

埋立地盤高 +4.8m

使用目的 東海製鉄 造成目標 引渡地盤高十4.8m, 地盤の強度に対す

る条件は決めていない。

埋立工法 埋立は航路泊地の浚渫土で行い、埋立土が不均一とならぬ様全区域を8区画に分割して施工し順次軟弱土を押出して行った。このため最後の区画にこれがたまり、浚渫土も軟弱であったため造成地盤が非常に軟弱となり、後から砂質土を吹込んで改良を行った。 護岸は仮護岸とし、本護岸は使用者が施工する。

土 質 概 要

埋立地区

海底付近は被弱なシルト又はシルト質砂で最大厚は3.6m, N値は0~2である。これより下1~7mはN値1~15のシルト又は砂で層序は一定しない。以下は熱田層と称する洪積層でN値は20以上の粘土質シルト,シルト又は砂の互層である。洪積層は沖側に傾斜し、上部沖積層は沖側に厚くなっている。

一般的に上層数mの軟弱層の下はN値20以上の洪積層 となり割合良好な地盤である。図—4に土層 断 面 を 示 す。

浚渫地区

図一4に見るごとく北側は上層数mが軟弱であるが、他はシルト又は砂で比較的良質である。沖に向ってシルッ分が多くなり、特に8の地域では殆んどシルト質粘土となっている。表-1に波渫地区の土質概要を示す。

埋立護岸

設計条件 H.W.L. +2.61m, L.W.L. ±0 m

既往最高潮位 +5.31m

波高 特に考慮しない。

安全率特に計算せず。

土質 図-4

型式構造

図―5に示す木棚仮護岸を使用した。河口付近及び漁業補償のすまない場所では泥土の流出を防ぐため石枠を使用した。

木柵は次の理由により板張りを二段に行うため控えを 2本にした。

- 1. 板を最初から上まで張ると波に弱い。
- 2. 捨吹きした土砂を一様にならしやすくする。
- 又,護岸の透水を防ぐため,木柵の穴には木栓を打込み,且つ腹付盛土を行った。

地盤処理

仮護岸法線に干潮時砂質土を吹込みその流動圧で海底の軟弱土を吹きとばし、良質土に置換し+2mまで盛上げた。この置換法は水深が2m以内の場合には効果があった。

施工順序

- 1. 干潮時+2mまで良質土を捨吹きする。
- 2. ジェットを併用し、二本構で木棚の杭を打込む。
- 3. 下段のタイを取り張板を施工する。
- 4. 背後の土砂をならす。
- 5. 上部のタイをとり張板を施工する。
- 6. もらし吹きにより背後の腹付けを行う。この際湿 地用ブルドーザーを併用した。

選択理由

- 1. 波が弱い。
- 2. 工期を短縮する。
- 3. 地盤が軟弱なため一応仮護岸で安定させてから本 護岸を施工する。
- 4. 工場の配置が決定していないので法線の変更が自由にできる様にする。
 - 5. 土堤形式では良質土砂が大量に入手できない。
- 6. 土堤ではポンプ船の馬力が大きいため地盤の強度に不安がある。

結果に対する考察

埋立完了後本護岸を直ちに施工しない場合はこの型式

では安全でなく、手戻りが生じ易い。したがって工事完 了後直ちに埋立完了申請が出せない等の問題がある。

埋 17 I

埋立土量の算出

- 1. 浚渫土の膨張は考慮せず地山 1m³は埋立後も1m³ とする。
- 2. 流出量は捨吹きの場合20%, 中吹きの場合15%と しこの分を割増量とする。中吹きの流出量を15%とした のは浚渫土の30%が粘土でこの1/2が流失しシルト以上は 流出しないと考えたことによる。
- 3. 沈下量は特に計算せず、砂は30cm、シルト、粘土 は50cmとし、この分だけ余盛する。
 - 4. 実際の歩留りもほぼ計画通りであった。

機械、施設

ポンプ船の配置は主として工期から決定する。経済的 な配船計画としては次のごとくである。

1,000 P S

6 ~ 7 77 m²

2,000 PS

1577 m²

送泥管の基本的配置は図一7に示す。支管の間隔は50 ~80mである。

余水吐は通称"尺八"と言われるもので、排水には排砂 管3~4本分仮護岸から先にのばす。

区画の広い所では2カ所に設置し、両方の吐口を使用 して泥土が1カ所に集まらぬ様にする。

使用個数はポンプ船 500PS 当り1コとする。

尺八を使用した理由は後述のごとくである。

中仕切

埋立土の均一をはかり、埋立地を8区画に区切り木棚 で朗った。構造及び配置は図-5,図-2のごとくであ ٧ã ه

漁業補償は仮護岸の一部を石枠として他地区への土砂 の流失を防ぎ、埋立地域のみに限定した。

施工順序 全体の施工は図ー2の区画の番号順に行 い,各区画については図一7に示す順序で施工した。即ち

- 1. 仮護岸を施工し同時に余水吐を設置する。
- 2. 護岸法線から20m後方に送泥管を設けて中吹きす る。この場合も湿地用ブルドーザーを併用した。

浚渫埋立の稼動時間は次のごとくである。

捨吹き 8時間/日(干潮時)

中吹き 15時間/日

地盤処理

その8区画は最後に施工したため各区画の軟土が逐次 押し流されてたまった事、又、浚渫土質が他区画より悪 かったため広範囲に軟泥部が出来たので、埋立後全面的

に改良工事を行った。

改良前の状態

軟弱土の堆積状況(昭和36年11月7日)

図-8, 図-9に軟弱土の堆積状況を示す。

その量は180万3と推定された。

十個

3地点の土質調査結果によれば砂分2~18%, 含水量 $t = 145 \sim 150\%$ CCv= $1 \times 10^{-1} \sim 7 \times 10^{-2}$ cm²/min, m_v= $8 \times 10^- \sim 4 \times 10^{-1} \text{cm}^2/\text{kg}$ であった。 改良方針

外周堤の一部に約30mの開口部を設け、上部に良質土 砂を吹込み、軟泥を一部押出すと共に圧密し上部を良質 上に置きかえる。

計画及び実施

工期 昭和36年12月上旬~37年5月末日

使用土量 150753

内訳 沈下景

10077 m3

上置士 50万m³

計算

1.5m 盛土した場合の沈下量は

 $m_v = 8 \times 110 \text{ cm}^2/\text{kg}$

H = 7.5 m

7=1.8 として

 $\Delta P = 1.8 \times 1.5 = 0.27 \text{kg/cm}^2$

dH=7.5×8×10⁻¹×0.27=1.6m となる

1.5m 沈下するとしてこれに必要な土飛は

 $1.5 \text{m} \times 50 \text{Tj} \text{m}^2 \times 1.25 = 100 \text{Tj} \text{m}^3$

配管

配管図―10はの様にし,高さは +6.5m 前後とした。

図-12に37年5月21日現在の平面図を示す。

吹込んだ良質士

150万m3社

+4.8m以上の土量 約50万m³

以下の土量 約100万m3

となり、100万m3の砂が180万3の軟泥中にくい込み、そ の上に 50万m³ の砂が、上置きされた状態となり、地盤 高は十5~十7m位となった。押出された軟泥はわず か, 4~5万m3程度であった。

改良直後No 2, 15, 20の 3 地点で土質調査を行った。 図―13に各地点の土質試験結果を示す。含水比は35~100 %となっており、改良前の平均150%に比べて大巾に低 下している。又一晌圧縮強度試験は0.1~0.3kg/cm²とな っている。

埋立後の状況

岸側は原地盤の沖積層も薄く、浚渫土も良質土であったため比較的良い地盤となっている。沖側は沖積層が岸側に比べて厚く、埋立順序があとのため逐次軟弱土が寄せ集められた事、浚渫土が悪かった事等のため軟弱な埋立地となった。ここでは沖側のその7、その8地区について述べる。

救弱土層は原地盤土層の軟泥約2 m程を含んで10m~12mで、砂とシルト、粘土の極めて不規則な 互層 である。一般に外周堤、管路、管口付近に砂が集まり、それから離れるに従って粘性土層が厚くなっており、砂或は特性土のみの所もある。その8地区は特に粘性土層が厚かったので前述のごとく置砂による全面 改良を 行った。図ー10は表面軟泥の分布、送泥管の配置を示す。調査時期は埋立直後でその8地区改良前である。

表一2は各地区の土質試験結果、図 -14に土質断而、

図―15~16に土質試験結果を示す。調査時期はその8地 区改良直後であるが、鉄道敷地のみその後約1年経過後 である。浚渫地区の土質調査試料がないので比較は出来 ないが、次の様な事が言える。

含水比は砂質土で20%~60%、粘性上で $40\sim100\%$ である。GL-3 m付近が大きい。一軸圧縮強度は埋立直後で $0.02\sim0.3$ kg/cm² で弱く、又、深度方向に特に増加の傾向を示さない。更に 1 年経過したものは $0.15\sim0.45$ kg/cm² と多少増加し、又、深度方向に増加の傾向を示している。

圧密係数はNP1kg/cm² 付近で 1×10⁻¹kg/cm² 程度で 割合大きく、処理しやすい土質である。

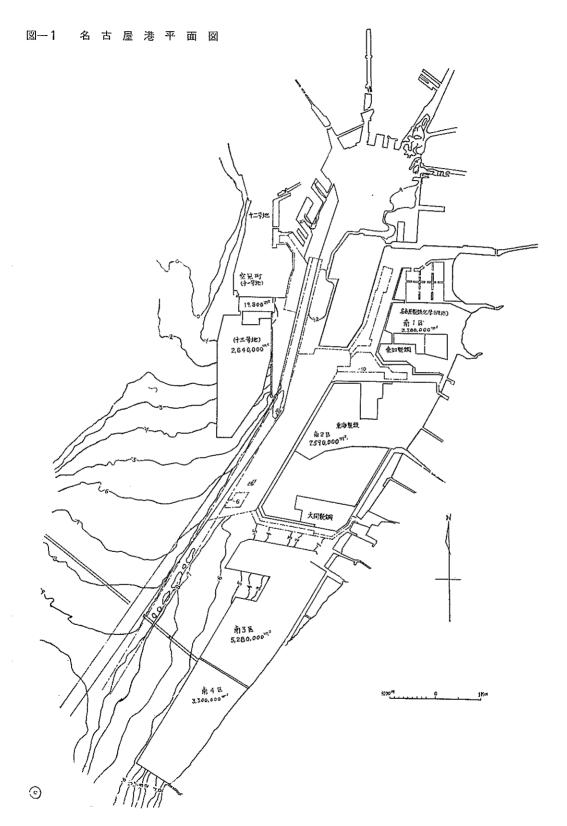
埋立後の使用状況は、表面砂質上の所は施工後2時間 程度で人や湿地用ブルドーザーの立入りが可能であった。表面シルト又は粘上の所は亀子状にひび割れを生ずる様になってから人の立入りが可能であった。

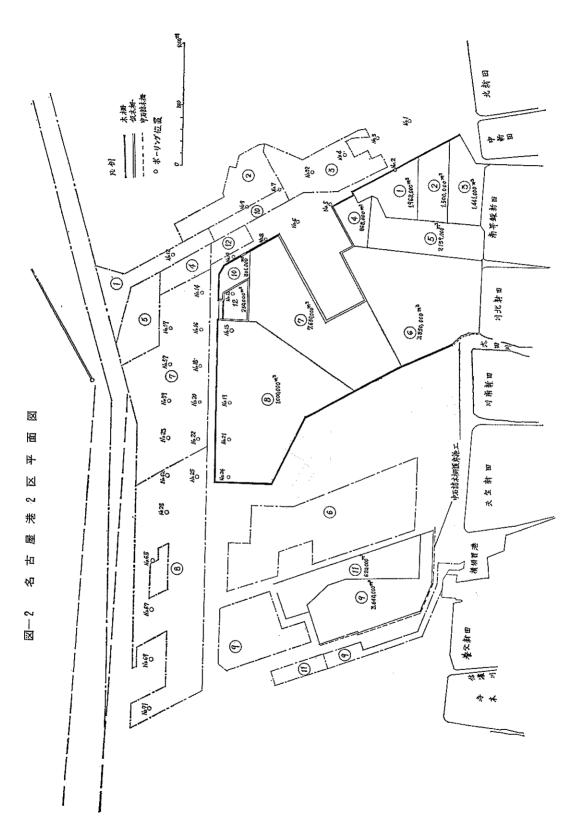
表一1 浚 渫 土

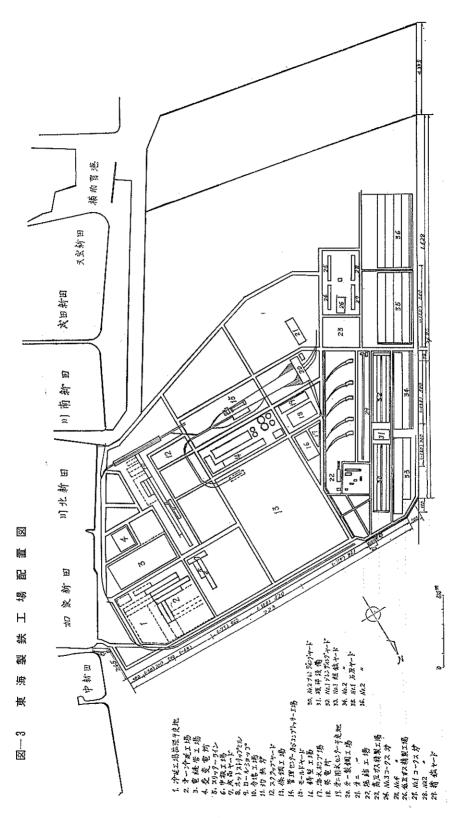
				北				(O)	西側	(No 8	地区を	除く)	No	8	jţ	j,	<u> </u>
浚	渫	滐	度		7	, 5m	~-	20m		-12	m ~ -	·14m				_	14m
水			滐		-1.	9m -	- −6	. 9m		-2, 6n	ı ~ −{	5. 4m		-5	5. 52	~	6 m
洪	積層	上	क्र	_	-2.8	m ~	-11	. 6m		-9.2	~ −1	5. 4m		- 9.	9~	16	, 9m
	L.	土	質	收泥~收泥質砂				//		"							
沖		厚.	さ			0. 4r	n~2	.7m			0~	1. 3m			0	~0	, 5m
(*)	尼	N	値				0				0	~ 1				0	
積	下	土	質	シ	ル	Ի ^	~ 砂		1	ルトシ 々に砂,			シル 砂質:	ト質物	指土 トの	で所	々に をは
層		厚	ż			(~7	.7m		2.6	m ~ 12	2. 6m	***	6 1	n ~	10.8	以上:
	層	N	値		(大	⊭10 Լ	2~ 以下)			(稀に30		~ 7)		(新	iに 4	0	MATERIAL SECTION OF THE SECTION OF T
洪	土		質	シ	ル	ኑ ~	質	砂砂	粘又	上は	質砂	砂	砂	質	シ ~	ル	ト 砂
图	N	,	値		30 (上	-	上 20)			30 日)		30 上	以部		l

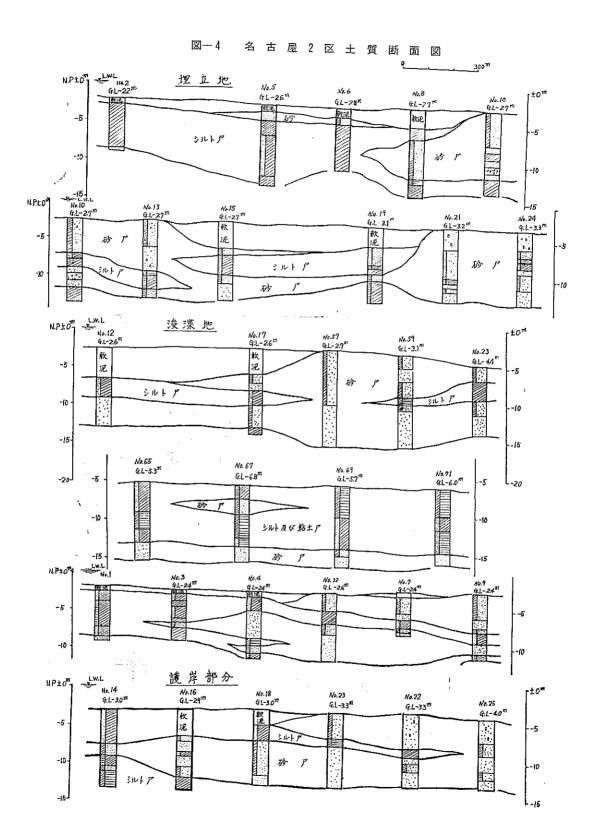
表一2 その7、その8地区埋立層土質

		その7, その8	(置砂不施工)	そ(の 8 地区 (表	長面 置砂施:	I)
		石炭ヤード	焼結工場	鉄道	コークス炉	転 炉	置砂チェック
			(9点)	(38.6 8点)	(8点)	(10点)	(37.9 3点)
届	軟弱層厚	12m	12m	10~12m	10~12m	10~12m	10~12m
	砂層原	2 m~10m	2 m ~ 6 m	1 m ~ 9 m	3 ~ 8 m	1 ~ 9 m	4 ~ 9 m
	粘性土層厚 —————	2 m ~10m	3 m ~ 7 m	1 m ~ 9 m	$3 \sim 4 \text{ m}$ $(6 \sim 8)$	1 ∼ 9 m	3 ∼ 8 m
状	表 面	大部分 砂	砂,粘性土が 半々	大部分 砂	砂	A	砂
	砂			1.7~1.8	1.5~1.95	1.8~1.9	1, 58~1, 95
上	* 粘性土		1.5~1.78	1.6~1.7	1,63~1,75	1.4~1.8	1.58~1.72
	w w			20~40	(稀に1.4) 21~55		23~65
	料性比		35∼90	40~100	40~100	50~100	40~95
	$q_n \text{ (kg/cm}^2)$	0.4 Z (t/m²)	0.02~0.5	0, 15~0, 45	0.1~0.3	0.1~0.15	0, 1~0, 3
性	$C_v(cm^2/min)$	I × I0 ⁻¹	1 ×10 ⁻¹	1.4×10^{-1}	8 × 10 ⁻²	8 ×10 ⁻²	
	m _v (cm ² /kg)	1 ×10 ⁻¹	1 ×10 ⁻¹	1×10 ⁻¹	1.3×10 ⁻¹	1 ×10 ⁻²	
		砂層と粘性土	粘性土層が多	粘性土層が多	砂層が多い	砂層やや多い	
		唇と半々	V	v			


註)C_v, m_vは設計に使用した値で NP 1 kg/cm² 付近のもの


埋立地名;	占屋 2 区			
スパー	易 クリート ガ基礎 イラル <33m×92m	コークス炉 杭基礎 22.6m×36 根入4m	5, 5m	シックナー 杭基礎
荷重条件		10,000t/炉団		
許容沈下量		VILLE		
〃 不等沈下量				C AND
土 質 砂	料性上	砂	粘土	砂、シルトの互層
周 原 2~6m 礎	3~7m	3 ~ 8 m	3 ~ 8 m	12m
土 強 度 qu ≑ 0.2	kg/cm²	<i>qu</i> ≑ 0, 2kg/cm ²		$q_u = 0.15 \sim 0.3 \text{kg/cm}^2$
idi-	× 10 ⁻² cm³/min × 10 ⁻¹ cm²/kg	$C_v = 8 \times 10^{-2}$ $m_v = 1.3 \times 10^{-2}$	•	$C_v=1.5\times10^{-1}\text{cm}^2/\text{min}$ $m_v=1.0\times10^{-1}\text{cm}^2/\text{kg}$
処理後 地 盤 強 度	kg/cm²	$q_u \neq 0.6 \text{kg/cm}^2$	2	$q_u = 0.4 \sim 0.7 \mathrm{kg/cm^2}$
安 全 率		-		
処理工法 サンドー ウエルオ		サンドドレー	ン 砂置換	サンドドレーン
〃 面 積 12,500m	12	9, 500 m²		2, 7000 m ²
// 深度 11m		10m		11 m
ル 内 訳 砂坑 5,600本 ∮=43cm 1=11n 開隔1.7 正三角개 t ₉₀ =58 p	間隔 1,2m n 1 =5,5~7,3m m が 杭基礎	砂杭 4,300本 \$=45cm 開隔 1.6m t ₃₀ =55日		砂杭 658本 \$=43cm 開隔2m 正三角形 t ₈₀ =48日 H=5.5m
戦 荷 方 法 盛土2 n	n 水位低下3m	盛土 3.5m		盛土 2.5m (1.5+1.0)
# 荷 重 2.8t/m²	NAME OF THE OWNER OWNER OF THE OWNER OWNE			4. 4tm²
〃 期間 50日		95 FI		90日
改良効果 w75%- qu 0.2-	→55% -0.4kg/cm²		,	
工 租 砂杭	盛土 揚水			砂杭 盛土
工 期 45日	75日 90日	140日		15日 11日
工				
備 考 杭の横担 良を行う	統増大の目的で改	"		// 必要 C=0.28kg/cm²


埋 立 地	& 士 国 a E		
	4 古屋 2 区		ANT -
構造物	転炉 井筒 鋼管杭	"	"
荷重条件		1000	
許容沈下量			
〃 不等沈下量			
基 生 質	砂 粘土	砂粘土	砂、粘土の互層
礎 烟 厚	3 ~ 9 m 3 ~ 9 m	7 ~ 9 m 0 ~ 3 m	12m
土 強 度	$q_u = 0.1 \text{kg/cm}^2$	"	qu ÷ 0. 15kg/Cm²
性性性	$c_v = 6 \sim 8 \times 10^{-2} \text{cm}^2/\text{min}$ $m_v = 1 \times 10 \text{cm}^2/\text{kg}$	"	"
処理後 地 盤 強 度	$q_u = 0.2 \sim 0.7 \text{kg/cm}^2$		$q_{n}=0.6\sim0.9 \text{kg/cm}^{2}$
安 全 率			
処理工法	サンドドレーン ウエルポイント	ウエルポイント	サンドドレーン ウエルポイント
"面積	12, 020 m²	7, 000m²	400 m ²
〃 深度	11m	8 m	11m
	砂杭 ウエルポイント 5,600本 ライザーパイプ φ=43cm 旧隔 1.5m 間隔1.6m t ₈₀ =49日 旧隔30m H=7 m	<i>11</i>	砂杭 400本 問隔 2.1m
報 荷 方 法	盛土 0.5 水位低下 2.5m	水位低下	盛土 2.5m
" 荷 重	0. 7t/m ² 2. 5t/m ²	3. 5t/m²	4. 4t/m²
〃 期 間	70日 80日	60~70 ⊟	
改良効果			
工 種	砂杭 揚水 撤去		
工期	45日 80日 30日		
工数			
備考		砂 K=2.25×10 ⁻² cm/sec 水位低下不十分のため <u>盛</u> 土 荷重を追加	


埋 立 地	名 古 屋 2 区	
構造物	鉱石ヤード	石炭ヤード スタッカー 16輪 ローダ
荷重条件	粗鉱46t/m²(最大),スタッカー 24輪 17t/輪 精鉱 23.6t/m² (〃) ローダー 〃 16〃	石炭 スタッカー22t/輪 連続基礎 8.5t/m² 7.5t/m² ローダー 20〃 枕木 9.7〃
許容沈下量		
〃 不等沈下量		
土 質	砂 粘土	砂、粘土の互層
超 厚 礎	1. 5~2. 5 m 5 ~6. 5 m	10m
強 度	$\phi = 30 \sim 35^{\circ}$ $q_n = 0.4 \text{ Z t/m}^2$	$q_u = 0.4 \text{ Z t/m}^2 \text{ N} < 5$
正密 特 性 性	$c_v = 1 \times 10^{-1} \text{ cm}^2/\text{min}$	$c_v = 1 \times 10^{-1} \text{cm}^2/\text{min}$
TELS	$m_v = 1 \times 10^{-1} \text{ cm}^2/\text{kg}$	$m_v = 1 \times 10^{-1} \text{cm}^2/\text{kg}$
処理後 地 盤 強 度		
安 全 率		
処理工法	コンポーザー	サンドドレーン 砂置換
〃 面積		13, 300 m²
〃 滐 度	12 m	2 ~2.5
ッ 内 訳	φ=80cm	φ=40cm
	l =12m 間隔 2.2m	間隔 1.5~2.0m
裁 荷 方 法		盛士 4.5m, 4 段階
// 荷 重		8. It/m²
〃 期 問		各段階 6~10日
改良効果		
工種		
工期		
工数		
備考		サンドドレーンは沈下に対して施工
<u> </u>		

埋	立	地	名古屋 2 区	
構	造	物	鉄道 道床厚 25cm	モールドヤード
都	重 条	伴	軌重 19~38 t 路面最大圧力 19.5t/m²	
許	容沈下	ħ.		
"	不等沈丁	报		
基	i.	Ħ	砂粘性上	
礎	層	厚	1 ~ 9 m 1 ~ 9 m	
土	強	度	$q_u = 0.15 \sim 0.45 \text{kg/cm}^2$	
性	圧密 特	性	$c_v = 1 \times 10^{-1} \text{ cm}^2/\text{min}$	$c_v = 9 \times 10^{-2} \text{cm}^2/\text{min}$
			$m_v = 1 \times 10^{-1} \text{ cm}^2/\text{kg}$	$m_v = 1.5 \times 10^{-1} \text{cm}^2/\text{kg}$
地地	里後,盤頭。	<u>ن</u>		$q_u = 0.6 \mathrm{kg/cm^2}$
安	金	率	> 2	
処	理工	法	置換 サンドドレーン	サンドドレーン
	/ 庙	積	69, 000m²	10, 000 m ²
	, 深	度	1 ~2.5m 6 ~10m	
" 内訳			砂杭 グ= 40cm 開隔 1.5~2 m	砂杭 2, 100本 間隔 2 ~ 4 m
	荷方	-	盛土 3 m	盛士 3.5m
		重	5. 4 t/m²	
		[問 	2~3月	
业	良効	果		
エ		種		
エ		圳	-	
工		費		
備		考	サンドドレーンは沈下に対して施工	

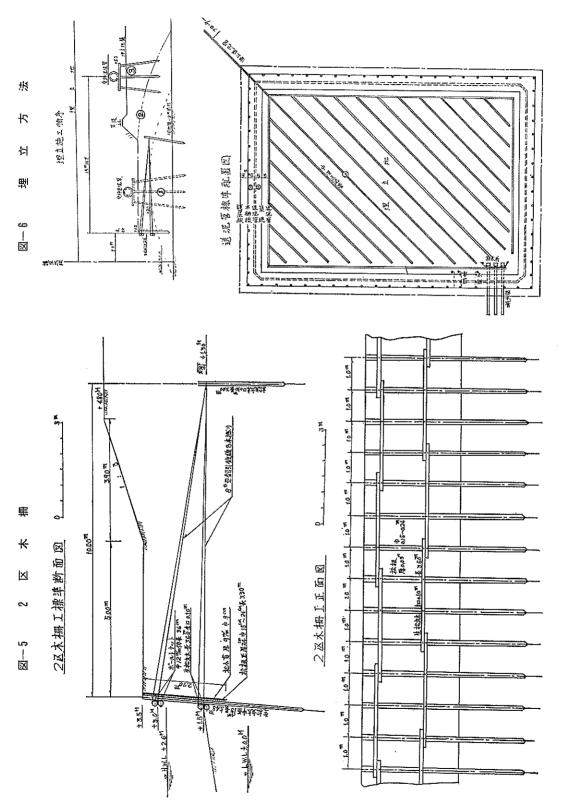


図-8 その8区域改良前軟弱土堆積平面図

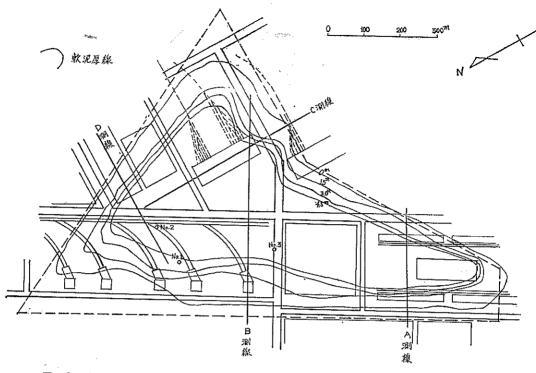


図-9 高炉地区軟弱土実測縦断図

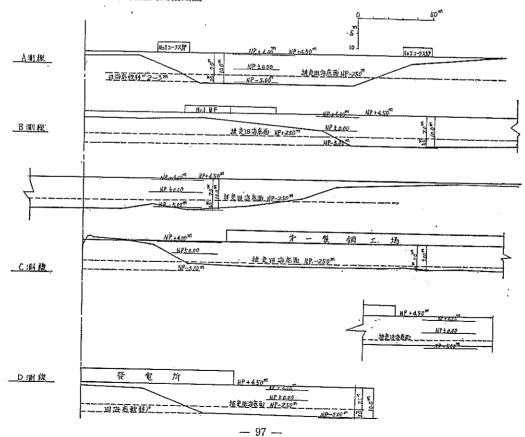


図-10 その8地区改良時送泥管配置及び表面砂分布

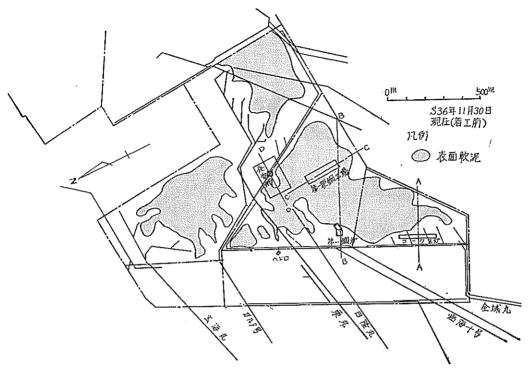


図-11 改良前後ボーリング施工位置図

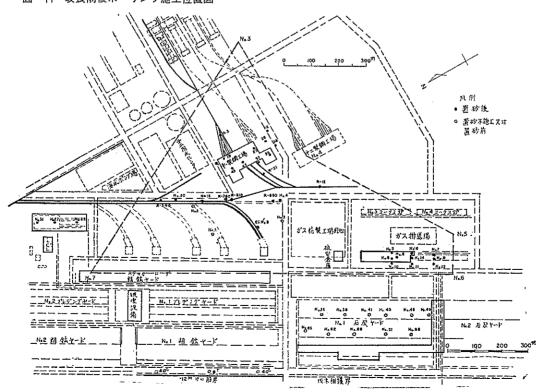


図-12 その8区域配管及び竣工平面図

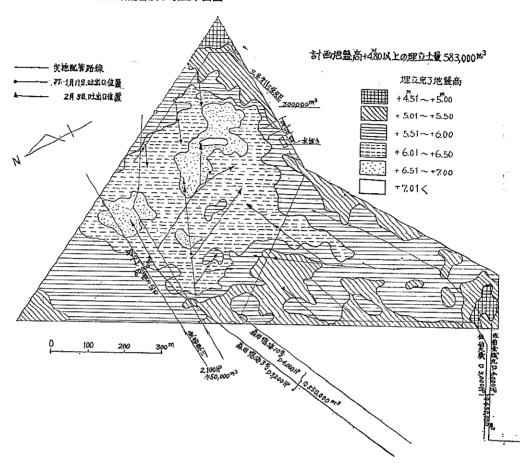
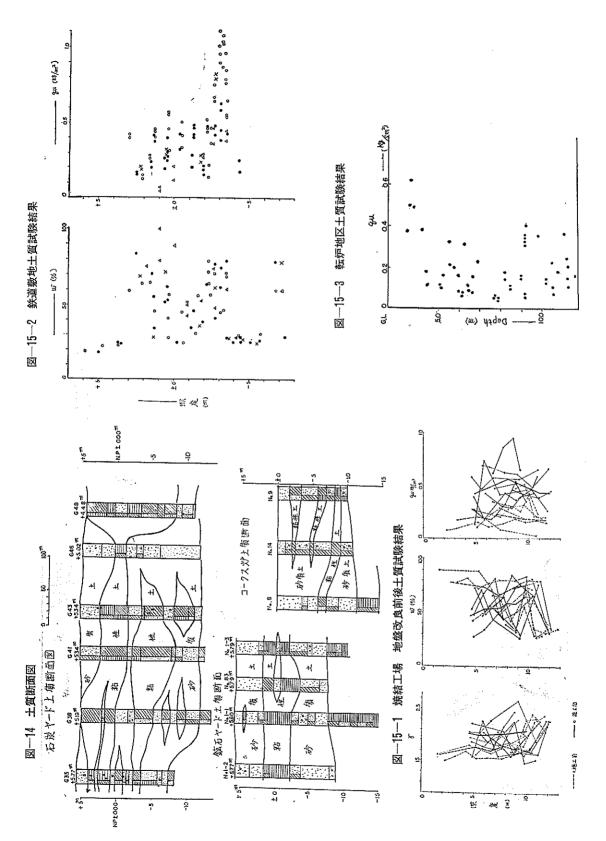
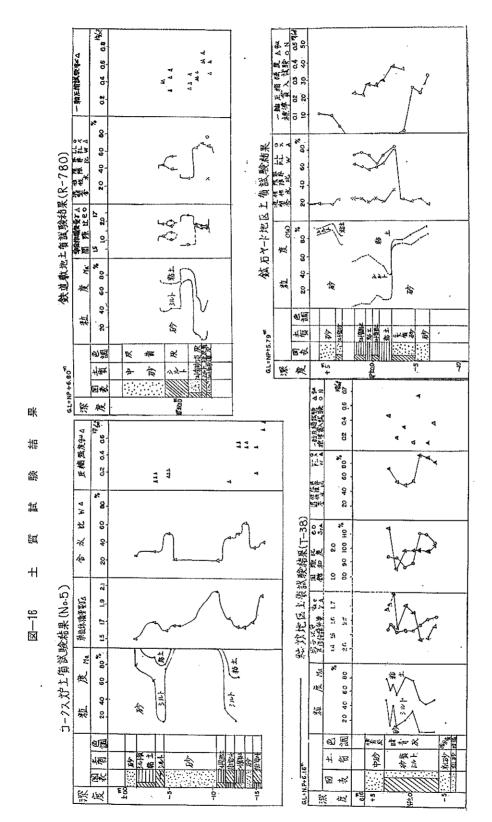




図-3 名古屋港 2 区ボーリング No. 2. 15. 20 上質試験結果

深		判定	粒	度 組		o 粒子比室(Gs) 4湿油液(Yt)	含水比 (w)	No:2 0 # 15A #-200	一軸圧縮强度(約)	Ne.2 " I5 A " 20 O
度	叉 立有	調	20	40	60 80	2.6 2.7 l6 1.8 2.0	20 40	% 60 80	0,1 0,2 0,3 0,4	κη/ _{cm²} q5 ο ₅
6.23 +5-	a. 形 b.	<u> </u>			1			?	O @O	
±.0-	シルトロジント	- 1	<	孙	為北					4
-5-	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	i }					4		600 AA AA 0 0	

名 古 屋 港 3 工 区

信濃川河口~高潮防波堤

工事概要

工 期 昭和37年10月~

工費

設 計 名古屋港管理組合

施 工 18社

埋立面積 4,800,000m² 埋立土量 40,000,000m³

平均水深 — 2 m

埋高地盤高 +4.8m

使用目的 中部電力,三井物産,石川島播磨重工,

矢作製作, 日清製粉

造成目標 2工区に同じ。

埋立工法 一般的には、2工区と同じであるが、埋立地盤が均一となる様に、2区より細かく区切り、外周堤及び中仕切堤のための砂質土の不足分は一部埋立地域内から採取した。

土 質 概 要

埋立地区

海底より2~13.5mはシルトの薄層をはさむN値2~30の砂又はシルト質砂であり、西端の一部では砂又はシルトの薄層をはさむシルト質粘土又は粘土質シルトである。これ以下は砂とシルトの複雑な互層となる洪積層で部分的に粘土の薄層をはさんでおり、一般によくしまっているが、中央部では上部と中間にゆるい層がある。

浚渫地区

図―2に示すごとく北側の淡渫深度-12~-16mまでは大部分砂質土で、下部ではシルトが幾分多くなる。N 値は殆んど10以下であるが所によりかなり固い所もある。

西側の淡渫深度 -8.5~-16mまではシルト質粘土又は粘土質シルトで護岸線の近くでは一部が砂質土となっている。 N値はほとんど 5 以下である。

埋立護岸

設計条件

HWL+2.16m $LWL\pm0$ m

既往最高潮位 +5.31 波高 特に考慮しない。

安全率

上質 図一2の通り

形式構造

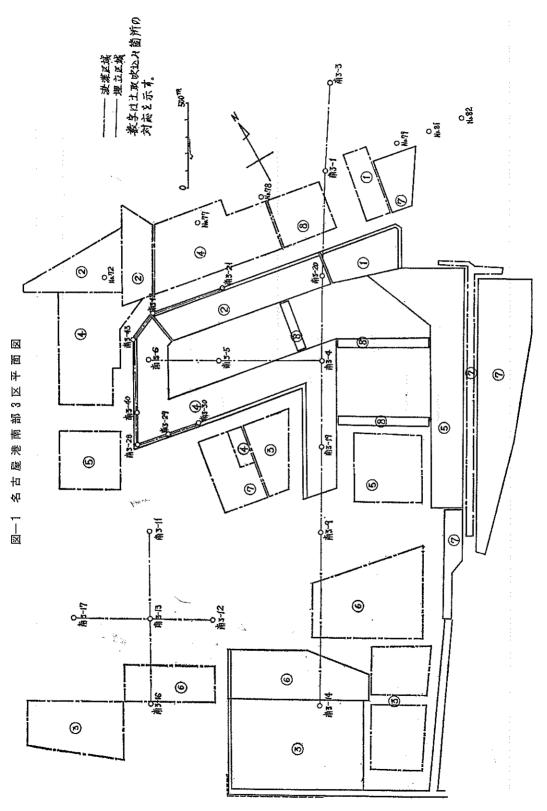
図一3に示すごとく、木棚と一部石枠の 仮 護 岸 である。砂質土を節約をするため外周堤は幅20mの二重木柵 とし、中に砂質土をつめた。この外周堤は運搬道路としても有効であった。

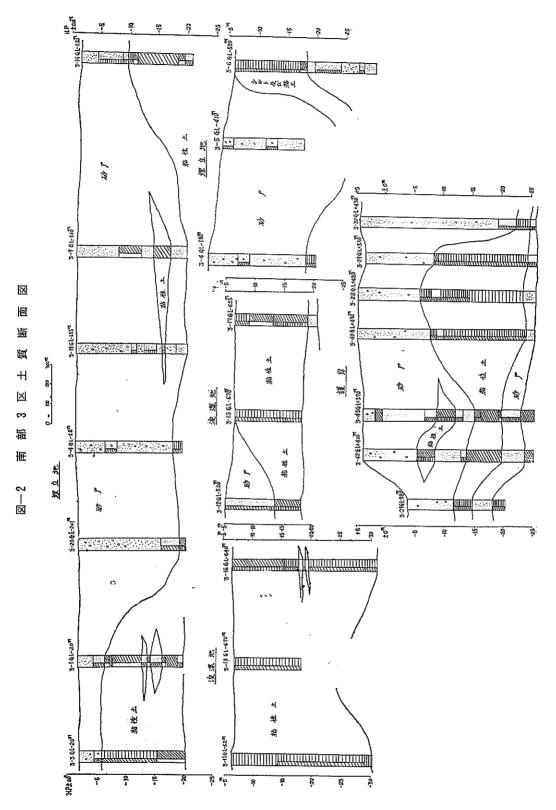
埋立工

計画及び経過

2工区で最後の区画に軟泥がたまった事を考慮し、埋立土を均一にするため埋立区画を小さく、細長くし、中吹きは単に上手側から順に押して行かず、下手側から上手側へ、上手側から下手側へと交互に行った。

外側の区画は幅 200m の細長いものとし、中央部は一区画約 20万m³ になる様に仕切堤で区切った。図—1に 浚渫及び埋立区画を、図—3に仕切堤の構造を示す。


土量算出については、図-5に示してある。外周堤及び中仕切用の砂質土使用量は、夫々600万m³及び500万m³,計1,100万m³で埋立地内から浚渫した不足分は、300万m³であった。


埋立施工順序

- 1. 外側に幅 200mの帯状区画をつくる。
- 2. 内側を一区画ごとに吹きのばしで仕切堤を作り区切る。
- 3. 各区画は外周堤上の本管より支管を50~80m間隔に排砂管5本分程度の長さに出し、下手から順次吹いてゆき、次に上手から順次下手におしてゆく。

蠹 က 魽 ¢4 8 \vdash 22 23 20 2 Н 準備工 17 二重木網工基礎吹125m³/m×426≒53,000m³ $40 \text{m}^3/\text{m} \times 426 \rightleftharpoons 20,000 \text{m}^3$ 426m 唱 \mathcal{H} Н 二重木桶工中詰 绳木幣 枨 때 3区(かの1) エ 11 E 1,200PS 426,000m³ 船別工程

二重木棚工は基礎吹 完了部分より開始 二重木棚工完了後中 詰開始 土留柵工は基礎吹完 了部分より開始 七留梅工完了後雑誌 ダび中暦 二重木桐工は基礎吹 完了部分より開始 二重木綱完了後中詰 開始 二重木網基礎吹上留網工基礎吹同時施工 上留欄工は基礎吹完 了後開始 土留棚工完了後築堤 及中埋 楓 3 31 10 17 10 14 17 13 4 10 10 24 28 20 25 82 S 衛衛工 二重木橋工中詰 | 40m³/m×320≒13,000m³ 333, 000m³ 二重木浦工基礎吹140m³/m×320≒44,000m³ 231,000m³ 87 m³/m ×220 ≒20,000 220 m320m 87m³/m×198≒16,000 198m 土留欄工基礎吹 土留棚工基礎吹 Н 型 Н Н 甲 # 重木稠 -11-睾 蝘 型 퀶 图 ஊ Þ 片 11 + 理 + 땦 304, 000m³ D 1,350PS

図一3 3区A型木柵工(二重木柵工)断面図

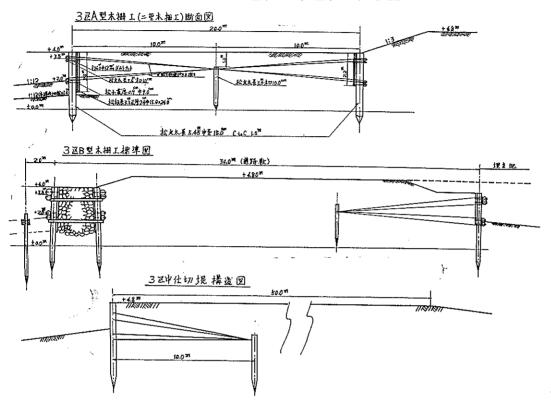


図-4 3 区 ① 区 画 工 程 図

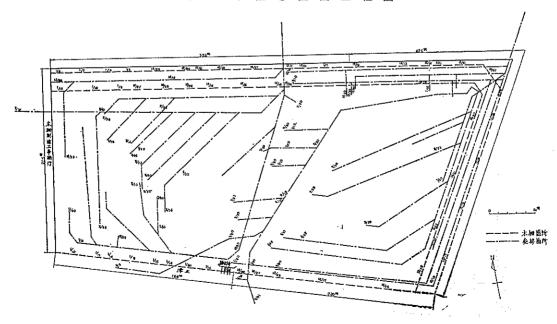
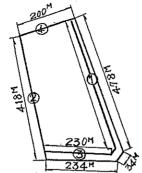
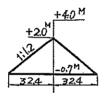
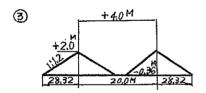



図-5 南部3区その1埋立工事土量算出計算図



1 +4.0 M


① $(40+0.7)\times20=94.0$ $2.7\times32.4\times\frac{1}{2}\times2=87.48^{M^2}$ $=181.5\times\frac{468+47.8}{2}\div8.5500^{M^3}$

1

② $2.7\times324\times\frac{1}{2}\times2=87.5\text{M}^2$ $87.5\times418=36,500\text{ M}^3$

 $\begin{array}{c} (3) \\ (40+0.36) \times 20 = 87.2^{M^2} \\ \underline{2.36 \times 28.32 \times \frac{1}{2} \times 2 = 66.8^{M^2}} \\ 154.0 \times \frac{154.34 + 23.0 + 23.4}{2} = 3.9,500^{M^3} \end{array}$

	104500			304,000	= NXT149	007,712	7004000°
4)	90,000	-0.76	+4.8	454,500	NX 1-0.15 ⇒ NX 1.176	534,492	÷534,000 ^{H5}
3)	5,130	-0,36	+4.0	39,500	ıı.	47,400)
2)		-0.7	<u> </u>	36,500	"	43,800	194,000 M3
<u>D</u>	9,460	-07 M	+4.0	85,800	Nx1.2	102,960	h
10		(2, K)	盛土商	純土量N(M)	流出率	設計土量(M³)	

衣 浦 港 1, 3, 5 号

愛知県平田市武豊町地先

工事概要

1号地 3号地 5 房地 工抑 37年6月 36年6月 35年12月 ~38年6月 ~38年6月 ~39年1月 工書 19,850,000円 410, 678, 188円 922, 385, 842円 設計 愛知県 施工 徳倉建設(1,3号地)東亜港湾(3,5号地) 1号地 3号地 5号地 238, 400 m² 389, 330m² 493,000 m² 埋立面積 埋立土最 1, 392, 000 m² 2, 092, 000 m² 5, 103, 000 m² 平均水深 $-2 \,\mathrm{m}$ -1.3m-5.5m 埋立地盤高 +4 m+ 4 m + 4 m 使用目的 中部電力 中山製鉄 東海電極 引渡時に地盤高が十4mである様に余盛を 造成目標 考える。その他の地盤条件についてはきめられてない。 埋立工法 図-2に示す浚渫地よりポンプ船の直接排 送方式により埋立てた。埋立護岸の捨吹き、腹付け、本 護岸の裏込及び埋立地表層には砂、砂礫を用いた。埋立 地の中仕切りは設けず埋立護岸は仮木柵を使用し、埋立 と同時に本護岸を作る所は護岸法線より15m, 仮護岸の まま引渡す所は50~80mはなして施工した。

土 質 概 要

1 号地

埋立地区

上層 0~10m程度が軟弱な沖積層で、その下に常滑層と称する新第三紀鮮新世に属する層がある。沖積層の層厚は、沖に行く程厚く、岸近くでは、常滑層の露出している所もある。

沖積層は上層の $3\sim6.5$ mが $N=5\sim20$ の砂~砂礫層で下層の $0\sim7$ mがN<1の粘土層であり、一部層底に砂礫層がある。この粘土層の土性は、次の通りである。

砂分 $6 \sim 40\%$ $w = 30 \sim 80\%$ $Lw = 40 \sim 85\%$ $q_u = 0.2 \sim 0.9 kg/cm^2$ $C_c = 0.23 \sim 0.9$

常滑層はN>50の砂~砂礫層,上部N=10~20,下部 N=20~50の固結の進んだシルト,粘土層からなり水平 に成層するが,連続性に乏しく層序も一定しない。図一 3 に土質断面図を示す。

浚渫地区

浚渫地区は埋立地の沖側100m~800m(水深7m~10m)の間で、浚渫深度は一15mである。図一3の土質断面に示す様に東側護岸線から1.5kmの間では、海底面以下6m~20mが沖積粘土層で、その下が洪積砂礫層となっている。浚渫深度一15m以浅では岸側の一部で表層に砂、粘土の下に砂礫が得られるが、大部分が粘土である。この粘土の土性を次に示す。

砂分 $0.5 \sim 30\%$ $w = 55 \sim 130\%$ $L_w = 43 \sim 100\%$ $q_u = 0.16 \sim 0.31 \text{kg/cm}^2$ $C_c = 1.0 \sim 1.04$

3 号地

埋立地区 (水深0~5m)

沖積層は沖に行く程厚く、最大11m程度で、上層が砂 ~シルト質砂で、岸側が厚く最大6m程度、沖側は薄く 旧護岸線付近では存在しない。下部は粘土層で沖側程厚 く最大7m程度で岸側はうすく砂分も多い。

常滑層は砂~砂礫層,砂混り粘土層からなり成層状態は不規則で、粘土層が砂~砂礫層の間に数米の厚さではさまれている。

又,当初計画では沖側(東側)護岸線の南部の原地盤は海底より粘土層となっていたため法線を変更した。図 -6-dは旧法線上,図-6-bは新法線付近の土層断面図である。

浚渫地区

埋立土は図―2に示す様に東側と南側から採取している。

取側,埋立土の大半はこの地区より採取し,浚渫深度 -15m以浅はすべて沖積粘土層である。図-5に土層断 面図を示す。

南側,この地区は将来の埋立地区であるが外周堤用の砂を採取するため特に浚渫したもので浚渫深度-4m以 浅は、中砂,細砂である。

5 号地

埋立地区

沖積層は沖に行く程厚く、最大層厚は17m程度で、上部砂質土層は主として中砂より成り、N=2~27、砂分75%程度、岸側で厚く最大層厚は6m程度で、沖側では0の所もある。下部粘土層上層はN=0~5、砂分3~

52% w=30~120% Lv=54~114% q_u =0.1~0.4 kg/cm² C_c =0.3~1.9,所々中間で薄い礫層をはさみ 又下部では砂を混える所もある。層原は沖側が厚く最大 17mである。

常滑層は上層 5 m位はN<10の砂,砂礫と粘土の複雑な互層をなしている所もあるが、大体N<20の砂礫層である。図一6 に土質断面、図一7 図に代表的土性図を示す。

浚渫地区

浚渫地区は北部, 東部, 南部の3カ所である。

北部 この地区では上部を 7 号地に、下部を 5 号地に使用している。浚渫深度は、-15mである。浚渫地区内の土質調査資料はないが、これに近いNo. 1地点の資料によると、 $-4 \sim -10.2$ mは粘土質砂、 $-10.2 \sim 14.6$ mはシルト質粘土となっており、採取土中 3 割程度は砂質土が得られるものと思われる。

東部 採取深度は-13.5mで図-6の土層断面図によると-13.5m以浅は粘土である。

南部 採取深度は | 15mで淡渫地内の土質調査資料はないが、付近の資料では、5号地、No. 6、No. 7地点は共に-15m以浅は粘性土、3号地No. 1、No. 2地点は共に-15m以浅は砂又は粘土混り砂となっている。即ち、南部岸側で多少砂質土が得られるものと思われる。

埋立뺧岸

設計条件

潮位

L. W. L. ±0

H.W.L. +2.2m

既往最大 +4.26m (伊勢湾台風)

波高

計画波高 2.3m

既往最大 2.5m (伊勢湾台風)

水深

工事概要に記載

土質

1号地

最も土質条件の悪い地区は東側護岸線であるが、表層は3m以上砂質土で、粘土層厚は最大7m程度である。 R-5地点では海底而下5mの軸圧縮強度は0.35kg/cm²であった。

3号地

最も土質条件の悪い地区は東側護岸線の南部で、当初計画では図ー5ーdのごとく地表から10m程度が散弱粘土層であったため法線を変更した。新法線付近の土層断面は図ー5ーbのごとくで、軟弱粘土層厚は6m程度で大部分は表層を砂で覆われている。No. 1地点では海底面下5mの一利圧縮強度が0.15~0.2kg/cm²であった。

5号地

最も土質条件の悪い地区は東側護岸線で、表層より17 m位が軟弱な粘土層の所もある。図 8 ーeにNo. 2, No. 3, No. 5, No. 6 の一軸圧縮試験強度の分布を示すがかなり軟弱である。図 6 一 b に仮護岸基礎に砂、砂礫を捨吹きした後の護岸線の土層断面を示す。

安全率

港湾工事設計要覧を標準とする。

型式 構造 配置

各護岸の断面は図 $-9\sim11$,配置は図-2に示してある。

1号地

一重及び二重の木柵仮護岸を埋立護岸とし使用した。 一重のものは波をうける所、二重のものは波をうけない 所に用い、吹出しを防ぐために、一重のものは 目 地 板 を、二重のものは中詰に石を施工した。又、中電取水口 付近では一部垂直面にビニール帆布を用いた。

3号地

一期工事北側は既設防波堤を利用,東側はブロック積本護岸とし,南側は天端巾30mの堤で締切った。

二期工事 北側は一期の埋立地で、東側と南側に一重 の木柵仮護岸を施工した。本護岸はブロック積で埋立と 併行して施工した。

5号地

一重及び二重の木柵仮護岸を施工した。

図-12に木柵仮護岸の構造を示す。

地盤処理

1号地 3号地 基礎に高さ±0~0.5m, 前面 10m まで砂質土の捨吹きを行った。

5号地

基礎に高さ+1.5~+2.75m 天端市30m, 勾配1:20 の砂質土の捨吹きを行った。

施工

1号地 仮護岸法線は埋立法線の内側40~80mで、砂質土の捨吹後仮護岸を施工、もらし吹きで砂質土の腹付けをする。

3号地 一期東側に本護岸、南側に吹きのばしにより 土堤を作り、本護岸の裏にもらし吹きで砂質土の腹付け をする。

二期 東側は埋立法線の内側 100m, 南側は埋立法線 上に砂質土の捨吹きを行ない仮護岸を施工し, もらし吹 きにより砂質土で腹付けをする。東側本護岸は埋立と併 行して施工する。

5号地 本護岸法線より25~30内側に捨吹し、本棚仮 護岸を施工し、もらし吹き又は湿地用ブルドーザーで砂 質土を腹付けする。本護岸用の裏込土砂は埋立地に吹き だめして置き、後でブルドーザーにより裏込めを行な う。

結果に対する考察

二重木棚で中に石を詰めた構造は棚出しを防ぐのに効果的であった。又, 5号地の場合この構造で1.5m 程度の波に耐える事が出来た。

埋 立 工

計画及び経過

埋立のための浚渫と航路泊地の浚渫とは必ずしも一致 させない。埋立土は大部分が粘性土で、砂質土は浚渫地 区の岸側の沖積層及びその下の常滑層の上層から採取し ている。3号地では東側の浚渫地区から砂質土が得られ ないので南側の将来埋立てる地区から採取している。 埋立土量の算出

土量の算出は次式により行なう。

 $V_D = W + A \{(\delta_1 + \delta_2)\} / i$

 $V_D: 淡渫土量$

W:純埋立容積= $A \cdot H$

δ₁:埋立地盤沈下量(工事完了時の原地盤の平均圧 密沈下量とし、50%圧密度をとる)

δ₂ : 埋立層の沈下虚(埋立層厚の3~10%とする)

i:歩留り(粒度分析,各粒度の沈降速度,埋立面 積,埋立深度,排砂管吐出流量より算出する)

工事終了後引渡しまでに期間のある場合は $10\sim30$ cm程度の余盛を考え、余盛高を δ_3 として加える。表-1に各区の土量を示す。

設計量と実績量の厳密な検討は行なわれていないが、 計画浚渫土量とポンプ船の稼動実績と比較すると大差は なかったと言われている。

機械 施設

ポンプ船計画は1日の稼動時間を12時間として浚渫能力と工期から決定する。使用馬力数は次のごとくである。 1号地

2,000PS (E) 砂質土 790,000m3

1,500PS (E) 粘性土 1,050,000m3

1,000PS

3号地

2,500PS (D)

2,250PS (D)

400PS (D) もらし吹用

5号地

17,650PS (D) 使用7隻の合計 送泥管配置 埋立地区内外とも原則として 100m間隔に 設置し、埋立地区内では埋立護岸沿いに法線から15mはなし、先端部は30排除する。図一13に5号地の配置例を示す。東南、東北部の地盤の軟弱な場所では受枠の滑動
沈下を生じた。

排水 図ー2に余水吐及び排水溝の位置を示す。埋立 地表面は特に排水のための勾配をつけて仕上げてはいな い。

仕切 特に計画はしていないが、施工年度の関係、ジョイントベンチャーの関係で一部設けたところもある。

地盤処理

埋立中の埋立地全体としての地盤処理は、特に行って いない。

その他

防波堤内は全面漁業補償を行ったが、解決が遅れたため工事着手前の十分な土質調査が不可能であった。1号 地東南角では数度大規模なすべり破壊を生じた。

埋立後の状況

1 号地

埋立地周辺は巾3~10mの地域が砂、砂礫で埋立てられておりN値は0~20である。内部は粘土で埋立てられたが、粗粒土と細粒土がよく分離し、送泥管口の部分及び下層に粗粒土が集まり、上層は細粒土が流出する事なく堆積し軟弱な粘土層となっていて、層の厚い所或は雨後では足場なしの立入は不可能であった。図一14にこの軟弱層の厚さの分布を、図一4に代表的な土質断面を示すが、軟弱層厚は送泥管口から遠ざかるほど厚く最大5m程度となっている。図一8-fに埋立直後の埋立層と淡渫地区の含水比、粒度組成を示してある。資料が不十分ではあるが埋立土では砂の含有量が非常に少くなっており粗粒土の分離したことを示すものと思われる。含水比については、埋立土で100~130%程度で、淡渫前の含水量が大きいことの影響は余りないものと思われる。

3 号地

図-15, 図-5-Cに第一期工事箇所の埋立直後における表面軟弱層の分布と土層断面を示す。旧海底は-1.5~2.5mで埋立層下部と周囲が砂及び砂礫となり、中央上層部が粘土となっている事がわかる。粘土層のN値は測定不能、砂、砂礫ではほとんど10以下となっている。5号地

周辺は砂及び砂礫で仮護岸基礎の捨吹き、背後の裏付けが行なわれているが、このため原地盤の軟弱な場所では逐次すべり破壊を生じ、埋立層底面はかなり凹凸が出来ている。深い所では原地盤以下12~13m,即ち沖積粘土層のほとんど底面近くまで砂や砂礫に置換されている。

表一2にこの層の10地点の上質試験結果を示す。図一7, 8に代表的土性図を示すが,N値はほぼ5~10程度で磔 の多い所では20~50のところもある。

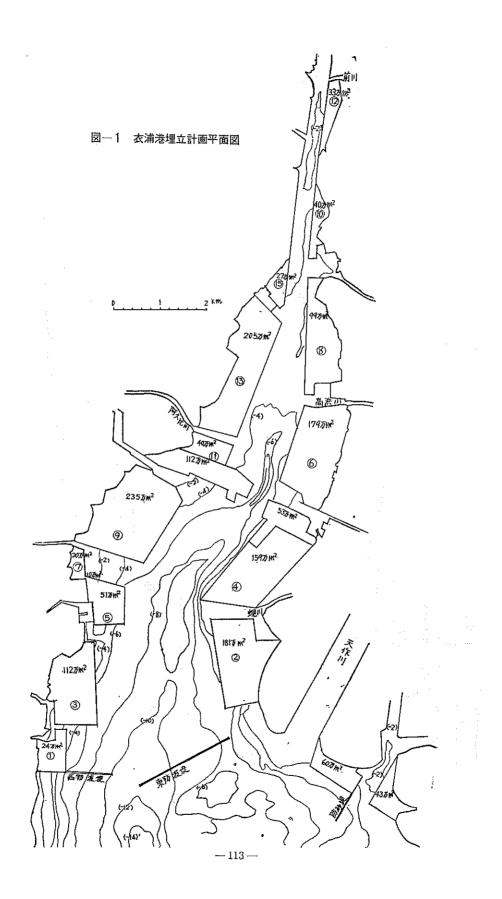
埋立後使用者の建設工事を始めるまでの放置期間は次

表-2

の通りである。

1号地 6カ月

3号地 2年

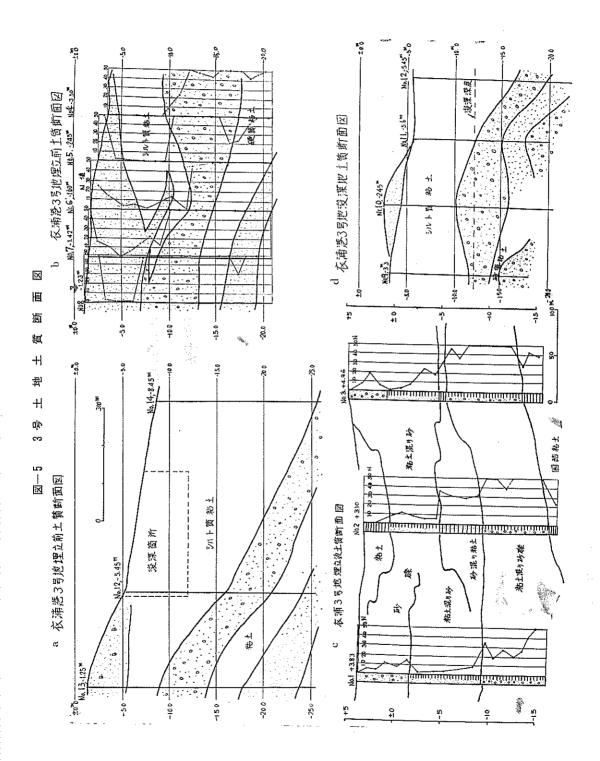

5号地 2カ月 但し資材運搬は半年後

表一1 埋 立 土 虚 算 出 表

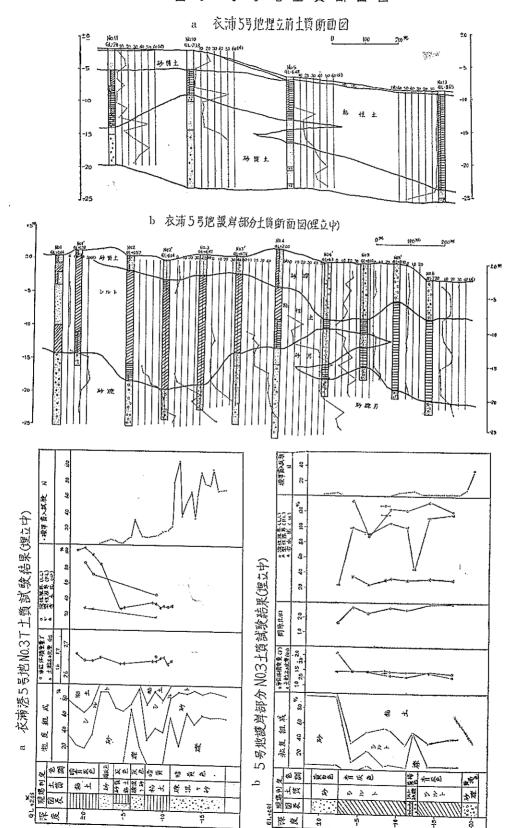
埋立地	A	埋立厚 B	$C = A \times B$	沈 T 原地盤 D	埋立土 E	余 盛 F	埋立純土量 G=A(B +D+E+ F)	歩 留 (設計値) H	設計埋立土 浚渫土 量実績 「=G/H(埋立)	摘 要
衣浦 1号地	238, 400	5. 3	1, 258, 000	m³ 14,000 (6 cm)		m³ 48, 000 (20cm)	1, 392, 000	0.77	1, 808, 000	+4,0m まで施行
3号地	m² 99, 330	7. 1	. 705, 000	0	0	0	m³ 705, 000		784. 000	+4, 0m
7.2	m² 290, 000		m³ 1, 387, 200	0	0	0	m ³ 1, 387, 200	0.80	m³ 1, 664, 600	まで施行
5号地	m²		2, 164, 285		m³ ,715 cm)	0	m³ 2, 326, 000		m ³ 2, 737, 000	+1.0m まで施行
	493, 300	9, 9	2, 703, 035		т³ , 015 ст)	m³ 48, 950 (10cm)	2,777,000	0, 85	3, 267, 000	+4.0m まで施行

5 号地埋立地区土質試験結果 神 馩 $\overline{\mathbb{Z}}$ 常 清 層 上部砂質土層 下 部 粘 土 層 砂 磜 層 Ν 値 2~27 0~5 >20 上層 <10 粒 礫 0 % 0 % 1~32 % 度 砂 $74 \sim 75$ " 3~52 " $61 \sim 90$ " 組 シルト 13~14 11 28~72 " $7 \sim 20$ 成 粘土 $11 \sim 13$ " 15~61 " $6 \sim 7$ " 含 水 比 (w)29~58 33~117 35~63 液性限界 (Lw)54~114 単位 体積 重量 (r)1.35~1.66 (e) 隙 比 1, $47 \sim 3$. 2 一軸圧縮強度 (q_u) 0.31 $0.09 \sim 0.37$ 圧 縮 係 数 0.32 (C_c) $0.31 \sim 1.87$

			衣	浦	港	工	程	表			
工		it est		程	I	alr	Ju.	I			費
		種	Т.	住	-	ált	承	総	額	堆	仙
1	号地										
埋		立	37.7~38.5	12	(波涛	1, 808 1, 392	,000m³) ,000m³	177, 39	9,000円		
本	護	岸	····								
仮	護	岸	37. 7~38. 9]	1, 354m	22, 45	1,000		
	라.							199, 85	0,000		-
3	号地										
埋		立	35. 12~38. 6			2, 092	, 200 m³	299, 32	5,000		
本	護	岸	35. 12~36. 12	37. 7~38. 5			863m	105, 34	5, 188		
仮	護	岸	37.1~37.3				631m	6, 00	8,000		
	計·							410, 67	8, 188		
	5 号地										
埋		立	36. 10~38. 5		(6, 004 5, 103	, 000m³) , 000m³	675, 62	1,000		
本	護	岸	36.7~38.8				1, 434m	148, 68	5, 600		
仮	護	岸	<i>"</i>				343m	11,51	7, 459		
7	.5m 岸	壁	"				130m	86, 56	1, 783		
取	付 護	岸	"				54. 2m	14, 25	4, 279		
	龍							936, 64	0, 121		


--- 114 ---

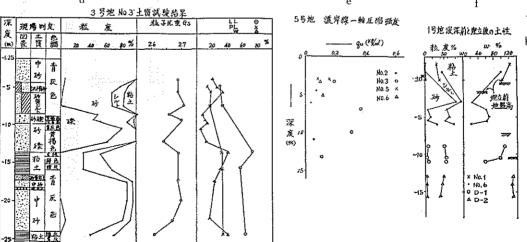
-+0.0× 10.0 --25,0 .₩ 0 10 20 30 50 SOLVED No.D-3. -8.90** MR-7-3"51 300 à a 4 200 HOR-6-280M Ha シルト類 祐土 đ 粘 8 ッドト配 JaR-5-376 NO D-2. -10.45 TL シルト質粘土 NO.R-4.-3.68 æ. シルト質粘土 NOD-1. -725 ** 型口的 ——— 坂 淶 地 NOR-5,-3.10 シルト資料力 中海路六阳 No.R-1, -020* 15 15 ٦ ۾ 유 150-1 ¥00+ -5.0 10.0 — 115 — 30


図一3 衣浦港1号地埋立前土質断面図

図一4 衣浦港1号地埋立後土質断面図

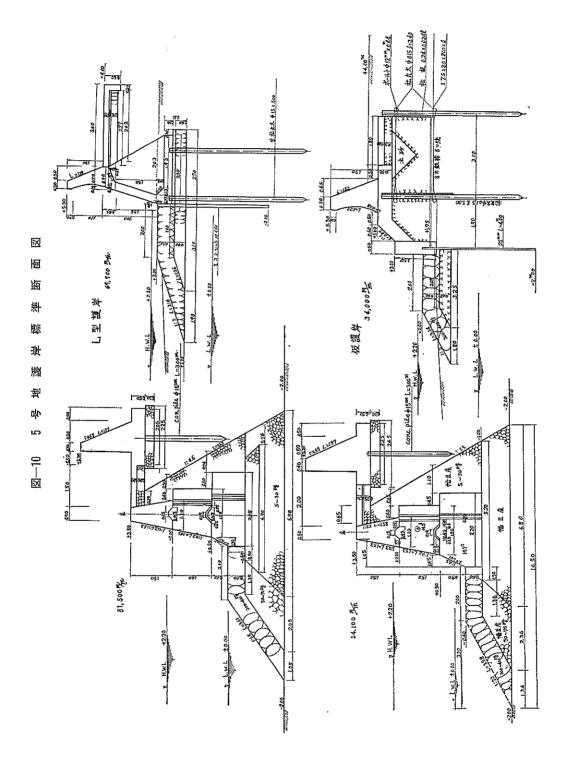
5.0

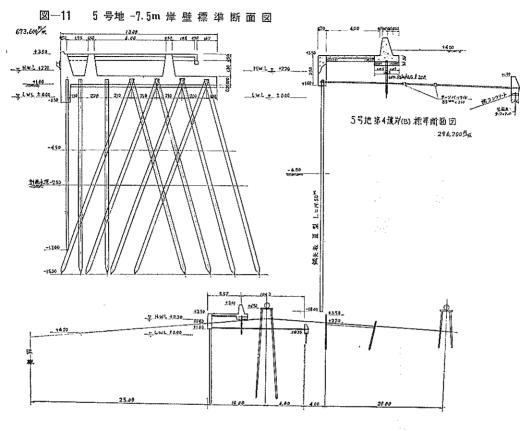
図-6 5 号地土質断面図

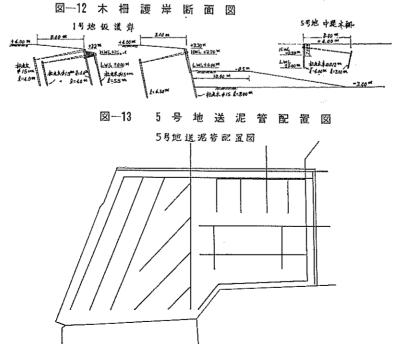

衣浦5号地 No. 3T 土質試験結果(埋立中)

图—7

図-8 土質 試験 結果 a 衣浦 1号地 沿土質試験結果


		標	i37 −1	.62™						かいないか	•					
	深	1025	冯 #	定色	- 粒		度	Ha	拉 子比 重 6g O 单位体领变量 γ Δ	間 2	T D D C O 把度ST A	淀性 理界(L) 整性,服果,	O X	一轴压护 一軸压护	8.34度	
<u> Pra</u>	度 (340	衣	页		20	40	60	şo %	25 26 17 18	1.0 90	20 100 %	70 40 60 80		02 0	4 06	
	-5.0 -10.0		か は は は に に に に に に に に に に に に に	班 · · · · · · · · · · · · · · · · · · ·		> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	211) fit		9				х-к Д	*	A


) 号地泛潆地上有試験結果 (D-2)														C	衣浦5	尋說	No. 93	> 十梅	姓聯	法 權:	# 11	ets.						
深	现;	易产		粒	:	度		粒	计比重	₽L	. x,ı	w _K O	, 1	Ļ, Δ	孪	現		兌	卷		戾		の幹点	体期型	. W	<u> </u>			Luc 0
友	回教	五質	調	2,0	4,0	60	80 %	2,6		.7 4				120 %	1	图表	土質	皂綱	<u> </u>	-			△粒で						5 × ×
-10.0 -15.0	-	-	暗灰色 车 灰色	かいか		粘土		2.0	ممممم	×	9 8	0	100	128	-7.877 10			新 套 灰 色	20	40	. 60	20 **	2.4	26	25	20	40	ы	30 100%
		214			d		ار وليد ?		1 64 11	در علاه ا	***									e							;	f	



αļο

--- 120 ---

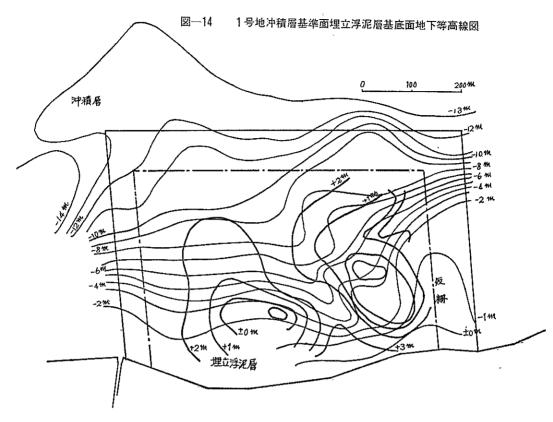
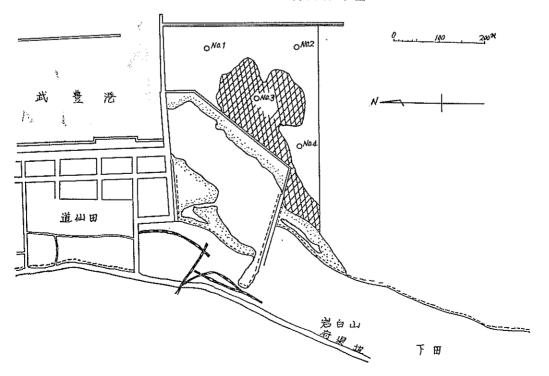



図-15 3 号地埋立土表面分布図

川崎港臨海工業地帯4工区-2

川崎市大師河原地先

工事概要

工期 昭和34年~昭和39年

工費 2,933,690,364円

設計 神奈川県企業庁

施工

埋立面積 671, 181 m²

埋立土量 5,179,800m³ 平均水深 -3,7m

埋立地盤高 +4.0m

使用目的

造成目標

埋立工法 隣接する浚渫する地区よりポンプ船による直接排送方式により埋立てる。地盤改良を行なう防波 護岸の進渉と合わせて埋立てを施工するために、埋立地区を,底部破壊を生じたとしても改良地区に影響のない I 区画と地盤改良の伴う II 区画に分割し,II 区画は更に6つのブロックに分割し,且つ四層に分けて埋立てる。仕切は二重本柵とし南部は防波談岸とする。

土 質 概 要

埋立地区 酉側は表層 $2\sim5$ mが砂となっているが、一般には-50m程度迄粘土層が続いている。-30m程度までの含水比は $70\sim110$ %, c=0.03+0.0125 Z kg/m² である。

浚渫地区 鶴見側では-8 m程度まで砂分40~85%の 土で、沖側は上の砂層が少くなる様である。多摩川側も-9 m程度までは砂分40~90%の粘土交り砂で北側では 稍砂層がうすくなっている。

埋立謙岸

防波護岸

設計条件

沖波波高 H=2.0m

波向 S

" 入射角 45°

震度 0.2

積載荷重 0.5t/m²

天端高 +5.5m

在来地盤高 -8.0m

背後地盤高 +4.0m

地盤支持力 C=0.03kg/cm²+0.0125 Z kg/cm²

形式構造 図一5に示すケーソン式直立堤である。

地盤処理 図一5に示すごとく-23mまで巾88mにわたって,径40cm, 間隔 2.5m正方形配置のサンドドレーンを施工した。載荷は敷砂,捨石,護岸基礎工,上部工及び背後の埋立土で圧密期間は3カ月とした。尚,前面には押え置土を施工した。このための放砂は砂撒布船により,軟弱な原地盤を破壊せぬ様3m厚に施工した。

施工順序 敷砂3m,砂杭打設,第二次放砂2.7m, 捨石根固1.3m厚, 裏込用二重本柵,ケーソン据付, 當上工,上部工,水叩工の順に施工する。第二次放砂前 に前面敷砂上に蓄積した流出微粒土をポンプ船により浚 渫,埋立地へ逆送した。

選択理由 水深大なるため仮本柵では施工が困難であり、耐波性も良く、越波減殺の効果あり、捨石堤より 資材入手が安易で経済的である。

埋 立 工

計画及び経過

前述のごとく埋立地区は I, II 区に分割し、II 区には 防波護岸法線をはさんで申 160m, 延長 1,800mにわた り, 基礎地盤改良サンドドレーン用の敷砂兼的面押え盛 土用放砂を行った。 II 区は又,多摩川及び航路の両側から進んでくる下部エケーソン及び裏込施工状況に応じて埋立を施工できるごとく,サンドドレーンの 3 カ月の圧密期間,ポンプ船能力及び能率を考慮し図ー2に示すごとく A~Fの 6 区画に分割した。 I 区は II 区の各区画 被 荷段階の圧密期間待ちの稼動休止期間に序々に埋立てる。 II 区の埋立は当初 6 層に分けて行なう計画であったが,工程遅延のため, C, E 両区画前面に押え放砂を行なうことにより四層埋立に計画を変更した。

埋立土量算出についての資料はないが、埋立高は検査 時余盛50cmとし、浚渫はー12mの箇所では1.5~2mの 余堀を行い、埋立と浚渫の各土量を一致させるため浚渫 区域の一部に浚渫深度の規制をしない調整地を 設置し た。

浚渫土の流出による航路の埋没に対しては沈泥地を設けて流失を少くすると共に,2m以上の全堀を行ないそれ以上の沈積は再浚渫により既埋立地の未使用地区の処理場に揚土した。

仕 切

I区との境界及びⅡ区の各区画の境界は図─6に示すごとき二重本柵を施工した。二重木柵とした理由は次の通りである。

- 1. 在来地盤が干潮面下でも施工でき独立堤として埋立に先行できる。
- 2. 単欄では風波に耐え得るごとく肉付をすると地盤が軟弱なためすべり破壊の危険がある。
 - 3. 風波による被害が片面ですめば埋立砂の流出を防

止できる。

4. 表面を道路として使用できる。

この中語に一部フライアッシュを使用したが海水の滲透とトラック等の輾圧により土丹状となり、被災時の流失が僅少であった。中仕切の木柵は護岸のケーソン据付の進捗に伴い図—2のF、A、E、B、Cの順序で施工した。施工時には -1.0m 前後まで放砂船により砂質分の多い浚渫上を放砂して、装面の軟弱土を押出した。

吐 口

図一9に示す箇所に設け排水は第一次 (45,000m²), 第二次 (41,500m²) 沈泥地を通し流失を少くした。 第 一次沈泥地は用途完了後,良質な浚渫土で最終埋立を行 ない,同様に第二沈泥地は予め余盛した埋立土をトラッ ク輸送により埋立て、地表面強度の増強をはかった。

川 崎 4-2 工 区

工 種	I	程	工事品	工	費
120		7生	-134 III	総 額	単 価
工 事 費	33. ~38.	3		2, 930, 690, 364	4, 330円/cm²
浚 渫				761, 970, 677	
ポンプ船運転費	ļ		7, 961, 000 m ³	603, 838, 857	75.85円/m³
航路整理捆			430, 500 m³	53, 190, 000	123, 55 //
零工設備工			30ヵ所	3, 532, 021	117, 734, 03円/所
沈 設 管			540m	18, 425, 772	34, 121. 80円/m
排砂管受枠工			3, 000 m	27, 249, 860	9, 023, 13 "
排砂管损料			1式	29, 865, 112	
配電線路工			9, 390 m	25, 869, 055	2, 754. 96 //
埋立				1, 408, 598, 276	
地 均 工			83, 370 m³	8, 975, 233	107.66円/m³
土留木棚工			1, 885m	14, 207. 230	7, 536. 99円/m
陸搬土木桐工			3, 314m	216, 492, 516	65, 326, 65 //
陸搬土埋立工			107, 382m³	44, 863, 000	417. 79円/m
仮 築 堤 工	,		8, 512m	10, 518, 077	1, 235. 68円/m
仮 排 水 工			1式	19, 224, 837	
排砂管受枠工			24, 680 m	219, 372, 686	8,888.68円/m
排砂管损料			1式	112, 974, 020	
護 岸			2, 541. 2m	1, 525, 092, 088	
防波護岸			1, 964. 5m	1, 413, 987, 509	719, 420円/m
地盤改良			サンドドレーン21,516 本 放砂 191,800m³ シルト除去 64,800m³	318, 329, 570	161, 967 //
基 礎 工				449, 777, 445	228, 848 "
下幣工				440, 496, 264	224, 145 "
上				184, 995, 663	94, 126 "
土質調查				20, 313, 285	10, 335 "
乙種護岸			306m	53, 089, 203	173, 310 "
甲種 //			54m	12, 647, 035	234, 200 "
鉄筋コンクリート 矢板護岸 ①			120円	19, 412, 657	161,770 "
2			96m	25, 955, 684	268, 410 "

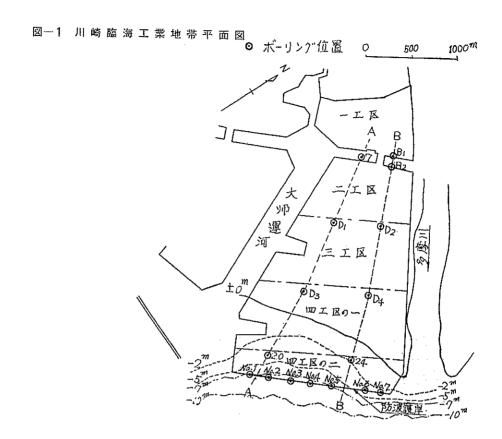


図-2 第4工区の2埋立工事区画割及び仮設備平面図

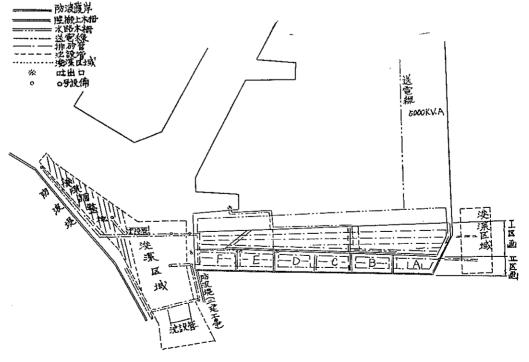


図-3 土 質 断 面 図 A-A 土質縱断図 暗灰色砂 深5 ₹-10 (基準面下水) 暗灰色シルト寄お土 青庆色沙川镇拓土 暗灰色砂 B-B 土質 縱断図 護岸法狼 暗灰色砂 深 -5 さ(基準面下所) 暗灰色砂質シル 暗灰色シルト質粘土 青灰色粘土 防波護岸法線土質断面図 鹤见年 沙摩川务 -2 <u> 「暗灰色 細趺</u> <u> 俯灰色和砂</u> 深-4 体さ(基準面下M) 黒灰色シルト -12 **⊣4** 暗灰色シルト負粘土 -16 -18 -201

60 80 100 01 02 03 04 05 0607 - X-victory m 71 D Copy of purs 64.95 20 学院会議第21回版のの含文CNが代表的別に当点的FRL 大着子が記 ボーリング加了土質試験結果 壓立批魯高+400 2 5 88.45 20 20 6080 626 27 6 20 30 2 7597 图—4 防波膜岸(A)標準断面図 防波溶療 WA +20 女祭 小水 155 庚 m 5 찪 20+ 23.5 0.0 500 当初計画相刊石(200年前後) HWL +20 0.513.0 21+10 新信 數學 砂點 L) | |3 -UX-AXGXKOM 通加計商方用功能(50%候) されば 当の最の第一次数と 智図 扣截律8番換8本批 陸极上木缽 扣線#8番線8末抵 黏 +4.00 8.00 -50 19/ 図―6除被十米

— 129 —

図-7 防波護岸地盤改良検討 分四回里立時報小安全率円弧にり面回1.70 Cプロックi也盤強友増加国 C 46m2 O 0.1 0.2 0.3 0.4 0.5 15 載荷車 ½2. **外**一回埋立 回理立 -10 琺 艞 樫 懸-15 前面故时 -20 サンドドレーン 図-8 放砂 工事 面 図 多摩川 法線 大师選下 標準斷面 네비. 번전 1 ĵűĵ 埋立区域 37^m 450m 80071 図---9 整理掘, 沈泥地配置図 整理掘土处理区 18排水ox c 1 В 二次沈泥地

— 130 —

軟弱土上への載荷

地表面が水中にある場合

大阪南港3区

原地盤改良のサンドドレーン用敷砂を前述のごとく砂 撒分船により施工した。

砂撒布船は図一1のごとく、砂撒布管とウインチを装備した台船で、前進、後進及び横の移動はアンカーを利用する。ポンプ船よりの送泥管を連結し、二本の分岐送泥管に取付けられた多好板を有する撒布管を水中に降下し、送砂は流速を失って静かに沈積する。図に示す船は巾6mで一回の碇置による施工面積は前後方向が70m~80、横方向が36m(船6巾に相当)である。この他一回の施工巾が18m(2回往復)のものも使用された。

撒布1回の施工厚は20~30cmで,これを繰返し完成敷砂厚1.2mを施工した。

施工速度は5,000~6,000m³/日,浚渫単価は80円/m³,付帯設備費を入れて90円/m³程度であった。

川崎臨海工業地帯(大師河原地先四工区2)

防波護岸の基礎地盤改良のサンドドレーン工事に際し 5.7m 厚の敷砂を放砂船により施工した。放砂船は図ー 2に示すごとき起重機船を改造したもので放砂管は下蓋 を付けた丁字管構造となっていて水中に開放している。 放砂船に接続する浮管付送泥管は専用の零号設備へ接続 し、施工位置により順次付替を行った。施工中はレッド により測深を行い、最終仕上りは音響測深機により判定 した。

施工は護岸線の両端より2隻の放砂船を稼動し2年間で1,263,100m³の放砂を行った。

施工速度は1日1隻で約5,000m³/日(昼夜兼行),稼 動範囲約40m平方,月間約75,000m³であった。 尚,工 費は別表のごとくである。

地表面が水面上の場合

広島東部地区

前述のごとく軟弱埋立土の上に載砂するために予め砂分20%前後の浚渫土を送泥管間隔を56~75m,管口切替間隔30mで吹きのばしながら +2.5m まで盛上げ,この上に2m程度の敷砂をポンプ船により吹込んだ。(各港図参照)。

施工に先立ち試験区間を設けて吹込方法を検討し次の ごとき結果を得た。 1. 歳砂前地盤強度 良質浚渫土吹込後 1月後でコーンペネトロメーターの結果によれば大部分が $q_c=0\sim1\,t/m^2$ である。

2. ちらし板の位置 図-3-1管口よりの排砂を 3 方向に分散させるのであるが、2 m×4 mの大きさのもので、管口直下0.5m~1.0m程度の位置が最適であった。

3.もらし吹きの方法 図3-2もらし木寸法は、1,200 PS用管 (22")では厚さ6cm6個が1組、3,000 PS用管 (26.5")では厚さ9cm7個が1組で、その取外し個所により効果は異るが、管の最下部をはずせば粒径の大きい土がもれるために土砂の堆積勾配は急でその量が急増し破壊沈下の原因となる。最下部の両隣の2カ所を外した場合は、前の場合より粒径も小なく堆積勾配も緩く広がり面積も大きい。但し、この場合は管内含泥率が上昇するため排送能力が減退し、場合によっては閉塞を起す事もある。実際にはポンプ船能力、管口排出土砂の状態、吹込地盤の状態に応じ約30mの間隔の2カ所程度で上記の3カ所の何れかを開き、警戒員を配置する等管理を厳重に行った。

4. 歳砂の状況

管口でちらし板から分撒された土砂は軟弱な埋土の中にめり込みながら主として三方にひろがり、吹込土の粒径と管口からの距離に応じて流速が低下し、軟弱土を押出せなくなると急速に載荷厚が増大し下部へめり込みが多くなる。有効載荷厚とめり込みの比は、載砂厚が0.5~1.0mの場合1.2~1.5,0.5m以下では0.4~1.0程度であった。

5. 一回の吹込層厚

地盤の破壊沈下を防ぐため、一回の戦砂厚は50m程度 とし、段階的に施工する事ととした。

6. 載砂の進行方向

管口に堆積する土砂は、前方に長く左右にやや短かく 後方に短かい卵形にひろがり後方に地盤が破壊する事が 多い。従って、報砂は送泥方向に進行し、ある程度の砂 が堆積している所に管口がある様に切替間隔を適宜変更 した。この間隔は24~30mであった。

以上の結果に基いて全区域の戦砂を行ったが、その大 要は次のごとくである。

1. ポンプ船は1,200PS 3,000PSであったが送砂能力を考慮し、送泥距離の遠い所、吹込地盤の軟弱な所には比較的粒径の小さい土砂を、逆の場合には粒径の大きい土砂を吹込むこととした。

- 2. 一回の施工厚及び管口切替間隔は淡渫土の粒度と 地盤の強度により適宜変更した。
- 3. 吹込土の勾配及びひろがりは、その土質とポンプ船能力により異なるが、隣接する受枠線との中間に砂の切目ができ残留した軟弱土は幾分もり上る。そこで第二段の吹込時まで圧密沈下待期間を設け図一3—3のごとく管口を交互に切替え中間の部分に栽砂した。もらし箇所及び管口では地盤の破壊を生じ軟弱土の吹出した所もあり、その直後管口をその箇所に向け軟弱土を流し且つ栽砂を行おうとしたがめり込みが多く盛上りを増大させる結果となった。

或期間放置すれば或程度の改良は可能で施工管理が重要である。

- 4. 第二段程度の吹込みにより軟弱土表面が全部被覆できれば以後の栽砂は不陸均しに重点を置き、管口に曲管を付け、或は支管をつけて吹込土のひろがり、救砂厚の均等をはかることが出来る。
- 5. 送泥土砂の土質,管内流速及び含泥率が等しければ,排砂管径の大きい方が流量が大きいので拡撒面積も大きく,めり込みも少い。

大阪南港1, 2区試験工事

地盤改良用の団子漑より運搬した砂が溢流して堆積した個所で, 撃留場維持のため浚渫を行った際の砂を水面上にある埋立直後の軟弱土の上に放射し, 歳砂試験を行った。

使用した浚渫船は 5,000PS, 送泥能力 $9,000\sim11,000$ m^3/h であるが送泥流速は地盤の破壊を生ぜぬ様最小にしぼり 3 m/sec 以上とした。

放砂管口には、周辺を上方に曲げて流向を変える様にした6 m四方の受板を設置して放砂の分散をはかった。 図一4 に放砂位置及び分散堆積の状態を示す。これによれば大体半径80m位の範囲にひろがりその表面の勾配は50cm/60m程度で砂の先端部で5 cm 程度の軟弱土の盛上りを生じたのみで1~2 m厚の栽砂に成功したということができ、順次管口をのばして行けば広い面積に軟弱埋立土表面に栽砂が可能であると思われる。この場合背後に土留堤のあったことが排出砂の分散の悪い後方への地盤の破壊を生ずることなく施工出来た一つの原因であると考えられる。

尼崎港東部埋立地

この埋立地は軟弱粘土で埋立てられているが一部地区 に埋立後短期間内に企業が進出し次のごとく表面処理を 行っている。

1. 浚渫土吹上げ後、着工までの自然乾燥期間5カ月

地盤高-4.0m

- 2. 敷地周囲に天端巾8mの築堤を施工天端高不明, 築堤土の置換による地盤の盛上り平均0.7m
- 3. 軟弱地表面上全面積に50cm角の格子に竹竿を組んでのせ、この上にむしろを一枚互いに重ね合わせて敷く。 (写真1,2)

第一回載砂は砂撒機で砂を吹きとばしながら一面にまく。(写真-3)

第二回以降は軽量の小型ブルドーザーで順次施工する (写真-4)

5. 仕上り山土面標高+6.5m (39.11月末) 4.7m+1.5m+0.6m-施工中の圧密沈下 0.25m =-6.5m

広島県鞆埋立地

この埋立地では軟弱粘土による埋立完了後約2年間の放置期間を置き表面に2m厚程度の山土を置くことに成功している。周辺部では多少粘土のすべりによる盛上りが生じている。2年後の地表面付近の含水量は図ー5のごとくで,表面40cm程度までは急激に含水量が減少しているが,これ以下では余り変化していない様である。この時の地表面の状態は危裂が20cm程度の深さまで入り表面の危甲状の土塊の周辺は丸味を帯びる程度になっている。放置期間にはできるだけ溝を作り排水条件をよくしている。

軟弱粘土による埋立土の地表部分の乾燥

これに関しては、同様な検討が行われている様である がここには一例を示す。

試験区域は10m×30mの面積で排水路より60m離れた 地点で埋立層厚は7m以上と想定されている。

- 1. 地盤は埋立後冬季を経て略々6カ月経過した状態で2尺×6尺の型枠用パネルを足場とし、多少動揺するがパネルー枚に2人の人間がのり作業が行う事が出来る程度で、0.1 t/m²程度の支持力があったものと考えられる。
 - 2. 試験区域を次のごとく地区に分割(図-6)。

A地区 サンドドレーン 長さ1m 間隔 1.2m 三角形配置 上径10cm 下径20cm

B地区 サンドドレーン 地表敷砂10cm

C地区 処理せず

ールの紙を利用, 地表敷砂10cm

E地区 ペーパードレーン 敷砂なし

- 3. 施工はすべて人力で行った。砂杭打設管は、下部の径を大きくして砂の落下を容易とした。砂の運搬とも労力は延15名を要した。紙柱打設は簡単で労力は延4名であった。敷砂は運搬ともに1区域延15名を要した。
- 4. 試験区域の周囲は溜水の防止と排水の効果を検討するために溝を掘ったが、当初は地盤が流動状態で深さ10cm程度しか掴れず、約1カ月放置乾燥後30cmの溝とした。
- 5. 3カ月間の乾燥状態及び地表面の沈下状況は図—6のごとくである。(写真5,6,7)これによれば

A地区 表面の危裂及 び固結厚 (1.5ヵ月後で7㎝) が最大である。砂柱の周囲の含水量が大きく砂柱と砂柱の中間部分が少なくなっている。

E地区 表面の亀裂の状態, 固結厚は非処理のC地区 と同様で紙柱を中心に亀裂が生じている。紙柱の効果は 余り認められない。

- B, D地区 表面の敷砂のため, 蒸発乾燥の効果が消失され非処理の地区より乾燥状態は悪く, この程度の敷砂は逆効果である。
- 6. 溝の効果は掘起した土が最も早く乾燥し滞を中心として乾燥が進む。
- 7. 地表面処理としてはサンドドレーンが最も有効で 又、表面の蒸発面積を増大させる事が有効である。

パンフロック

東京ガス豊州工場埋立地

目的 埋立土の外海への流出防止

図-7に示すごとく埋立地は4区域に分割され、各場所において注入実験を行い使用法を決定した。 試験工事

試験結果の概要は、表一1のごとくである。

試験 a 送泥開始とともに連続注入したが、フロック殆んど形成せず、含泥率の減少した時のみ形成が認められる。

試験 b 送泥量400~550m³/hr に対しフロックの形成は 良好であるが堰板が低いと第 1 水門より吐出含泥率の¹/₂ 程度の泥水が流出する。

試験 c 第 1 水門を溢流する泥量に対して 1.4 kg/m³の注入量では不足である。フロックの確実な形成には 3 kg/m³程度が必要である。第 2 水門における効果は不明であるが,第 3 水門よりの流出は防止できた。

試験 d 3 kg/m³を注入すれば30分後に第3水門,90分後には第4水門で溢流水は透明となり,フロックの滞留

場所が確保されておれば、1 kg/m³でも効果はある。 (但し第水門溢流土砂100~150m³/hrの場合)

試験 e, e地区に送泥する場合は第3水門に注入した方が効果的であるがD地区の面積が小なるため短時間で沈積泥がたまってしまうので c 地区で沈積させるべく第3ノズルより注入したが最小限4kg/m³が必要であった。但し、C地区には未処理泥が多量にあったため、第3水内より0.1~0.4%の泥が流出した。

試験 f 第 3 水門に注入ポンプを移動する間にC地区内に送泥を沈積させるに250m 3 /hrの送泥量に対し8.0kg/ m^3 が必要であった。

試験 8 当初4.1kg/m³を注入,2時間後に第4水門溢流水は透明となり,その後は1.2kg/m³の注入量で十分であった。パンフロック輸送ポンプが途中で故障し,その間にD地区に充満した未処理泥水を透明とするのに2.8kg/m³を要し,平均1.5kg/m³となった。第3水門における注入はD地区に沈積したフロックが充満すると第4水門から溢流する。

表一1

試 番	後 き 注入個所	注入液	総使 用量	1 時間 当 り	吐出土砂 1t当り	結果
a	第1ノズル	原液(3%) 39.4t	0.7t/h	1.8kg/t	不良
b	〃 30m前	//	3. 4	2.04	4.0	艮
С	第1水門	稀液积 (1%以下)	4.0	0.6	1.4	不明
d	第2水門	"	11.2	0.98	1.8	良
e	第3ノズル	原 液	2.8	1.4	4.0	"
f	<i>"</i>	"	7, 2	2.0	8.0	"
g	第3水門	稀釈液	5. 6	1.2	3.2	"
	"	"	9. 2	0.68	1.5	#

工事方法

- 1. 使用ポンプ船 1,000 PS
- 2. 原則として第水門で注入する。但しA或いはB地区に送泥中は第2水門でもよい。
- 3. 水門の堰板より沈積泥が低い場合 400~600㎏/hr の注入量を標準とし、送泥量の多小により注入量は増減する。第4水門でフロックの流出があるかないかの状態を適量とする。
- 4. 注入が行われずD地区へ未処理泥が存在する場合は第3水門で当初600~800kgを注入し、第4水門までの到達時間に第4水門の溢流水を点検し、更に添加を行うか、平常量に戻すかする。

工費

パンフロック (3%溶液) 使用量 400 t

単価 65円/kg 金額 26,000,000円 パンフロックを使用しない場合のこの付近の埋立土は 実土量の1.8 倍の浚渫土量が必要であり、パンフロックの使用により1.2 倍程度に減少させ、約220,000m³の浚 渫土量を節約する計画であった。この浚渫土量は金額に して、26,000,000円程度であるから、流出による補償費 が節減出来る事になる。

広島港

試験区域 7,600m2

使用ポンプ船 1,200PS 排砂管長1,034m

注入法 送泥管吐出口より42m手前にノズルを設置する。

施工 送泥開始と共に注入を開始、フロック形成状況 を観察し注入量を調整する。

結果 堆積率約50%の浚渫土を約60%に増大する事が 出来たが、注入量は5.65kg/m³であり埋立面積が小さく 区域内の各所で渦流を生じ流速も大きいため流失土砂が 多く十分な効果は得られなかった。

大阪南港

目的 浚渫土がコロイド分40%程度の粘土であるため 区域外への流失が多く、これを防止することと、余水の 流路を変え流出方向を変更するために試験的にペンフロ ックを使用する。

予備試験 図一9および表一2のごとき結果を得た。 表一2パンフロック必要添加量(乾燥土1sに対し) 理程事験

図-8に示す越流口01の上流にパンフロックの稀釈液をシャワー状に添加した。

この点の含泥量は10%以上で04の越流口より外海への流出余水の含泥量は6~8%であったが,予備試験で推定されたごとく4kg/乾燥土1tの添加量で越流水中の土は団粒化され沈積が早く,水路は変動し,一面に団粒が堆積し,外海への流失は激減した。

図―10に現場実験におけるパンフロックの添加による 含泥量の変化を示す。

粘性土に対するコンポーザー工法の施工

名古屋港工区東海製鉄鉱石ヤード地盤改良試験工事 鉱石ヤードの土質断面は図―11のごとくであるが、最 大荷重33.6,46t/m²に対し、コンポーザーにより地盤改 良を行う事とした。粘性土に対しては砂柱と粘性土が次 のごとく応力を分担して支持するものと考えた。

 $P = \sigma A = \sigma_s A_s + \sigma_c A_c$

A: 載荷面積, $A_s:$ 砂柱の水平衡面積, $A_c:$ 粘土の水平断面積, $\sigma, \sigma_s, \sigma_c:$ それぞれにかかる荷重強度。

砂柱上端にかかる鉛直応力を σ s,砂柱を側方に拡げようとする水平応力を σ nとすれば, σ nの最大値は次式で示される。

$$\sigma_h = \frac{1 - \sin\phi}{1 + \sin\phi} \cdot \frac{1}{\sigma_s}$$

ここにø=内部摩擦角。

砂柱から水平応力σ_hを受ける粘性土が降伏しない条件 はσ_hと粘性土表面に作用する鉛直応力の差が、粘土の上 限降伏値σ_nより小さいときである。即ち

$$\sigma_h - \sigma_c \leq \sigma_u \ (=0.7q_u$$
と考える)

複合地盤の表面付近が降伏状態になることは砂柱と粘 性土がともに降伏することであるから両式より次式が得 られる。

$$\frac{1-\sin\phi}{1+\sin\phi} \cdot \sigma_s - \sigma_c \leq 0.7 q_u$$

$$\sigma_c = \alpha c = \frac{1}{2} \alpha q_u \, \mathcal{E} \, \mathcal{T} \, \mathcal{H} \, \mathcal{T}$$

$$\frac{1-\sin\phi}{1+\sin\phi} \cdot \sigma_s \ge \sigma_c + \frac{1.4}{\alpha}\sigma_c$$

$$\therefore \frac{\sigma_s}{\sigma_c} = \left(1 + \frac{1.4}{\alpha}\right) \cdot \frac{1 + \sin\phi}{1 - \sin\phi}, \quad \alpha \text{ は載荷試験より}$$
 求める。

設計条件

載荷荷重 36.3, 46t/m²

上衡 図-11

砂柱 長さ12m, 間隔 1.7m 正三角形配置 α=10

诚荷試験

載荷面は粘性土上とし、載荷面をフレキシブルとし荷 重を分布させることを考えて、この上に1m厚の砂をの こし、尺角、枕木を積上げ上部にIビームを2段積んで載 荷台とした。これによる載荷重は約38 tでこれを先行荷 重とし、以下定荷重式により図―13のごとく3回載荷を

表一2 パンフロック必要添加量(乾燥土1 t に対し)

L	含	泥	K	0.75~1.21%	2, 5%	5.0%	10.0%	12,15~13.65%	20.0%
	FC.	料	1		1.5~2.0kg/t	2.0~3.0kg/t	6 ~ 7 kg/t		10kg/t以上
			2	2.5~3.0kg/t					でも floc
	//		3			4.0~5,0kg/t		8 ~10kg/t	形成せず

砂柱及び粘土上に置いた土圧計の平均値は 第1回載荷最終段

 $\sigma_s = 3.76 \text{kg/cm}^2$ $\sigma_c = 1.68 \text{kg/cm}^2$ $\frac{\sigma_c}{\sigma_s} = 2.24$

降伏荷重時 $\sigma_s = 4.75 \text{kg/cm}^2$, $\sigma_c = 2.05 \text{kg/cm}^2$ $\sigma_x = 2.3$

第3回載荷最終段

 $\sigma_s = 6.77 \text{kg/cm}^2$, $\sigma_c = 2.99 \text{kg/cm}^2$ $\frac{\sigma_s}{\sigma_c} = 2.27$

 $\frac{\sigma_s}{\sigma_c} = \frac{1 + \sin\phi}{1 - \sin\phi} \quad 1 + \frac{1.4}{10}$

で ϕ =35° とすると $\frac{\sigma_s}{\sigma_c}$ =4.22 となり実測に比べ、か

なり大きく、又、実測値より上式で ϕ を求めると ϕ \rightleftharpoons 18°となり、実際とは異なった状態となるので設計は実測平均値2.32を使用することとした。(図-14)

以上により次の結果が得られた。

最終荷重時の支持力

地盤の支持力 $\sigma = \frac{P}{A} = \frac{379.8 \text{ t}}{12.56\text{m}^2} = 30.2\text{t/m}^2$

砂柱の支持力 P_s = $\sigma_s A_s$ =56. 4t×0. 33m 2 =18. 6t/本 この荷重で降伏していないので極限支持力はこれ以上 である。

又、地盤全体の沈下量は砂柱内は応力の分布による減少はないものとして砂柱のみの沈下を計算し、これと砂柱以外の部分の沈下量の差が載荷全面積に平均化されるものとして載荷面全体の沈下量を求めている。

以上の結果より施工条件は次のごとく決定した。砂柱 間隔 2.2m 正三角形配置,有効砂投入量0.5m³/m (径約 80cm),砂柱長さ12m,砂柱のN>15,最初の鉱石許容積 載高 6 m,圧密強化期間 (50%圧密)約5日,圧密後鉱 石許容積載高12m

広島港A地区東洋工業工場敷地地盤改良

上記工事と同様に図―15に示すごとき地盤に対してコンポーザーによる地盤改良を行っている。

設計条件

建家基礎

許容支持力 10t/m²

基礎形状 2.5m×2.5m~3.5m×4.0m

基礎根人 1.5m

床

許容支持力 4 t/m²

不等沈下 実用上支障が生じない程度 砂柱 A_s =0.334 m^2 , 長さ6~10m

間隔建家基礎1.4~1.6m正方形配置

砂柱配置は図-12に示す

 $\phi = 32^{\circ}$

これにより粘土の q_u は $0.1\sim0.2$ kg/cm²より0.5kg/cm²程度となり、粘土のみの極限支持力24t/m²に対し、載荷重10t/m²の場合の複合地盤の σ_c を計算すると約7t/m²となり十分安全となった。

1. 4m×1. 4mの載荷板による載荷試験によれば,降伏 時応力は25. 5t/m²であった。

この時の沈下量は26日間で約10cm程度(推定圧密度55%)であった。

ペーパードレーン

ペーパードレーンに関する観測結果についての十分な 資料を入手していないので詳細な点については不明であ るが、今回の調査範囲では、福山の日本鋼管敷地、広島 の東部埋立地の地盤改良工法として施工されていた。

これに使用するカードボードは厚さ3.5mm, 巾10cmでスエーデンでは直径5cmのサンドパイルに対応するものとして排水の計算が行われているが、上記の箇所では、実験結果よりφ=3.3cmのサンドパイルと同等の排水性を有するものとして設計されている。この値については場所によって異なるようで、現在の所、その他の点とともに、今後の検討に埃たねばならないようである。

表一3にカードボード1本は直径3.3cmのサンドパイルに相当するものとして両工法の比較結果を示してある

埋立前に行う埋立土のための地盤処理工法

大阪南港3区

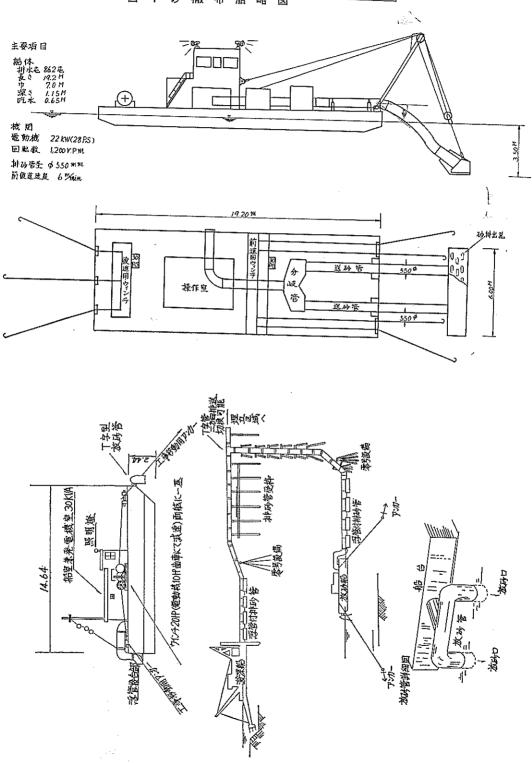

この地区は埋立前に原地盤にサンドドレーンを施工し 埋立中に圧密沈下を促進させることになっているが、各 港概要の図-17に示したごとく、地盤改良用の良質砂の 貯砂場が同一地域内にあり、その底部はサンドドレーン の施工地域の地盤高と10m程度の差があり、砂の使用後 この儘粘土で埋立てるとすれば、この部分の沈下量、沈 下速度は他の部分より孤立して不都合を生ずるので、圧 密条件を近似させるべく,図―16に示すごとき,フロー ティングドレーンを施工した。フローティングドレーン はペーパードレーンに使用するカードボードを3本一組 とした長さ10m, 巾5mの枠で,下部は敷砂中に埋設し 上部には浮子を付けて直立させ、 60m×200m の面積に カードボードが 2.5m 間隔の正方形配置になる様に設置 した。貯砂場底部の敷砂には予めエジエクターを埋設し 埋立の進行と共に、これを稼動して真空排水を行う計画 である。

表-3 サンドドレーン工法とペーパードレーン工法との比較 (同じ効果を期待する場合)

		サンドドレーン工法	ペーパードレーン工法				
A	ドレーンの大きさ	直径 40cm 長さ 10m	厚さ 3.5mm rh 10cm 長さ10m				
В	間 腐	2, 0 m	1. 25 m				
С	1本の影響面積	0.866×2 ² =3.47m ² /本	0.866×1.25²=1.35m²/本				
D	単位面積当りの本数	0. 288本/m²	0.74本/m²				
E	1m当りの打込費	600円/m	120円/m				
F	1本当りの打込費	6,000円/本	1,200円/本				
G	単位面積当りの打込費	0.288×6,000=1,730円/m²	0.74×1,200=890円/m²				
I-I	打込速度	25本/日	200本/日				
I	1日当りの改良面積	25×3.47=86.7m²/日	200×1.35=270m²/日				
J	同じ面積を同期間に 施工する場合の機械	<u>1</u> 86. 7	<u>1</u> 270				
	台数の比	3. 11台	1台				
К	機械1台の製作費	35,000,000円/台	45,000,000円/台				
L	その他の長所及び短 所 ①	砂の重量が大きく場所によっては 入手困難	紙の重量は軽く, 揚所の如何を問 わず, 運搬可能				
M	②	材料の品費管理が困難(場所によ り粒度が違う)	材料の品質管理が簡単(材料(紙) は均一)				
N	3	施工管理に不安がある。 (ドレーンの中途で切れる恐れあり)	管理が確実(ドレーンの中途で切 れればすぐわかり打替えが可能)				
0	4	間隔の最小は1.70m位で、それ以 下にすると粘性土層が乱れる。	間隔は,かなり狭くする事が出来 る。				

本比較表はサンドドレーン径10cm, 間隔2.0m, 長サ10mを打設し地盤改良を行う工事に対し, ペーパードレーンにて同効果を得るための各数値を算出し比較したものである。

図-1 砂撒布船略図 012345**

雪河 539.1.18~29 放水 539.1.30~31放水 S39.2.4 湖岸 ks<u>lo6 l06 l05 l04 l03 133 03</u>02N 539.1.30 01 0 kW 軟弱埋立土への載砂試發工事結果(送泥管ロにチラシ板を使用した場合の砂厚分布測量結果) 1.5 1.5 1.5 1.0 1.0 N.E 15 1.4 10 145 12 1.0 N 80 回 2.0 (5 0.2 42 3 犁 20 23 20 20 L MS 20 SX <u>₹</u> 0 0 下可能範围 Na. 82 区 椢 ⊠ -5 2 *Z#ZKD 土留 堰+6.50 ㎡ 5

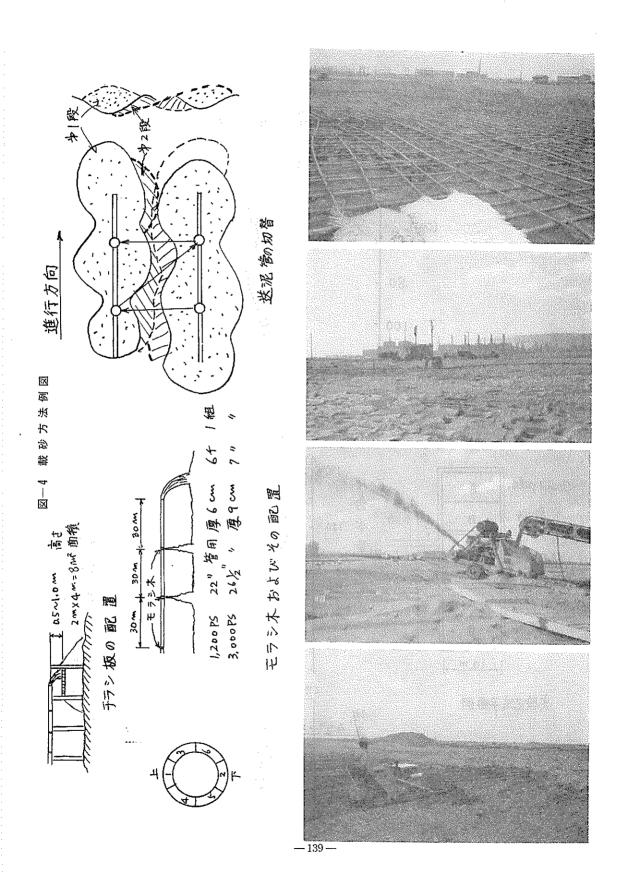
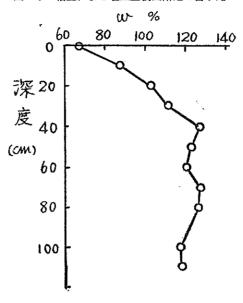
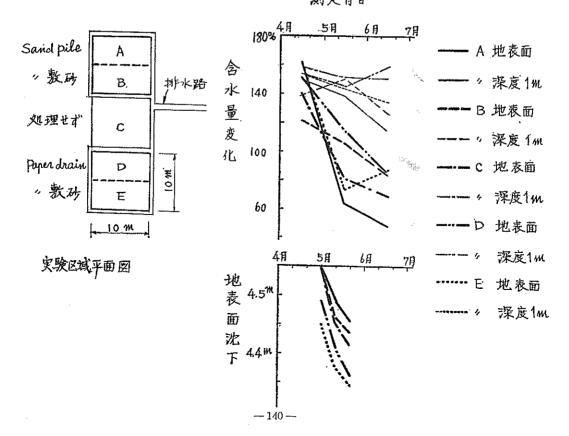
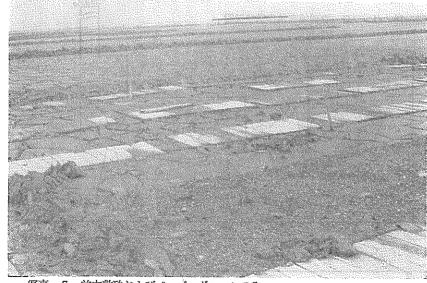
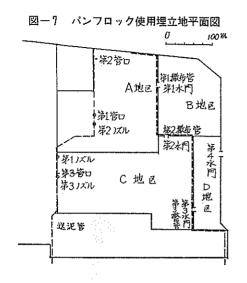




図-5 粘土による埋立土表面附近の含水比


図一6 軟弱埋立土地表面処理試験工事 測 定 月日



写真一6 A区域表面乾燥状况

写真一7 前方敷砂およびペーパードレーンのみ 軟弱粘土による埋立土の表面処理試験工事

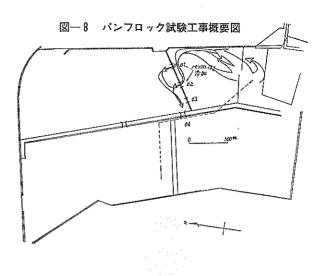
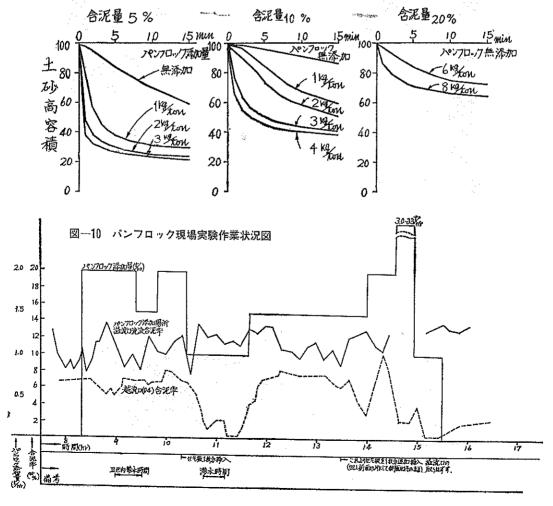



図-9 土砂沈降速度容積変動図

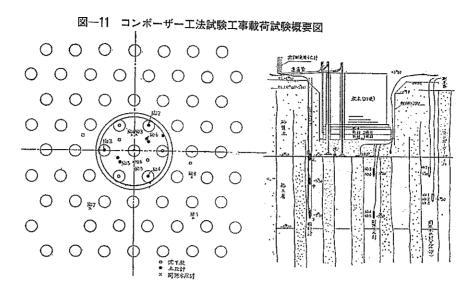


図-12 コンポーザー試験工事箇所土質試験結果

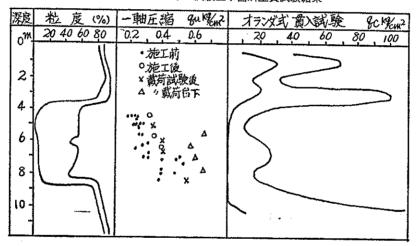
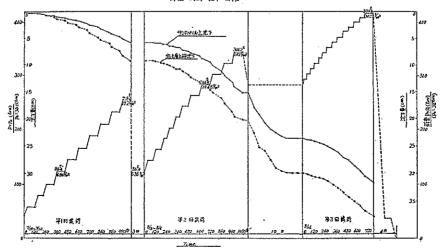
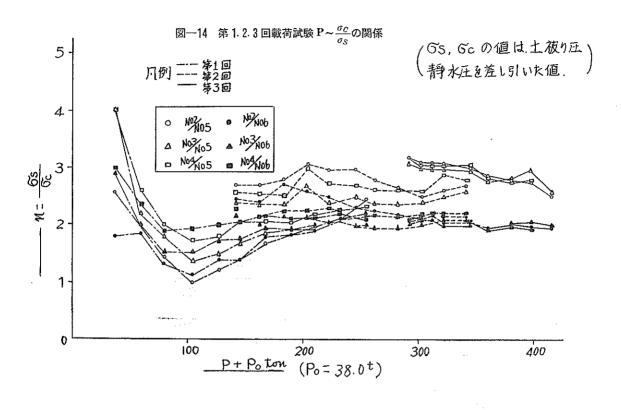
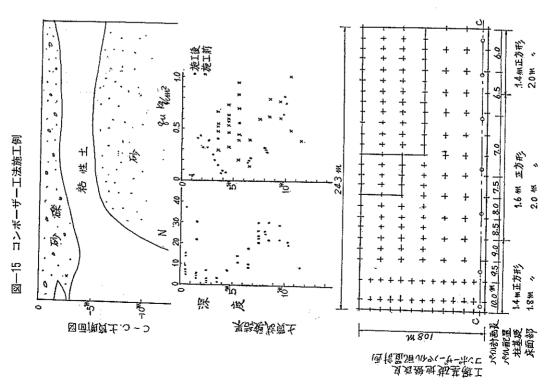





図-13 コンポーザー工法試験工事載荷試験結果 荷宝 時度 第7 世界

調査結果のとりまとめ

前述の各型立地の施工例を総合し、以下に各項目毎に 概要を述べる。

1. 地盤状況

調査の対象とした各埋立地の原地盤の軟弱粘性土の層厚は2~30m以上で、内半数以上が10m以上、20m以上の所は5カ所で、その一軸圧縮強度quは1kg/cm²以下である。

原地盤表層に 5 m以上の良質砂質土のある場所はその N値が10を超えるが、その下の粘性土層の強度は余り大きくなくquは 1 kg/cm²以下の所が多い。

埋立地盤はその殆んどが浚渫土によるもので、山土等 は埋立土の一部、特に地表面付近に用いられている。

浚渫地の土層が砂質土、粘性土の両者の堆積している所では、計画的に土質の配分を行った場合も含めて、埋立地盤の構成は水平方向にも垂直方向にもかなり複雑となっている。埋立地盤の強度は、粘性土では $q_u < 0.2 kg/cm^2$ 、砂質土で $N=2\sim8$ 程度、 磔の多い所ではN>10となっている。

表一1に原地盤および埋立土の土性の範囲を示す。

表-1 埋立地の土性

	土質	層厚	強し	_	含水比	液性限界	砂含 有量
原抽	粘性土 砂質土	m 2 ~ 30	qu=0.0 0.05kg)3~ /cm²	40~140	50~130	5 ~60
盤	砂質土		N= ~2	1			
	粘性土	1~8	$q_u < 0.2$ kg/c	em²	50~160	50~130	2~40
地盤	砂質土		N=0-	~15			

註:原地盤粘性土層厚は支持層まで、砂質土は地表より深度10m程度まで

2. 造成目標

造成目標としては、使用時期、地盤高、使用目的に応じた地盤条件(支持力、将来沈下量)が考えられる。埋立地の使用目的の殆んどが工業用地であるから、造成目標は使用者への譲渡時期によって定められることが多い。使用時期は埋立地の一部を軟弱土の処理場として将来地盤が或程度硬まってから使用を考える場合を除いて

は、造成直後を要求される場合が多く、埋立土が軟弱な 場合でも改良処理工事に着手できる程度に仕上げること が考えられている。

造成地盤高は予想される最高潮位によって定められるが、原地盤と埋立層の圧密沈下に対する処置と目標時期によって計画高は変わってくる。原地盤の圧密層厚の薄い場合は埋立期間中に埋立荷重による圧密は大半を修了するが、圧密層の厚い場合は長期にわたって圧密が進行するので、使用目的によっては予め圧密に対する処置がとられる。埋立土および比較的浅い原地盤の圧密層に対しては、造成後の地盤処理が可能なので、地盤処理を行わない地域の沈下のみが問題となるが、斯様な地域はさしあたりは使用されない地域が多いから必要に応じて手直しを行えばよく、計画時には余り問題とされないようである。

一般に計画地盤高は譲渡時期を目標とされているが, 造成完了後,譲渡までの期間が長い場合は沈下によって 計画高以下となることもあるので譲渡前に地上げが必要 となる。

造成目標とする地盤条件は、使用計画、土取条件等に よって異るが、これに対して次のような施工方法がとら れている。

- a 使用計画,工場配置に応じて埋立土質の配分を行い,指定された地盤条件とする。この方法は軟弱土を含む埋立地の早期利用には経済的で極めて有効な方法である。しかし,多くの場合埋立地施工前に使用計画の詳細が明らかとなっている場合は甚だ少く,実際には特殊な場合にのみ用いられている。
 - b 全地域を良質な砂質土で埋立てる。
- c 埋立土が軟弱粘土の場合,造成直後に建設工事の 施工可能な程度に地表面付近の数mを砂質土で埋立て る。
- d 埋立地盤高のみを計画し、造成後の地盤処理は使用者が行う。
- e 造成後の圧密沈下を少くするために,原地盤を事前に処理する。

造成前あるいは造成後の使用者との契約の段階におい しては、地盤条件を明示確認されない場合もかなり多く、 使用者が購入後地盤対策を考えるか,造成者が c の方針で埋立地全域を均一なものに仕上げるか,あるいは仕上りの状況を見ながら漸次施工法を考えてゆくか等の方法がとられている。

3. 埋立工法

臨海工業地帯の造成は港湾計画と密接な関係にあるため、埋立地造成の土量は航路泊地の浚渫土量とバランスさせるごとく設計される場合が多く、又、そうあることが望ましい。したがって軟弱な沖積層の堆積地であることの多い港湾地域における埋立工法では、軟弱粘性土に対する処理方策が最も大きい問題となる。

a 地盤処理

i 原地盤の処理

原地盤の圧密層の厚い場合は埋立前にサンドドレーン 等の圧密排水工法を施工し、埋立荷重による沈下は埋立 期間中に大半を修了させ、使用時の沈下を少くする。

造成後の原地盤の処理は施工上困難であり、又、埋立 地の早期利用の点でも望ましくない。

原地盤の軟弱粘性土の比較的薄い場合は良質土砂で置 換するか、埋立荷重による圧密を期待する方法がとられ る。軟弱粘性土上へ良質土を直接埋立て押出し置換をは かることも多い。

ii 埋立土の処理

前述の造成目標にしたがって次のような方法がとられている。

- イ 使用計画にしたがって重点的に砂質土, 硬質土を 使用し, 軟弱な浚渫粘性土は未使用部分に捨込む。付近 に良質土のない場合は遠隔地より運搬する場合もある。
- ロ 浚渫土の大部分が粘性土の場合,表層の数mを砂 質土で埋立てる。
- ハ 堆積した軟弱な浚渫粘性土の上に良質土砂を吹込 んで押出置換を行う。
- = 浚渫土砂の微粒部分は域外に流出させ、粗粒部分だけの堆積をはかる。これは漁業補償の関係で余り行われていないようである。
 - ホ 埋立前にフローティングドレーンを施工する。
- へ 薬品による処理工法としては埋立土の域外流出を 防ぐためにパンフロックの使用例がある。これを有効に 使用するためには、十分な予備実験が必要である。これ は主として漁業補償を対象とするもので、安定処理を目 的として実用化されている薬剤は現在のところ見当らな い。

iii 表面処理

軟弱な粘性土を浚渫して埋立てた直後の地盤は流動状 態にあり殆んど支持力を持たない。これが或期間放置さ れると表面付近は蒸発乾燥して硬くなり或程度の支持力 を生じてくる。その程度は当然放置期間によって 異る が、乾燥の進行するのは地表面付近の50~60cm程度まで である。したがって粘土による埋立地は何等かの方法で 地盤処理を行わなければ利用することができないが、そ の改良工事を行うために地表付近に砂質土を置いて地盤 の支持力を増加させねばならない。吹込直後の粘土の上 にちらし板を使用して浚渫砂により2m程度の敷砂に成 功した試験工事例もあるが、一般には或期間放置して地 表面を乾燥させ、或程度硬まってから浚渫砂、山土等を 盛る場合が多い。吹込直後の粘土の表面に砂を撒くこと は表面付近の蒸発乾燥を妨げるので、支持力増加或は圧 密荷重となるだけの十分な厚さがなければ全く無意味で ある。この場合でも半年程度の乾燥では施工は慎重に行 わねばならない。浚渫により置砂を行う場合には送泥管 の配置、吹込管口の切替、もらし吹き、吹きのばし等の 方法、吹込層厚が問題となるが、ポンプ船の能力、送泥 距離、埋立の仕切り方法等も関連して検討せねばならな い。山土を使用する場合も一回の施工厚を少なく、何回 かの施工によって所定の厚さに完成することが行われて いる。

浚渫粘土の埋立地では表面の溜水を排出するとともに、排水路を設置する等できるだけ排水条件を良くし、 夏季の気象条件の良い季節に放置期間をあてることが行われている。

斯様な埋立地では排水路の設置は困難なことであるが、足場板を利用して溝を掘り表面の乾燥部分を掘り起すことを数回繰返し、1カ月かかって深さ30cmの溝を完成した例がある。(巻頭写真)

地表付近が浚渫による細砂の場合は飛砂を防ぎ且つ使 用条件を良くするために薄く山土を上置きすることがあ る。

iv 水中における軟弱粘土上への敷砂

圧密排水工法における敷砂はその透水性を確保するためにも地盤の破壊を起さぬよう確実に施工されねばならない。したがってカ所に大量の砂が堆積するような施工は不適であり、砂撒布船を使用して一回の施工厚をうすく満遍なく砂を撒布し、これを繰返して所定の厚さに施工する方法がとられている。

b 埋立土量の算定

埋立に必要な土量は,埋立容積および,埋立荷重による原地盤圧密層の沈下,埋立層の沈下,浚渫吹込時の流

失,不陸および短期間の沈下を見込んだ余盛に対する土 量である。

i 原地盤の沈下

圧密試験の結果より埋立荷重に対する最終沈下量および沈下速度は計算されるが、目標とする時期によって土量計算に考慮すべき沈下量は異ってくる。一般には造成完了時(譲渡時)を目標としている。

ii 埋立層の沈下

砂質土に対しては層厚の5%以下が考えられているようである。

粘性土に対しては三笠氏の方法,吹込後の間隙の時間的変化の実測等により計算されており,大略して層厚の20%以上が見込まれている。埋立土が粘性土,砂質土の両者となる場合は一般に30~50㎝程度の沈下が考えられている。粘性土の埋立期間中の沈下については測定が困難なため実測資料はないが,放置期間の観測によれば,6カ月程度経過すれば Terzaghi の圧密理論に従って計算した沈下速度に従うといわれている。吹込後6カ月程度までの沈下の大部分は地表面の蒸発乾燥によるもので,その量は40~50㎝程度である。

iii 余感

余盛は造成表面の不陸による地盤高の差を 補うものと、造成後使用者へ譲渡するまでの短期間の沈下の補償を対象とする場合が多く、土質と期間によって10~50程度が考えられている。前述のごとく粘性土による埋立地の6カ月程度の沈下量が50cm程度であることから、この量は適当な値であると思われる。場合によってはかなり長い期間の沈下を見込んで数の余盛を行うこともあるが、通常行われる余盛とはかなり性格の異るものである。

iv 歩留り

浚渫土の設計時の歩留りは粘性土に対しては70% 前後、砂質土に対しては85%程度の値がとられている。埋立土の域外への流出による損失については測定資料もなく,詳細については不明であるが、埋立地面積、余水吐の構造および位置、ポンプ船能力等が影響すると考えられる。特に粘性土の場合は埋立ての終期においては流出土量が多く,浚渫地が近い場合はここに流れ込み、これが再浚渫されて埋立地と浚渫地を循環するような状態も生じ得る。斯様な場合必要な浚渫量に対して工事量は非常に多くなり甚だ不経済となる。この対策としては土留護岸の天端を高くするか、埋立面が計画面に近くなった時は或程度の休止期間を置いて土粒子の堆積、沈下を待って再び埋立を開始することが考えられるが、前者は経済的に不適であり、後者はポンプ船の作業能率を有効に

することを考慮せねばならない。この他, パンフロック 等の凝集沈澱剤を使用する方法もある。

土量算定に当って沈下,流失,時には余盛をも全部歩 留に含めて計算された例もある。

表一2によれば歩留りの実績は略々設計値と同程度であるが、これは見掛け上の値であって、浚渫前に比べて埋立土の間隙比は非常に大きく、土粒子の実質部分の歩留りはこれよりはるかに小さいことに注意せねばならない。各地の調査例によれば埋立後6カ月を経過した時の粘性土の体積は浚渫前の略々1.3倍程度となっており、吹込直後は2倍程度になっていると考えられる。今、6カ月後について考えても、見掛けの歩留りを70%とすれば吹込時に流失した土量は、沈下がないものとすれば吹込時に流失した土量は、沈下がないものとすれば淡渫土に対して、 $1-\frac{0.7}{1.3}$ =0.46=46%となる。したがって流出がなければ、沈下を見込んだ土量の $\frac{1}{1.3}$ の土量を淡渫吹込めば良いことになる。又、浚渫前と同程度の間隙にまで、しめ固まることを期待するならば、浚渫土量の倍以上の容積に相当するまで護岸の天端高を計画高より诺上げせねばならない。

斯様な粘性土の間隙の増加を設計時に考慮した例は少く,浚渫土1は埋立土1として考える場合が多いようである。埋立工事完了の検収は,計画高まで地盤高があれば完了とする場合と,浚渫土量を検測する場合と,両者を同時に行う場合がある。最初の場合を除いては埋立土が過剰になるので余分な浚渫土の処理を考慮して置かないと施工上にも契約上にも問題が生じ易い。

埋立前に正確な必要埋立土量を計算することは困難で、埋立中の沈下は常に埋立土で補充されてゆくので、 実際には埋立地の仕上り状況を見ながら設計土量を決めてゆく場合が多い。

c 埋立護岸

埋立護岸は埋立に先行して施工される場合と併行して 施工される場合があり埋立地の使用目的によって本護岸 又は仮護岸が築造される。

i 本護岸

利用計画のない水際線は始めから本護岸が施工される。原地盤、埋立土の良質な場合は埋立にやや先行して施工され、原地盤が軟弱で地盤処理が必要な場合は埋立てに先行するか、埋立土との荷重のバランスを見ながら併行して施工する。この場合および、埋立土が軟弱で護岸を独立に施工する時は背後に築堤を行って埋立てによる影響を受けないようにする。

本護岸の型式構造は捨石を主体とするものが多く, その概要は表一3のごとくである。

表-2 埋 立 土 量 の 計 算

原地盤	地 立 上	Uni _L_1=1 b-7	沈	下	171	A	步	留
圧密層厚	土 質	埋立層厚	原地盤	最終沈下に 対する%	埋立層	余 盛	設 計	実 績
23 m	粘 土	8.3 m				0.5m		
20	粘 上	6.	0.3m	10	1.2m	1.5	0.80	
2 ~30	砂 シルト質砂 粘 土	4, 5	1.2	40	0.2	0, 5	0, 83 0, 80 0, 72	
11	粘 上 砂 礫	6.6	1.0		0.5	0. 5		0.72
8 ~ 13	砂 粘 上	10		0. 38		0, 1	0.85	
10	粘 土 砂 碟 山 土	7.7					0. 7 0. 85 1. 00	
0~11	シルト質砂 粘 土 砂 礫	5				0. 2	0.85	
3 ~ 7	粘 土 砂 礫	6, 6	1.0		0.5	0, 5		0.7
4. 4	粘 土 砂 礫	12. 5	1.1		0. 3			0, 82
1 ~ 6	シルト質 粘 土 砂 '磔	5	0, 1	20	0. 1		0. 676	0, 676
3. 3	粘 上 砂 碟	10.7	0.84		0.3			0. 867
2. 2	粘 上 砂 礫	11. 2	0.54		0. 3			0.747
0 ~ 4	シルト質 粘 土砂	7.3			0. 37	0. 2	0. 84	
0 ~ 4	シルト質 粘 土 破	6.8	0.3~10		0. 68	0. 2	0. 84	
0~0.7	砂 磔 粘 上	5. 3	0.06		0. 30	0, 2	0.77	

埋立本護岸施工概要

 	i ilm i -	,					
水深	地盤高 地	粘土層厚	1 19721年	天端高	構 造 形 式	地 盤 処 理	単価千円 /m
m m $-1 \sim -5$	m +5.0	ш m 22~30	0	m +5.5	石 積	サンドドレーン 15m×42m 押え盛士 15m	,
-0.5		"			//	砂置換 2 m	
-3.0	+4.0	20		<u>+5.0</u>	捨石 ケーソン	サンドドレーン 13m×29m	616
<u>-8.0</u>	<u>+5.0</u>			+6,0	コンクリート・セル	サンドドレーン 15m×40m	1,403
	+6.0	"		+4.2	拾石 方塊	サンドドレーン 13m×26m	
<u>-5.0</u>	+4.0	20~30		<u>+5, 5</u>	ケーソン・方塊	サンドドレーン 14m×88.5m 押え盛士 90m	719. 4
	+ 5, 0	18		+5.0	拾石 方塊	サンドドレーン 17m×50m 抑えぬ十 30m	896
-4.5	<u>+</u> 5.0			+7.0	//	サンドドレーン 18m×22m 押え廃土 25m	574
-2.0	+5.1	10~20		+5.1	<i>!!</i>		
	+4.0	10~18	0~7	+7.0	捨石 上部コンクリート	置砂杭	
±0.0	+4.8	1~10		+4.8	拾石 石積		
0.6_	+4.8	1~10		+6.7	捨石 上部コンクリート		
±0.0	+4,9	8		+4.9	//	押え捨石	
-2.0	+5.1	//		+5.1	捨石 方塊	11	
+1.3	+4.9	11		+4.9	拾石 石積		
-2.0	<u>+5.3</u>	12	7	+5.3	コンクリートプロック 石積二段	砂捨吹	104. 1
+1.0	+4.0			"	矢板 コンクリート 石積	仮護岸利用	34
+1.5	+4.0	2~15	2~8	"	L型	砂捨吹,松杭	69. 9
-2.0	+4.0	8	3	"	コンクリートブロック 石積二段	砂捨吹	81. 5
-3.0	+5.1	8		<u>+</u> 6.0	石積,コンクリートブロック	砂置換 5~10m	
-2.0	+ 5.1	8		+5.1	山土,捨石	床捌 10m	
-8.0	+4. 35	4~12		+6.35	拾石	砂置換	711
-6.5	+5.0	7	2+8	+5.0	矢板、コンクリート	砂捨吹	296. 2
-7.5	十4. 35	6		+4.35	捨石、上部コンクリート	砂置換	743
9.0	+4. 35	4~6		+4.5	"	//	1,161
-6.5	"	4		+4.35	"	"	723
-3.0	+4.0	4 ~ 5	1~5	- ∔5, 5	コンクリートプロック 石積二段		140.6
7.5	+4.35	2~4	-	十4. 35	捨石	砂置換	743
-1.0	+5.0	2	0~3	+5.5	石積,背後木柵		
−3~ 3.8	+4.0	0 ~ 5	5	+5. 25	鋼管矢板,捨石	コンクリート杭	
	//	"	"	11	コンクリート杭		***************************************
-8.5	十4.35	1		+4.5	捨石、上部コンクリート	置砂	118
-4.0	+4.0			+7.0	石積,上部コンクリート,控壁	置砂,杭	594

水深	埋 立 地盤高	粘土層厚	表 面 砂層厚	本護岸法 線よりの 距離	天端高	天端巾	構 造 形 式	地 盤 処 理	単 価 千円/m
- 6 m	+3 m	18m			m	セル4 m 築堤31 m	鋼セル,背後築堤	サンドドレーン ℓ=18m	666
- 3	+6.5	18		25~80	+6.5	1.5 10.0	山土 砂 築堤		102.6
- 3	+6.5	18			+6.5	10.0	二重木栅	砂捨吹,前面押 え盛土	***
-1	+5.0	20		35~40	+5.0	1	山土築堤		82
- 4	+5.0	18		50	+7.0		石積, コンクリ ート	サンドドレーン 18m, 押え盛士	:
0~2	+4.0	17	7	25~30	+ 5, 3		石積, コンクリ ート	砂捨吹 矢板,二重木柵	33. 6
0	+4.0	15			+4.0	2	石積	砂置換 -14m	205 151
"		"			"	"	山土	床掘 -14m	210
-2	+4.0	10			+4.0		二重木棚	砂置換 - 7 m 押盛土先端捨石	93
-2~-7	+4.0	10<	0~2		+4.0		二重木柵	砂捨吹	65.7
-1~-3	+4,0	3~5	1~7	100	+4.0		一重,二重木暐	砂捨吹	9. 6
-1	+4.0	1~5	5~8	50,80	+4.0		//	11	
- 2	+4.0	2~4		5			水柳	//	:

ii 仮護岸

水際線の利用予定箇所および、使用計画不明の場所、 あるいは拡張によって陸地となる場所等は仮護岸が施工 される。

仮護岸の概要は表ー4に示すごとくで構造としては木棚のものが多い。二重木柵は使用土量が少く一重柵より丈夫で、その上部は道路として使用できる利点があり、天端巾は各地の条件により異るが、実施例では10~20m程度であった。一般に仮護岸は先ず砂質土を浚渫により吹込んでその上に築造され、更に良質砂が腹付けされる。この場合腹付砂は予め背後地に吹上げて置き、後からブルードザ等で押出す場合もある。地盤が軟弱で、水深が大きく、又、波浪の影響の強い所では捨石、鋼セル等が使用され、サンドドレーン等の地盤処理が行われている。

護岸法線との距離は土質、目的によって異る。

埋立土が軟弱粘性土の場合は護岸に大きな土圧がかかるのを防ぐため本護岸背後に山土、浚渫砂による築堤を行う。この場合、築堤がすべり破壊を生じてもその影響がない程度の距離に設置する。実施例によればこの距離は20~100mであり、仮護岸の場合でもこの程度法線から下げて設置することがある。護岸との間は何れの場合も良質土で埋立てられる。

捨石を主体とする,護岸あるいは山土,放砂等による 築堤を地盤処理を行わずに軟弱粘土上に築造する場合は これ等の材料が原地盤を破壊していわゆるめり込みを生 ずる。その量は地盤によっても異るが,実施例によれば 次のごとくである。

捨石,砂 a例 盛上高と同じ程度の深さまでめり込む。この場合,設計断面に対し,実測 断面は2.75倍であった。

b例 捨石底面積(設計)× 軟弱層厚の 1/3 = 割増量として設計変更した。

山土 a 例 図-1に山土築堤完成後の実測断面例 を示す。この場合は原設計量の10~20 割増の設計変更を行った。

護岸からの細粒土の流出に対しては、捨石の石屑による被覆、木柵の孔の木栓閉塞、帆布の使用等が行われている。帆布は又砂質土の洗掘防止にも使用されている。 (写真-1)

護岸の構造形式の選択基準としては次のような条件が 考えられている。

- イ、地盤の土質、水深
- ロ、波浪の影響
- ハ、工期
- ニ、使用材料の入手難易

ホ、施工難易

d 仕切

仕切の構造は二重木柵のものが多く施工法は仮護岸の 場合と同様である。

仕切を設置する理由としては、工事単位毎 に 区 画 する、埋立地全体の地盤を平均化するため小さい仕切を多くする。 歩留りを良くするため上手から下手へ排水しながら埋立てを行う等が上げられる。

硬質土の埋立てによって原地盤の軟弱土を押出す場合 には仕切り面積は小さい方がよい。余水を上手から下手 へ流して順次埋立ててゆく場合は下手に軟弱土が集中す る。

仕切面積は目的により異り、実例では $4 \sim 200 \, {\rm Fm^2} \, {\rm で}$ 工事単位を目的とする場合では $20 \sim 30 \, {\rm Fm^2} \, {\rm oghholos}$ いようである。

e 送泥管配置

埋立地内の送泥管配置は浚渫土の吹込方法によって定められるが、一般には次のような方針で行われている。

i 仮護岸法線、仕切線付近に幹線を配管し、もらし吹き、吹きのばしによって砂質士を吹込む。

ii 幹線から内部埋立てのための支管を浚渫土の土質により適当間隔に分岐する。埋立てを均一にするためのこの間隔は粘性土では100m以上、砂質土の場合は50m程度がとられている。粘土の場合の間隔はかなり大きくとも大勢に影響はない。

iii 軟弱な粘性土の上に砂質土を一様に分散するごとく埋立てるには、30m程度の間隔が必要であるとされて

表一5 送泥管配置例

波 渫 土 質		埋立法絲	との距離
次 休 工 貝	(475 	側方	先 端
粘 性 土	200m以上		
"	200~300		
"	100		
粘性土,砂質土	100~200	20	30
"	110~150		
"	110	15	30
"	40	40	
"(礫)	40		
"(礫)	50~100	10, 40	30
砂質土	50~75		
"	100	5, 10	
"	10~50	5~15	
〃 (礫)	50		

いる。この場合のもらし吹き、吹きのばしの間隔も30m 程度以内とし、送泥放水口の切替も円滑に行い得ること が必要である。又、吹きのばしの場合は多数の平行設置 した配管で行うこともある。多配管の場合は受枠の巾が 広くなるので倒壊しにくい利点もある。

iv 砂質土では送泥管口付近に堆積し易く,且つ,その吹込厚で地盤を破壊するので管口の適当な位置にちらし板を設置して分散をはかる。

v iv の方法はポンプ船能力、排送距離によって配置 方法の異ることは勿論である。

例えば、配管間隔56~75mで報砂を行った例では3,000 PSのポンプ船では、曲管の使用で仕上げが可能であったが、1,200PSでは支管の増設が必要であった。

又、地盤が軟弱な所ではポンプ船の馬力が大きく、排 送距離が短かく浚渫土も硬質であるため送泥と同時に受 枠が倒壊した例も多い。

表一5に各地の送泥管の配置例を示す。

f 余水吐、受枠

図-2に桝式, 溢流式の余水吐の構造例を示す。 1区 画当り1~4カ所程度設置され, 埋立面積とは余り関係 ないようである。巾員は桝式で10m以下, 溢流式で10~ 30m程度である。

図-3に受枠の構造例を示す。海上用のものは強固な ものがつくられ、鉄管の使用例もある。

4. 造成後の地盤状況

a 軟弱粘性土上に砂質土を埋立てた場合

原地盤、埋立層の軟弱粘性土を押出置換を期待して浚 谍砂、山土で埋立てた所では、軟弱土の押出しが計画通 り行えず、軟弱土隆起、砂質土のめり込みにより不整な 地盤となった所が多い。隆起した粘土は乾燥し易く、 (巻頭写真) 最終的には計画地盤高以上のものは削除し 表面を砂質土で覆う程度で建設工事を開始しているよう

送泥管間隔の広い所では極部的に硬質土が集中し、原 地盤にかなりの深度まで攪乱の影響を与えている。

もらし吹き,吹きのばし,放水口切替,配管が適当であった所では,略々計画通りの栽砂施工に成功している。

b 吹込土砂の分布

である。

浚渫地の成層状態の複雑な所では、管口付近に粒径の 粗大な粒子が堆積し、管口より遠くなるにしたがって粒 径は小さくなり、埋立地内部では粘性土が堆積,非常に 軟弱となる。又,粗粒土と細粒土はよく分離し,管口お 様な状態に達するには夏季の乾燥条件の良い期間を含め て半年程度を要するようである。この場合乾燥の進むの は表面の一部のみで,図ー4の例によれば40cm程度まで でそれ以深は初めの状態からの変化は少いと思われる。 これは,埋立後2年目の例で,この状態で厚2mの山土 の盛土を施工することができた。写真一3は埋立後6カ 月以内の粘土による埋立地の例であるが,築堤に近い部 よび下層に粗粒土が堆積し,上層は細粒土となる。

c 浚渫土が粘性土の場合

浚渫土が軟弱な粘土の場合は吹込直後は流動状態であるが、表面からの蒸発乾燥により地表部分は収縮する。この場合表面に生ずる亀裂が深さ20cm程度に達すれば人の立入りがどうにか可能となる。前述のごとく一般に斯分は亀裂も多く、角は丸味を帯びているが、これから数m内部の色の異る部分からは亀裂片が大きく、その角は鋭く、人の立入りは未だ危険である。

図一5は粘土による埋立土の経過期間半年以内の含水量の測定例であるが、埋立直後ではW=100~300%、埋立後4カ月でも水位が表面付近にある場合は140~160で、数カ月の蒸発乾燥によって表面が70%となった場合でも表面より1m下では155%と余り変化していない。又、表面の乾燥が進まない内の液性限界試験機の規定による打撃数は埋立深度全部にわたって殆んどが5回以下で、この土が流動状態にあることを示している。

d 浚渫埋立による粘性土の土性の変化

埋立後の土質試験結果の資料は少いが、粘性土の場合の実測例を表-6 および図-4 に示す。

表-6 埋立前後の土質試験結果

	浚渫前	埋立後	
		$0 \sim 5 \mathrm{m}$	5m以下
含水 量	60~105%	90~160	80~140
液性眼界	50~105	50~105	50~110
含水量	50~ 80	60~130	60~115
液性限界	50~100	50~100	60~115

粒度については粗粒子と細粒子の吹込時の分離のために試料の採取位置によって非常に異るので全般的な比較はできないが、含水量は40%以上増加している。但し、深度5m以下になるとかなり少くなる傾向がある。5m以浅の含水量の増加を、土塊の容積に換算すると略々1.3倍の増加に相当する。

液性限界は幾分減少の傾向があるように見受けられる 所もあるが、全般的に見て明瞭な変化は認め難い。

液性指数としては含水量が増大するために増加し 1.5 ~2.0の値が多くなっている。

圧密特性についての資料は非常に少いが、図一5に一例を示す。この場合は mv は圧密荷重に対して、浚渫前の値の延長上にあり、 cv は浚渫前と同程度の値となっている。又、この土は埋立後間もないものであるが、先行荷重が深部まで非常に小さいことがわかる。吹込直後は間隙が非常に大きく Teryaglai の圧密理論での取扱いはできないが、間隙比が3程度迄に落着けば大体適用できるといわれている。

5. 構造物に対する埋立土の地盤処理

前述のごとく埋立地盤の強度は、砂質土でも $N=2\sim 10$ 、粘性土では $q_u<0.2$ kg/cm²以下であるために、構造物建設に当っては何等かの方法で地盤処理が行われている。その概要は各港図面および表-7に示してある。

表一7

構造物に対する地盤処理工法

構	造	物	設計荷重	地 盤 処 理 工 法
油 100	~66, 000	樹 OK L	6 ~20t/m²	サンドドレーン、ウエルポイント、バイプロフロテーション、置換、載荷
工場	易装置 5	峇類	20~70t/m²	鉄筋コンクリート杭、鋼杭、サンドドレーン、ウエルポイント、置換
·	炉			井筒、鋼杭、サンドドレーン、ウエルポイント、置換
工.	場 建	赻		鉄筋コンクリート杭、鋼杭、サンドドレーン、コンポーザー
軌	道	敷		サンドドレーン、ウエルポイント、置換
野	積	場	6 ~46t/m²	サンドドレーン、コンポーザー、置換
水		路		サンドドレーン、コンポーザー、銅杭(取水口、放水口)
道		路		サンドドレーン、ウエルポイント、バイブロフロテーション、置換

地盤処理工法は支持力よりも構造物の許容沈下量によって決定される場合が多い。

一般に20t/m²以上の荷重に対しては十分な支持層に達する基礎杭が使用されるが、その横抵抗を増加させるために、サンドドレーン或は地表面付近の置換え工法、しめ固め工法等が併用されている。

 $7 \sim 20 t/m^2$ の荷重に対してサンドドレーン, コンポーザー, バイプロフロテーション工法が施工される。

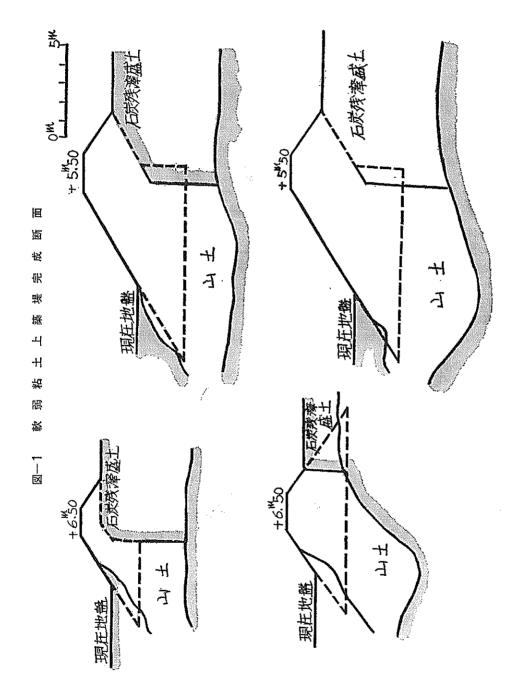
サンドドレーンの施工深度は6~22m, 載荷方法は盛土, 構造物自体の他にウエルポイントがほとんどの場合に併用されている。構造物に対するものでなく, 根切りを容易にするために堀削前にサンドドレーンを施工することも行われる。

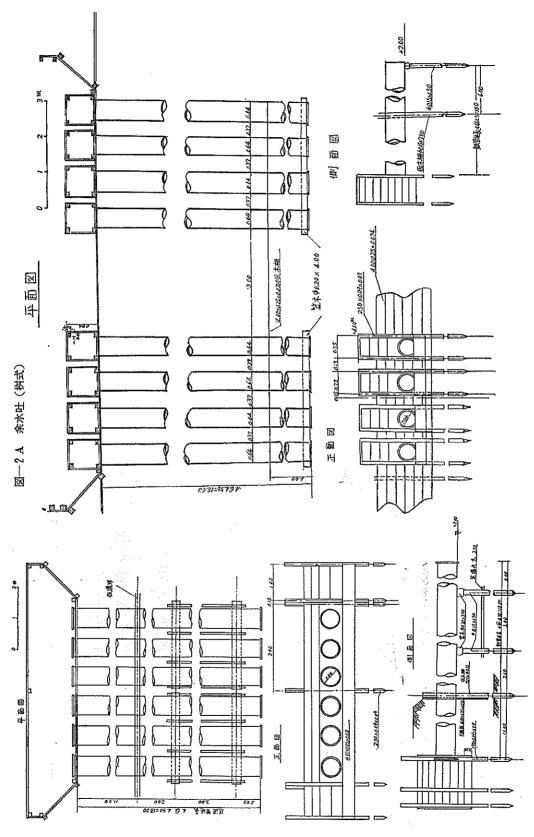
バイブロフロテーションの施工可能深度は7m程度であるが、圧密排水工法としての載荷、ウエルポイント、ディープウエル等が併用されている。

ウエルポイントの施工深度は5~11mである。

コンポーザー工法は砂質土以外に粘性土に対しても, 工場基礎, 鉱石ヤードの基礎改良に使用された 例 がある。

置換え工法は軽量構造物、あるいは軟弱層のらすい場


合に用いられる。道路等では山土を大量に投入して置出 置換を行うこともある。


工業用地の代表的構造物としては第一に油槽があげられる。油槽は不等沈下の許容量によって基礎の設計が定められる。一般にサンドドレーン等による圧密排水工法が施工されることが多く,載荷は盛土,タンクの水張荷重、ウエルポイントにより行われる。斯様な改良を行った後の全体沈下量および不等沈下量の実測例を図一6に示す。この場合は比較的地盤がよく改良後の全体沈下が少いので,不等沈下もその1/2~1/4程度となっている。

特殊な例としてタンクの地盤対策として基礎杭を使用した例を図一7に示す。沈下を最小限にするには基礎杭を使用する以外に方法はないが、大型のタンクでは工費が高く不経済となる。

道路に対する地盤処理としては、置換、押出、サンドドレーン、バイブロフロテーション等の工法が使用されている。図一8に道路の施工例を示す。

鉄道等の軌道敷、水路等の基礎地盤も置換、サンドドレーン、バイブロフロテーション、コンポーザー等の工法が施工される。図一9に水路の施工例を示す。

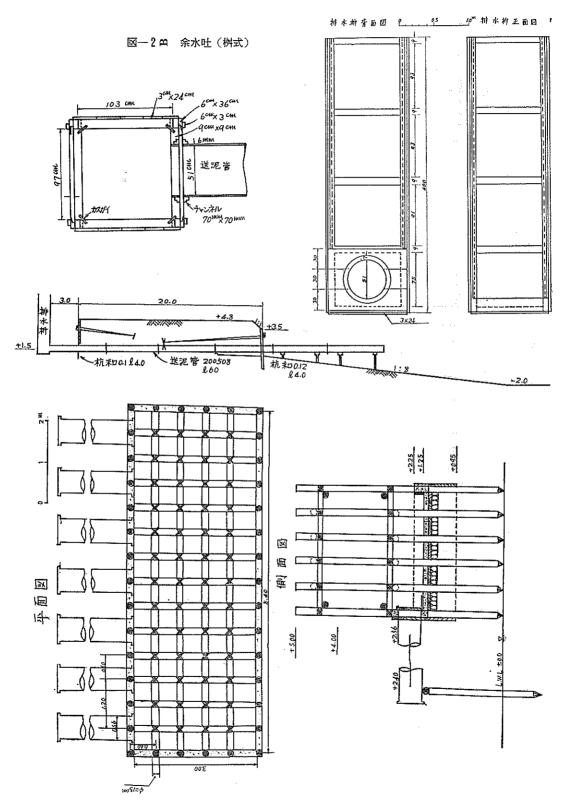
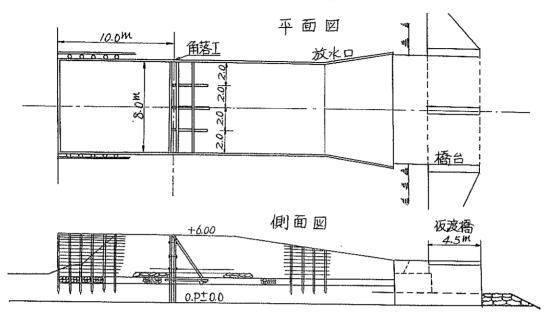



図-2 C 余水吐(溢流式)

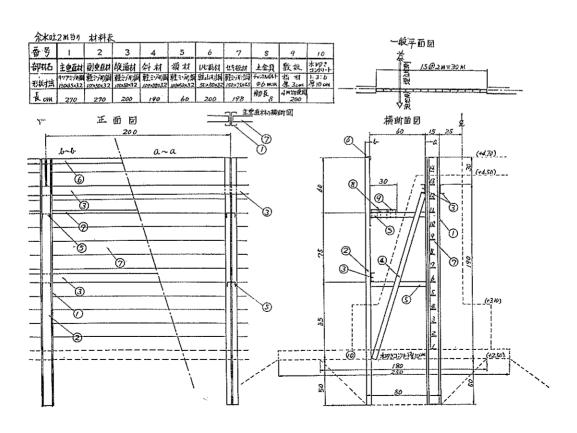


図-2D 余水吐(溢流式) C堤 100^M 325 M 20 11 325H + 3.5 海光工平面図 Š ⊕-0 0 Φ Θ Φ Ð 0 **(** ⊕ Ð ⊕ + S¦2 ф 1014 1014 采叩王 **@ ①** Φ 0 0 **(** ⊕ ⊕ Ð • ⊕ Φ 0 0 0 5 @ 10 =5d 9门答 Ø0.15, L5.40 x3本 松扎太 松板月0.024 引止 #8 .4本概 床コンクリート 厚 0.10 a6a@3 0.90 08 = 7.20 = 1.80 主抗一 Ø 015 & 8.10 本种類學學學 埋立地内 · 茶豆 拉凡太中0.15 R2.70 本が合は4mを120m 水叩部液面コンクリート (一層) 溢流堪板

— 158 —

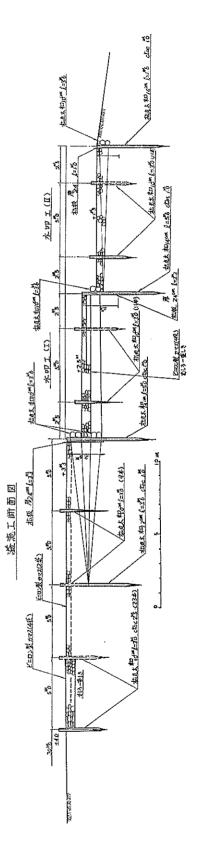
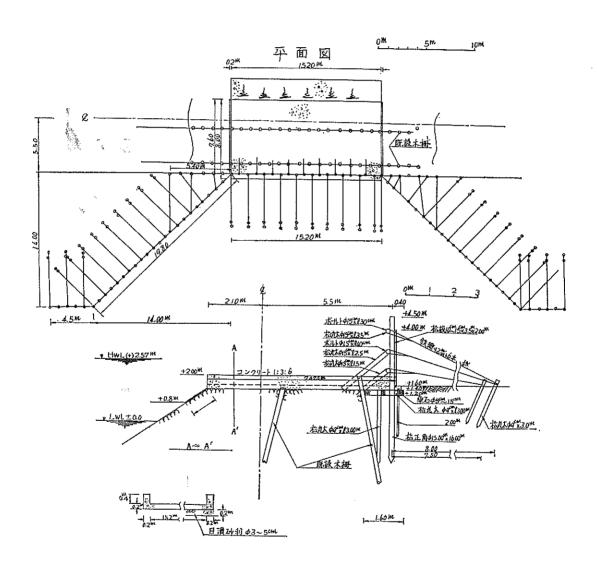
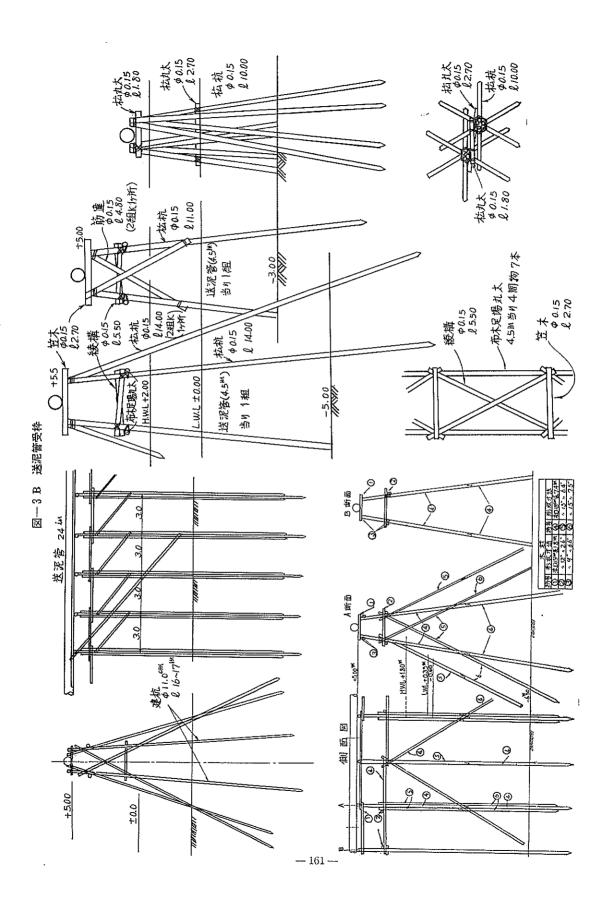
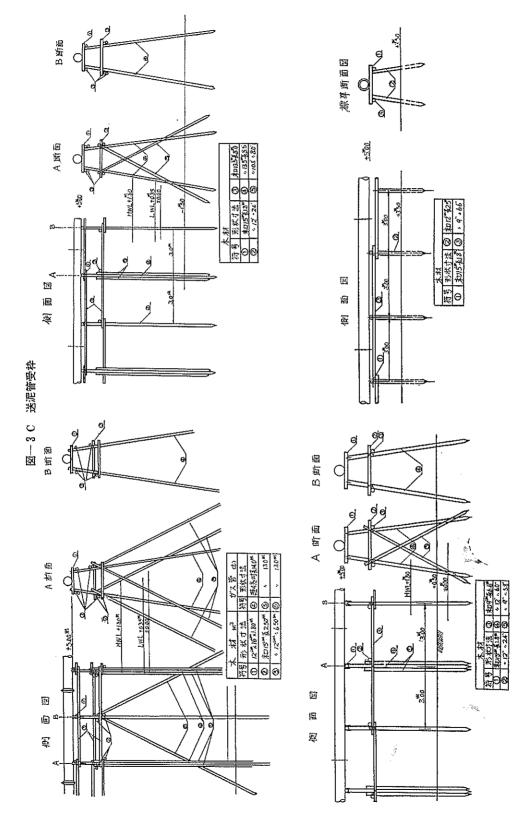





図-2E 余水吐(溢流式)

-- 160 ---

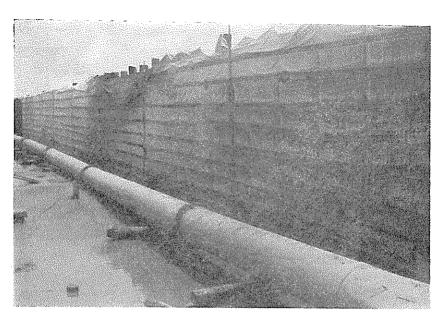


写真-1-a 帆布張木柵 長期に亘り木柵板間より中埋土砂の流失を防ぐ 帆布は 5.2m×5.0m

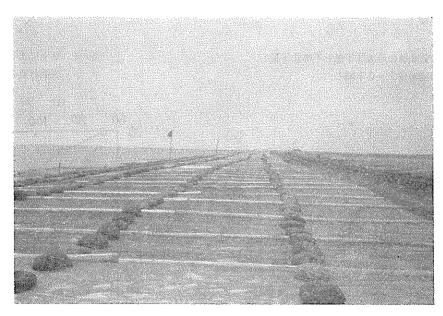
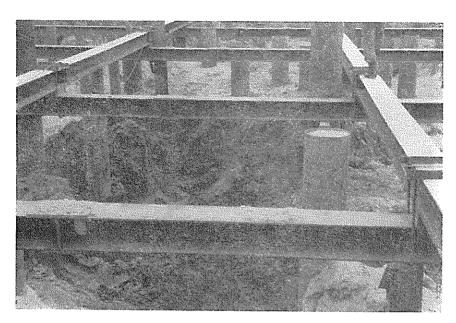



写真-1-b 天端保護用帆布 荒天時の波浪による中埋土砂の流失を防ぐ 帆布は 5.5m×16.0m

写真一2 サンドドレーン施工後の根切工事

図一6 油槽の完成後の最大沈下量と不等沈下量 (使用開始後2~3年間)

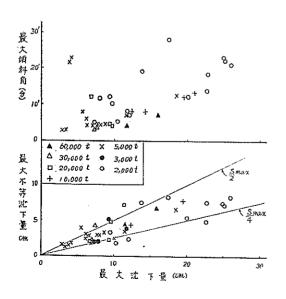
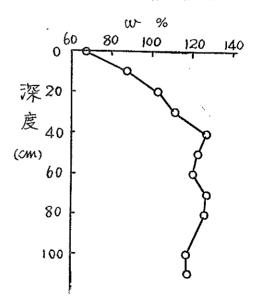
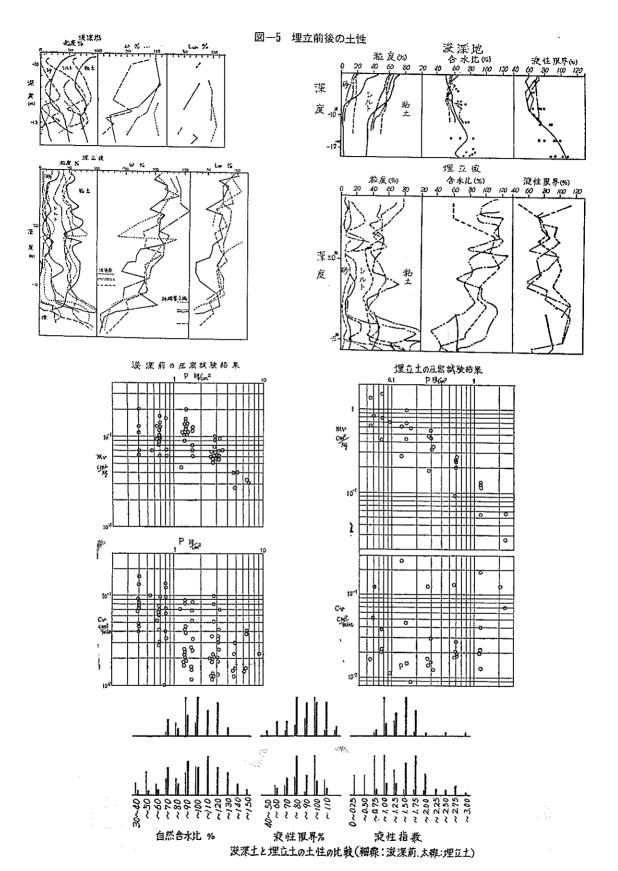




図-4 粘土による埋立土 表面付近の含水比

図一7 油槽に対する杭基礎の使用例

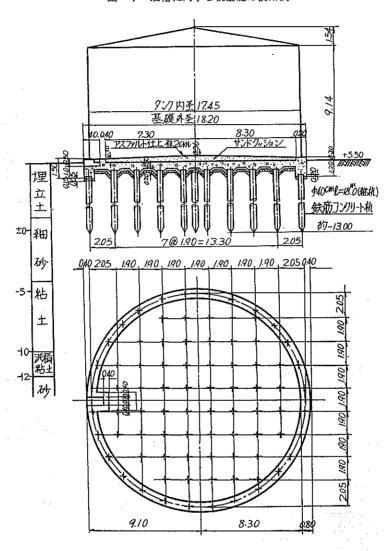
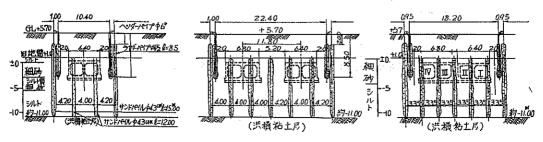
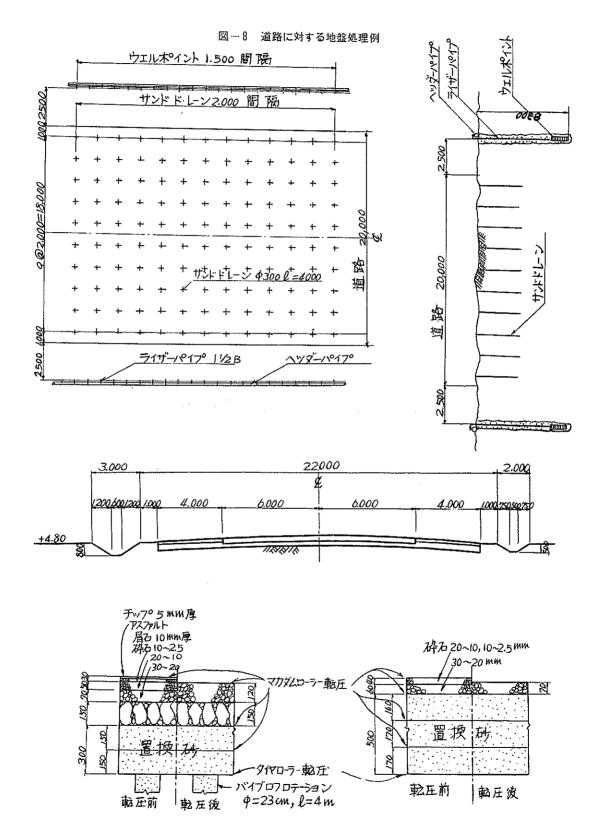




図-9 水路の基礎地盤処理施工例

港 湾 技 研 資 料 No. 18

編集兼発行者 運輸省港湾技術研究所

発 行 所 運輸省港湾技術研究所 横須賀市川間162

印刷所 柿野屋印刷所 横浜市鶴見区鶴見町394