港湾空港技術研究所 資料

TECHNICAL NOTE

OF

THE PORT AND AIRPORT RESEARCH INSTITUTE

No.1242 December 2011

2011 年東北地方太平洋沖地震の地震動に対しての 地盤の液状化挙動に関する考察

- 山崎 浩之
- 後藤 佑介

独立行政法人 港湾空港技術研究所

Independent Administrative Institution, Port and Airport Research Institute, Japan 目

次

要			3
1.	まえ	がき	4
2.	液り	代化予測判定および不規則波に対する補正係数	4
	2.1	粒度・N値法による液状化予測判定法の改良案	4
	2.2	不規則波に対する補正係数	6
3.	粒度	ξ・N値法に関する検討	6
	3.1	塩釜港湾·空港整備事務所(仙台港)	6
	3.2	小名浜港湾事務所(小名浜港)	9
	3.3	千葉港湾事務所(千葉港)	11
	3.4	液状化予測に関する考察	14
4.	不規	見則波に対する補正係数に関する検討	15
	4.1	試験方法	15
	4.2	試験結果	15
	4.3	不規則波に対する補正係数	19
5.	地震	雪謝継続時間の液状化現象に及ぼす影響に関する考察	20
	5.1	液状化の発生に関しての考察	20
	5.2	液状化の程度に関しての考察	21
	5.3	規則波試験からの考察	22
6.	結論	Ì ·····	23
7.	あと	:がき	23
参	考文	献	23

Study on Liquefaction of Soil subjected to Seismic Motion in The 2011 off The Pacific Coast of Tohoku Earthquake

Hiroyuki YAMAZAKI* Yusuke GOTOH**

Synopsis

The continuation time of the seismic motion in the 2011 off the Pacific coast of Tohoku Earthquake was extraordinary long, more than three minutes, which had never been experienced. This paper describes the liquefaction behavior of soil under seismic motions having a long continuation time. The paper includes case studies on the liquefaction prediction method, verification of an empirical equation for the correction factor on the irregularity of seismic wave proposed by authors, and discussions on the effect of the continuation time on liquefaction phenomenon. The main results are follows.

It is revealed that the liquefaction prediction method gives a conservative prediction for seismic motions having a long continuation time and the method is applicable to the practical design.

The empirical equation for the correction factor on the irregularity of seismic motion can estimate the correction factors obtained from the laboratory experiments using the seismic motions having a long continuation time.

When the continuation time becomes long, the degree of liquefaction, that is the magnitude of liquefaction damage, becomes large and the soil behavior becomes less ductile.

Key Words: seismic motion, continuation time, liquefaction, liquefaction prediction.

^{*} Director, Geotechnical Engineering Division

^{**} Researcher of Soil Dynamics Group, Geotechnical Engineering Divisiont

Phone : +81-46-8445054 Fax : +81-46-8440618 e-mail:yamazaki@pari.go.jp

2011年東北地方太平洋沖地震の地震動に対しての

地盤の液状化挙動に関する考察

山﨑 浩之*

後藤 佑介**

要 旨

2011 年東北地方太平洋沖地震での地震動は,継続時間が3分を超える非常に長いもので,過去にない地震動であった.本論文では、このような継続時間の長い地震動に対しての地盤の液状化現象について、現地で観測された地震動を用いて検討を行っている.

検討は、粒度・N 値法による液状化予測判定法の検証のための事例解析、不規則波に対する補正 係数についての著者らの提案式の室内液状化試験による検証、および室内試験結果を用いた液状化 現象に及ぼす継続時間の影響についての考察からなっている.得られた結論は以下のとおりである. ・液状化予測判定手法については、設計で用いるのに妥当な方法であることがわかった.

・不規則波に対する補正係数についての実験式は、試験結果より得られた補正係数とほぼ整合して いた.

・液状化現象に関する考察では、継続時間が長くなると液状化状態における発生ひずみ量が大きくなり、地盤の液状化の程度、すなわち液状化による被害は大きくなり、液状化に対して「ねばり」 がなくなる.特に、密度の小さい緩詰め状態の砂でこの傾向は顕著である.

キーワード:地震動,継続時間,液状化,液状化予測判定法

^{*} 地盤研究領域 領域長

^{**}地盤研究領域 動土質研究チーム研究員

^{〒239-0826} 横須賀市長瀬3-1-1 港湾空港技術研究所

電話:046-844-5054 Fax:046-844-0618 e-mail:yamazaki@pari.go.jp

1. まえがき

2011年東北地方太平洋沖地震では地震動の継続時間が 非常に長く,これが液状化の発生,液状化被害に大きな 影響を及ぼしたことが推察されている¹⁾.

著者らは、地震動波形の液状化発生に及ぼす影響を実験的に検討し、既に港湾空港技術研究所報告²⁾として取りまとめている。そして、有効波数:*nef*を定義して、粒度・N値法による液状化予測判定に波形の影響、すなわち地震動継続時間の影響を取り入れる方法を提案した。また、正弦波による液状化抵抗:*RL20と、*不規則波での液状化抵抗:*RLmaxとの*関係を調べ、不規則波に対する補正係数:*c2と*有効波数*nef*の関係式を提案している。本研究は、上記の液状化予測判定法、不規則波に対する補正係数を、2011年東北地方太平洋沖地震について考察し、あわせて同地震での液状化について考察するものである。

2. 液状化予測判定および不規則波に対する補正係 数

粒度・N値法による液状化予測判定の改良案および不規 則波に対する補正係数について説明する^{2)~5)}.

2.1 粒度・N 値法による液状化予測判定法の改良案

以下に、 粒度・N値法による液状化予測判定法の改良案 を示す.

①粒度による判定

図-1を用いて、粒度による土の分類を行う.図-1は均 等係数の大小に応じて使い分ける.均等係数の大小は *U_c=D₆₀/D₁₀=3.5が目安と*なる.

図-1(a) 液状化の可能性のある範囲(U_c>3.5)

ここに, U_c:均等係数, D₆₀:60%径, D₁₀:有効径(10% 径)である. 粒径加積曲線が「液状化の可能性あり」の 範囲以外に含まれる土は液状化しないと判定する.

粒径加積曲線が「液状化の可能性あり」の範囲にまたが った場合など分類が困難である場合には、粘土分側につ いては繰返し三軸試験による予測・判定法を用いる等の 適切な対応が必要である. 礫分側については、透水係数 が3cm/s以上であることを確認した場合に液状化しないと 判定することができる.

②等価N値,等価加速度による液状化の予測・判定 図-1の「液状化の可能性あり」の範囲に含まれる粒度 の土層については以下の検討を行う.

(a)等価N値 式(1)により等価N値の算定を行う.

 $(N)_{65} = \frac{N - 0.019(\sigma_v' - 65)}{0.0041(\sigma_v' - 65) + 1.0}$

(1)

ここに、 $(N)_{65}$:等価N値, N: 土層の標準貫入試験N値, σ_{v} : 土層の有効上載圧力 (kN/m^2) (等価N値の算定におけ る有効上載圧力は,標準貫入試験を行った時点での地盤 高に基づいて求めることに注意する).

(b)等価加速度

式(2)により等価加速度の算定を行う.これは,地盤の 地震応答計算により求まる最大せん断応力の時刻歴を用 いて,各土層について算定する.

$$\alpha_{eq} = 0.7 \cdot \frac{\tau_{\max}}{\sigma_{v}'} \cdot g \cdot \frac{1}{c_{\alpha}}$$
(2)

$$c_{\alpha} = 5^{-d_1} \cdot n_{ef}^{d_1} \tag{3}$$

$$d_1 = 0.2 - 0.7 \cdot D_r \qquad : \left(D_r \ge \frac{0.2}{0.7} \right)$$
(4)

$$d_1 = 0$$
 : $\left(D_r < \frac{0.2}{0.7}\right)$ (5)

$$D_r = 0.16 \cdot \sqrt{\frac{170 \cdot N}{70 + \sigma_v'}}$$
(6)

ここに、 a_{eq} :等価加速度(Gal)、 τ_{max} :最大せん断応力 (kN/m²)、g:重力加速度(980Gal)、 c_a :波形補正係数. 後述の塑性指数によるN値の補正を行い液状化の予測・判 定を行う場合には、式(3)に d_1 =-0.3を代入して c_a を求める. n_{ef} :有効波数. 図-2に示すように、せん断応力の時刻歴 において最大せん断応力の6割以上の波頭の数の半分. D_r :相対密度.式(6)を用いてN値とN値計測時の有効上載 圧から求めてよい. σ_v ':有効上載圧(kN/m²)(等価加速度 の算定における有効上載圧は地震時の地盤高に基づいて 求め、相対密度の算定における有効上載圧はN値計測時の 地盤高に基づいて求めることに注意する必要がある.)

図-2 有効波数 n_{ef}の定義

(c)等価N値と等価加速度による予測・判定
 対象土層の等価N値と等価加速度が、図-3に示すI~IV

のどの範囲にあるかを判断する.

図-3 等価 N 値と等価加速度による土層の区分

③細粒分を多く含む場合のN値の補正と予測・判定 (a)細粒分(粒径が75µm以下の成分)を5%以上含むも のについては,等価N値の補正を行い,補正後の等価N値 を用いて対象土層が図-3に示したI~IVのどの範囲にあ るかを判定する. 等価N値の補正は, 下記の3ケースの場 合に分けて行う.

1) ケース1: 塑性指数が10未満又は得られていない場合, あるいは細粒分含有率が15%未満

2) ケース2: 塑性指数が10以上20未満, かつ, 細粒分含 有率が15%以上

3) ケース3: 塑性指数が20以上,かつ,細粒分含有率が 15%以上

(b) ケース1: 塑性指数が10未満又は得られていない場合, あるいは細粒分含有率が15%未満の場合

等価N値(補正後)=(N)₆₅/c_Nとする.補正係数c_Nは図-4で 与えられる.得られた等価N値(補正後)と等価加速度から 図-3を用いて予測判定する.

図-4 細粒分含有率に応じた等価N値の補正係数

(c)ケース2: 塑性指数が10以上20未満, かつ, 細粒分 含有率が15%以上の場合

等価N値(補正後)={(*N*)₆₅/0.5)}及び{*N*+Δ*N*}とし,以下の 場合に応じて判定する.

ここでΔNは以下のように与えられる.

$$\Delta N = 8 + 0.4 \cdot \left(I_{p} - 10 \right) \tag{7}$$

1) {*N*+Δ*N*}がIの範囲にある場合:Iと判定する.

2) {*N*+Δ*N*}がIIの範囲にある場合:IIと判定する.

3) {*N*+Δ*N*}がIII又はIVの範囲にあり、かつ、{(*N*)₆₅/0.5}}

がI, II又はIIIの範囲にある場合:IIIと判定する.

4) {*N*+Δ*N*}がIII又はIVの範囲にあり、かつ、{(*N*)₆₅/0.5}} がIVの範囲にある場合: IVと判定する.

(d)ケース3:塑性指数が20以上,かつ,細粒分含有率が15%以上の場合

等価N値(補正後)={*N*+Δ*N*}とする. 等価N値(補正後), 等価加速度により判定する.

④液状化の予測・判定

②,③において行ったI~IVの土層の分類に応じて,I の場合には液状化する,Ⅱの場合には液状化する可能性 が高い,Ⅲの場合には液状化しない可能性が高い,Ⅳの 場合には液状化しない,と予測する.

2.2 不規則波に対する補正係数

不規則波に対する補正係数c₂とは,不規則波載荷での液状化抵抗: R_{Lmax}を,正弦波載荷での液状化抵抗: R_{L20}で除したもので,次式で定義されている.

$$c_2 = \frac{R_{\rm Lmax}}{R_{\rm L20}} \tag{8}$$

ここに、 c_2 は不規則波に対する補正係数、 R_{Lmax} は不規則 波での液状化抵抗、 R_{L20} は正弦波での液状化抵抗である.

通常,繰返し三軸試験では正弦波で液状化試験が行われ,液状化抵抗は繰返し回数が20回で液状化する場合の繰返しせん断応力比, *R*_{L20}として求められる.実際の地震動は正弦波でなく不規則波なので補正が必要となり,そのための補正係数が不規則波に対する補正係数*c*₂である. 不規則波に対する補正係数については,いくつかの研究があり^{例えば7)},著者らは以下のものを提案している²⁾.

図−5 不規則波に対する補正係数 c₂と有効波数 n_{ef}, 相対密度 D_rの関係

 $c_2 = c_{20} \cdot (n_{ef})^{c_{21}} \tag{9}$

$$D_r \ge 2/7$$
: $c_{20} = -0.2 + 4 \cdot D_r$ (10)

 $c_{21} = 0.2 - 0.7 \cdot D_r \tag{11}$

ここで、式(11)において c_{21} は正の値をとると、式(9)において n_{ef} が大きくなると c_2 が大きくなるという矛盾が生じる. そこで、適用範囲を $D_r \ge 2/7$ とした. 図-5は、式(9)から得られる、 c_2 と相対密度、有効波数の関係である.

粘度・N値法に関する検討

2011年東北地方太平洋沖地震で,観測された基盤加速 度データ⁸⁾を用いて,2.章で示した粒度・N値法の検証を 行う.対象とした観測地点は,東北地方整備局塩釜港湾・ 空港整備事務所,小名浜港湾事務所,関東地方整備局千 葉港湾事務所の3地点である.このうち,小名浜港湾事務 所が液状化地点,他の2事務所は非液状化地点である.液 状化,非液状化の確認は,現地の地盤状況(噴砂の有無 など)や地表面で観測された加速度記録波形で判断した.

3.1 塩釜港湾·空港整備事務所(仙台港)

地震計設置地点の土質柱状図と粒径加積曲線を図-6に 示す⁹⁾.

図-6から、観測地点の地盤は工学的基盤までが、細砂 ~中砂の砂質土でなっており、地表面近くでN値がN=7と 若干小さく、GL.-3~6mにかけてはN=18~29と大きな値 で、GL.-7m付近で工学的基盤が現れている.

細粒分含有率は、地表面近くのN値の小さいところで *F_c*=15%と細粒分のやや多い層があるが、その下の層は *F_c*=5%程度の細粒分の少ない層である.

PS検層の結果からは、砂質土層はS波速度が中砂のところで V_s =130m/s、細~中砂層で V_s =180m/sとなっており、工学的基盤では V_s =820m/sとなっている.

表-1に上記のデータから作成した,応答計算(SHAKE)の入力定数を示す.

粒径加積曲線(仙台港) 図-6(b)

表-1 入力定数(仙台港)

	仙台	地下水位:G.L1.7m		
深さ G.Lm	N値	細粒分含有率 Fc(%)	湿潤密度 ρ _t (t/m³)	せん断波速度 Vs(m/s)
1.7	7	15.8	1.75	130
2.0	7	15.8	1.75	130
3.0	19	6.9	1.75	130
4.1	18	3.8	1.75	130
5.0	29	7.4	1.85	180
6.0	27	6	1.85	180
6.7	2	2.4	1.85	180
7.0	FO		0.40	0.00

図-7(a) 基盤加速度 EW(仙台港)

図-7(d) 地表加速度 NS(仙台港)

図-7に、基盤加速度記録と地表面加速度記録を示す. 地震計は地表面GL.0mと工学的基盤内のGL.-10.5mに設 置されている.

図-7(a), (b)から基盤加速度はEW方向, NS方向のいず れも2つ山の波形で、2つ目の山に加速度の最大値がある。 最大加速度はEW方向が252Gal, NS方向が220Galとなって おり, EW方向が若干大きな値である.

図-7(c),(d)から地表面加速度も基盤と同じく2つ山の 波形で、最大加速度は2つ目の山にある.地表面での最大 加速度はEW方向が-403Gal, NS方向が-559Galと2~3倍に 増幅しており、またNS方向が大きな値となっている.

上述した地盤条件と基盤加速度を用いて, 液状化の予 測を行った.図-8に粒度・N値法による液状化の予測結果, 図-9に液状化安全率FLの深度分布を、EW波、NS波につい て示す.図-8,9には現行の方法による結果を●プロット で,波形による補正を行う改良案の結果を〇プロットで 示す.また,液状化安全率FLは以下のように求めたもの である.

液状化安全率は,対象土層の等価N値に対して,その土 層が液状化するか否かの限界の等価加速度を図-8のⅡと

図-8(a) 液状化予測結果(仙台港: EW 波)

図-8(b) 液状化予測結果(仙台港:NS波)

IIIの境界のラインから求め、これをその土層の等価加速 度で除したものである.また、 $F_L \dot{m}^2$ 以上のものは $F_L = 2 \ge$ してプロットし、等価N値が16以上のものは安全率が定ま らないので $F_L = 2 \ge$ している.液状化安全率が $F_L = 1/1.5$ が図 -8、9のI と IIの境界、 $F_L = 1$ が II と IIIの境界、 $F_L = 1.5$ が III とIVの境界に相当する.

波形による補正の有無の影響は、図-8から、波形補正 を行った方が、等価加速度が小さくなるプロットとなっ て表れている.これは、有効波数を求めた例として、図 -10にEW波を用いたGL.-1.85mとGL.-4.55mの土層の応答 計算結果を示すが、応答計算結果から得られた有効波

数がEW波を用いたものでは n_{ef} =1~4.5,また,NS波を用いたものでは n_{ef} =3.5~6.5となり,大部分が n_{ef} =5よりも小さくなったからである.すなわち,式(3)で算定される波形補正係数 c_{α} は,有効波数が5より小さくなると1よりも大きくなり,式(2)において等価加速度が小さくなる補正となるからである.また,図-10で示されたように,基盤加速度が同じでも,土層ごとにせん断応力の時刻歴は異なったものとなり,有効波数の値は土層ごとに異なる.

液状化予測については、図-8、9から、1点(GL-6.7mの層)だけが、I(液状化する)の領域で、 F_L =0.1程度で 非常に低くなっている.その他は、IVあるいはIIIの領域 にプロットされ、液状化安全率も F_L =2となっている.ま た、波形補正の有無で予測に大きな違いは見られない結 果となっている.

現地では、噴砂等の液状化の痕跡は報告されていない. ただし、津波が遡上しておりその影響で痕跡が失われた 可能性がある.また、図-7で示した地表面加速度波形を 基盤加速度波形と比較すると、液状化の発生を示すよう な波形の大きな乱れは認められない.これらのことから、 現地の地盤は液状化していないと思われる.

しかし液状化の予測結果は、1層だけ液状化の可能性を 示しており、現地と矛盾している.この点については後 述の3.4節で考察する.

図-10(a) 応答計算結果と有効波数:GL.-1.85m

図-10(b) 応答計算結果と有効波数:G.L.-4.55m

3.2 小名浜港湾事務所(小名浜港)

地震計設置地点の土質柱状図と粒径加積曲線を図-10 に示す¹⁰.

図−11から, 観測地点の地盤は工学的基盤までが, 盛 土・瓦礫と中砂の砂質土でなっており, 地表面近くでN値 が*N*=7と若干小さく, GL.-3~6mにかけては*N*=36~50と 大きな値で, GL.-7mで工学的基盤が現れている.

細粒分含有率はGL.-4mまでは*F_c*=5~10%と小さいが, その下のGL.-4~-6mの層は*F_c*=15~30%程度の細粒分の 多い層である.

PS検層の結果から、S波速度は、地表からGL.-3.5mまで $がV_s$ =100m/s、GL.-3.5~-7mで V_s =150m/sとなっており、 GL.-7m以深の工学的基盤では V_s =700m/sとなっている.

表-2に上記のデータから作成した,応答計算(SHAKE) の入力定数を示す.

図-12に,基盤加速度記録と地表面加速度記録を示す. 地震計は地表面GL.0mと工学的基盤内のGL.-11.05mに設置されている.

図-12(a), (b)から,最大加速度はEW方向が173Gal, NS方向が198Galとなっており,NS方向が大きな値である.

図-12(c), (d)から,地表面での最大加速度はEW方向 が1247Gal,NS方向が-974GalとEW方向が大きな値となっ ており,基盤加速度と比較すると5~7倍の非常に大きな 値に増幅している.

図-11(c) 粒径加積曲線(小名浜港)

	小名浜	地下水位:G.L1.3m		
深さ	N店	細粒分含有率	湿潤密度	せん断波速度
G.Lm		Fc(%)	$\rho_{\rm t}({\rm t/m^3})$	Vs(m/s)
1.3	7	5.5	1.80	100
2.0	7	5.5	2.00	100
3.0	36	10.6	2.00	150
4.0	50	7.5	2.00	150
5.0	37	30.4	2.00	300
0.0	4.0	45.0	0.00	000

2 00

2 00

300

700

70

8.0

50

50

表-2 入力定数(小名浜港)

図-12(b) 基盤加速度 NS(小名浜港)

図-12(d) 地表加速度 NS (小名浜港)

上述した地盤条件と基盤加速度を用いて,液状化の予測を行った.図-13に粒度・N値法による液状化の予測結果,図-14に液状化安全率F_Lの深度分布を,EW波,NS波について示す.

波形による補正の有無の影響は、図-13, 14から,波形 補正を行った方が等価加速度は大きくなり,前述した仙 台港の事例とは逆の傾向である.これは,応答計算結果 から得られた有効波数が,EW波を用いたものでは n_{ef} =14 ~18,NS波を用いたものは n_{ef} =11.5~17で,すべてが n_{ef} =5 よりも大きくなり,波形補正係数 c_{α} が1よりも小さくなっ たからである.

液状化予測については、図-13,14から、地下水位付近の1点(GL-1.3~-2mの層)だけが、I(液状化する)の領域で、液状化安全率もF_L=0.5程度で低い値になっている. その他は、すべてIVの領域にプロットされ、液状化安全率もF_L=2となっている.波形補正の有無による液状化予 測の差異に関しては、等価加速度に比較的大きな違いが でているが、液状化の有無の予測については同じ予測結 果となっている.

現地の状況は、津波の影響などもあり噴砂等の確認の 報告はないが、図-12で示した地表面加速度波形において、 スパイク状の加速度応答が記録されている.これは、野 津らの指摘¹⁾のように、サイクリックモビリティの影響 であり、液状化が発生した層があると考えられる.

液状化の予測結果は、地下水位付近の1層だけが液状化の可能性を示しており、この層が液状化してサイクリックモビィティの挙動を示し、図-12の地表面加速度応答になったといえる.

図-13(a) 液状化予測結果(小名浜港: EW 波)

図-13(b) 液状化予測結果(小名浜港:NS波)

3.3 千葉港湾事務所(千葉港)

地震計設置地点の土質柱状図と粒径加積曲線を図-15 に示す¹¹⁾.

図-15から,観測地点の地盤は,地表面からGL-1.5mま でが細砂による埋め土,GL-1.5~-12mが細砂,GL-12~ -18mがシルト質細砂~粘土などの互層,GL-18~-25mが 一部シルト質細砂を挟んだ細砂,GL.-25~-30mがシルト 質粘土,GL.-30.5mにシルト混じり細砂を挟み,GL.-31m に細砂による工学的基盤が現れている.

N値については、上部細砂層は地表面からGL.-4mまで はN=2~4と小さく、GL.-4~-8mでN=13~21と比較的大き くなり、GL.-8~-12mでN=3~8の値になっている.GL.-12 ~-18mのシルト質細砂~粘土の互層は、N=1~2と非常に 小さい値である.GL.-18~-25mの下部細砂層は、N=10~ 32の範囲でばらついている.GL.-25~-30mのシルト質粘 土層ではN=4程度の値となり、これ以深でN=50以上の工 学的基盤となっている.

細粒分含有率は、上部細砂層のみで調べられており、 下部のシルト質細砂層との境界部を除くと、*F_c*=10%以下 である.

PS検層の結果から、S波速度は、地表からGL.-3.4mまで が V_s =120m/s、GL.-3.4~-7.9mで V_s =220m/s、GL.-7.9~ -11.7mで V_s =200m/s、GL.-11.7~-17.5mで V_s =120m/s、 GL.-17.5~-25.6mで V_s =290m/s、GL.-25.6~-29.9mで V_s =210m/sとなっており、GL.-29.9m以深の工学的基盤で は V_s =420m/sとなっている.

表-3に上記のデータから作成した,応答計算(SHAKE) の入力定数を示す.

図-15(c) 粒径加積曲線:GL.-1.15~6.45m (千葉港)

図-15(d) 粒径加積曲線:GL.-7.15~12.59m(千葉港)

م م ب م الابار جو ال						
	千葉			<u>地下水位:G.L2.2m</u>		
深さ	N値	細粒分含有率	湿潤密度	せん断波速度		
G.Lm		Fc(%)	$\rho_{\rm t}({\rm t/m^3})$	Vs(m∕s)		
1.0	3	19.6	1.80	120		
2.2	3	19.6	1.80	120		
3.0	2	13.1	1.80	220		
4.0	4	10.1	1.80	220		
5.0	13	6.5	1.80	220		
6.0	23	4.3	1.80	220		
7.0	21	7	1.80	220		
8.0	21	10.4	1.80	200		
9.0	7	10.6	1.80	200		
10.0	8	9.3	1.80	200		
11.0	5	11.6	1.80	200		
12.0	3	21	1.80	200		
13.0	1	44.1	1.60	120		
14.0	1		1.60	120		
15.0	1		1.60	120		
16.0	1		1.60	120		
17.0	1		1.60	120		
18.0	2		1.80	290		
19.0	26		1.80	290		
20.0	11		1.80	290		
22.0	12		1.80	290		
26.0	4		1.80	290		
30.0	45		1.60	210		
35.0	50		1.90	420		
38.0	50		1.90	420		

表-3 入力定数(千葉港)

図-16(b) 基盤加速度 NS(千葉港)

図-16(d) 地表加速度 NS (千葉港)

図-16に,基盤加速度記録と地表面加速度記録を示す. 地震計は地表面GL.0mと工学的基盤内のGL.-37.82mに設置されている.

図-16(a), (b)から,最大加速度はEW方向が-63Gal, NS方向が-58Galとなっており,EW方向が大きな値である.

図-16(c), (d)から,地表面最大加速度はEW方向が 107Gal,NS方向が124GalとNS方向が大きな値となってお り,基盤加速度と比較すると2倍程度の値に増幅している.

上述した地盤条件と基盤加速度を用いて,液状化の予測を行った.図-17に粒度・N値法による液状化の予測結果,図-18に液状化安全率F_Lの深度分布を,EW波,NS波について示す.なお,液状化の予測は上部細砂層(GL.-2.5~-12m)について行っている.

波形による補正の有無の影響は、図-17,18から、NS 波を用いたものは波形補正を行った方が等価加速度は大 きくなり、前述した小名浜港の事例と同じ傾向である. しかし、EW波を用いたものは波形補正の影響はほとんど 表れていない.これは、応答計算結果から得られた有効 波数が、EW波を用いたものではn_{ef}=4.5~5で、波形補正係 数c_aが1あるいは1に近い値になったからである.

液状化予測については、図-17,18から、地下水位付近 のGL.-3~-4mがII(液状化する可能性が高い)の領域で、 液状化安全率は F_L =0.9程度、GL.-11~-12mがI(液状化す る)、II(液状化する可能性が高い)の領域で、液状化安 全率も F_L =0.4~0.7で低い値になっている.その他は、III、 IVの領域にプロットされ、液状化安全率は F_L =1以上とな っている.また、仙台港、小名浜港と同様に、波形補正 の有無で液状化の予測結果に大きな違いは見られない.

現地の状況は、噴砂等の液状化の痕跡の報告はなく, また図-16で示した地表面加速度波形を基盤加速度波形 と比較すると、液状化の発生を示すような波形の大きな 乱れは認められない.これらのことから、現地の地盤は 液状化していないと思われる.

液状化の予測結果は、上部細砂層の浅部と深部で液状 化の可能性を示しており、現地と矛盾した結果となって いる.この矛盾点については、仙台港と同様に3.4節で考 察する.

図-17(a) 液状化予測結果(千葉港: EW 波)

図-17(b) 液状化予測結果(千葉港:NS波)

3.4 液状化予測に関する考察

前節3.1~3.3で,仙台港,小名浜港,千葉港の地震計 設置地点の液状化予測を行った.現地で実際に液状化が 発生したと思われるのは,小名浜港の観測地点で,他の2 地点については液状化の発生は認められていない.これ に対して,液状化予測の結果の対応は以下の通りであった.

仙台港では局所的にN値の小さい層があり,薄層ではあ るが液状化すると予測され,現地の観察と矛盾した.

小名浜港では,地下水付近の層が液状化すると予測さ れ,現地の観測結果と整合した.

千葉港では、地下水位付近、およびやや深い位置の層 が液状化の可能性がある、と予測され現地の観測と矛盾 した.

矛盾した予測結果の仙台港と千葉港については,安全 側であるので,設計上は問題ないと思われるが,以下の ことが原因,あるいは課題として残される.

①仙台港についての矛盾の原因は2つ考えられる.1つは、 土質調査で得られた対象層のN値が局所的に小さな値で あって、平面的に見た場合に対象土層の代表値になって いないことが考えられる.2つ目は、平面的な広がりはあ るが、薄層であったために地盤全体の液状化に影響を及 ぼさなかった.あるいは、地表面にまで液状化の影響が 現れなかった.原因が後者であったのであれば、薄層の 液状化が地盤全体の液状化に及ぼす影響等を定量的に評 価する方法が必要といえる.

②千葉港の事例では、等価N値の小さい土層が、等価加速

度が100Gal程度の小さい揺れに対して液状化するという 予測になったところが,現地の観測と矛盾したところで ある. 粒度・N値法で用いる図-3の判定チャートは,等価 N値と等価加速度の関係(限界N値の関係)が原点を通り, N値が小さい場合には,等価加速度が数Gal程度の非常に 小さい揺れでも液状化するというものである.この点が, 予測結果が現地の観測と矛盾した原因の1つであると思 われる.正弦波を用いた繰返し単純せん断試験による液 状化試験を行うと,繰返し載荷を何回行っても液状化を 起こさないという,液状化抵抗の下限値がある.緩詰め 状態の砂であっても,下限値は繰返しせん断応力比で0.1 程度はある.この値は正弦波に対しての液状化抵抗であ るので,例えば不規則波に対する補正係数として図-5で のD_r=50%に対する平均的な値, c₂=1.4を用いて,不規則 波での液状化抵抗(最大せん断応力比)に換算すると,

 R_{Lmax} =0.14が得られる. この R_{Lmax} =0.14を式(2)の(τ_{max}/σ_v)の項に代入し,波形補正係数を c_a =1とすると,100Gal程度の値が得られる. これは,下限値0.1を等価加速度に換算すると,100Gal程度の等価加速度に対応する液状化抵抗になることを意味するものである. したがって,等価N値と等価加速度の関係(限界N値の関係)は原点を通るような関係ではなく,例えば等価加速度が100Gal程度のところを切片とするような関係である可能性がある. 今後は,等価N値が小さい土を対象に,この点について検討する必要がある.

事例解析での矛盾した予測は安全側の誤差であるので、 粒度・N値法を継続時間の長い地震動に対して適用しても 問題はないと思われる.ただし、適用に際しては、上述 した課題が残されており、また、これは、継続時間の長 い地震動に対してだけでなく、通常の地震動に対しても 同様と考えられ、粒度・N値法の適用に際しては常に留意 しなければならない点であるといえる.

4. 不規則波に対する補正係数に関する検討

仙台港,小名浜港および千葉港で観測された基盤加速 度データを用いて,不規則波に対する液状化抵抗の補正 係数を検討する.検討は,各基盤加速度のNS方向の加速 度記録を,せん断応力の時刻歴波形として行った.

4.1 試験方法

液状化試験は繰返し単純せん断試験装置を用いて行った.単純せん断試験装置は高さ4cm,直径10cmの供試体 に対して試験が出来るものである.供試体は,1枚4mmの アルミ製リングを10枚積み重ねた,層状のリング内に作 製される.

供試体は、リング内に乾燥状態の相馬砂(土粒子密度 $\rho_s=2.64g/cm^3$,最大間隙比 $e_{max}=1.20$,最小間隙比 $e_{min}=0.71$) をスプーンで投入しながらリング側方を打撃し、所定の 密度になるように作製した.密度は相対密度が $D_r=50,80\%$ の2種類である.供試体作製後,鉛直応力が σ_{v0} '=98kN/m² のK₀状態の圧密を行った.圧密終了後,鉛直変位が発生 しないように制御し、等体積条件で所定のせん断応力波 形を載荷した.

せん断応力の波形は、図-7(b)の仙台波、図-12(b)の小 名浜波、図-16(b)の千葉波、および、旧基準で用いられ ていた1968年十勝沖地震での八戸波³⁾と周期10秒の正弦 波である.荷重制御の精度を高くするために、観測され た波形の時間軸を仙台波、小名浜波、千葉波については 10倍、八戸波については5倍にして載荷している.

そして,正弦波載荷では繰返しせん断応力比と液状化 に至るまでの繰返し回数の関係を,不規則波載荷では最 大せん断応力比と発生する両振幅せん断ひずみの関係を 調べた.

4.2 試験結果

(1)正弦波載荷

正弦波載荷による相馬砂の液状化抵抗曲線を図-19に 示す.図-19の液状化抵抗曲線は、繰返し載荷中の両振幅 せん断ひずみがy_{DA}=7.5%に達したときを液状化の発生と して求めたものである.なお、液状化状態を両振幅せん 断ひずみy_{DA}=7.5%としているのは、繰返し三軸試験では 両振幅軸ひずみが5%の状態を液状化として定義するのが 一般的で^{例えば6},これを両振幅せん断ひずみに直すと7.5% になるからである.図-19において、●プロットが相対密 度*D_r*=50%、▲プロットが相対密度*D_r*=80%の結果で、図中 の曲線は各プロットを累乗関数で近似したものである.

正弦波での液状化抵抗は, 繰返し回数がN=20回で液状 化する繰返しせん断応力比: *R*_{L20}として定義される. 図-19 から, *D_r*=50%では*R*_{L20}=0.103, *D_r*=80%では*R*_{L20}=0.128が得 られた.

図-19 液状化抵抗曲線(正弦波)

(2)不規則波載荷

各不規則波載荷でのせん断応力,有効応力,せん断ひ ずみの時刻歴の一例を,図-20~23に示す.

図-20(a), 21(a), 22(a)と, 図-7(b), 12(b), 16(b)を 比較すると,試験でのせん断応力の時刻歴は,後半で荷 重が小さめにかかっていることが分かる.これは,図 -7(b), 12(b), 16(b)の各基盤加速度波形を入力したので あるが,載荷中に有効応力が低下し供試体に大きなせん 断ひずみが発生すると,荷重制御が困難となり荷重がか かりきらなくなるからである.

仙台で記録された地震動波形は、図-20(a)で示したよ うな、2つ山の波形で、過去にない時刻歴波形である.そ こで、図-20についてやや詳しく見てみる、図-20(a)のせ ん断応力の時刻歴と図-20(b)の有効応力の時刻歴から, せん断応力の時刻歴が1つ目の山のピーク荷重のところ で,有効応力が大きく減少し,その後は一定値を保ち, 再び2つ目の山のピーク荷重のところで大幅に有効応力 が減少して液状化に至っていることがわかる. 図-20(a) のせん断応力の時刻歴と図-20(c)のせん断ひずみの時刻 歴から、せん断応力の時刻歴の1つ目の山ではひずみはほ とんど発生せず、2つ目の山で大きなひずみが発生してい ることがわかる.最大せん断応力の設定をさらに大きく すれば、1つ目の山でも有効応力はゼロとなって液状化し、 大きなひずみは発生するが,図-20(b), (c)で示した有効 応力とせん断ひずみの時刻歴は、図-20(a)のような2つ山 の波形に対しての特徴的な土の挙動であると考える.

また、小名浜港においては図-12(c)、(d)で示したよう に、加速度応答記録にサイクリックモビリティの影響が 見られた.そこで、試験で用いた試料や密度などの試験 条件は現地のものとは異なっているが、小名浜波でのサ イクリックモビリティについて調べたのが図-24である. 図-24は、図-21のデータから有効応力経路と応力ひずみ 関係を求めたものである.図-24中で示すように、せん断 応力の載荷とともに有効応力が回復し、そしてせん断剛 性が回復するサイクリックモビリティの現象が確認でき る.

図-25に不規則波載荷での最大せん断応力比と,発生した最大両振幅せん断ひずみ関係を示す.図-25には各プロットを累乗関数で近似した線,および各不規則波の有効波数n_{ef}(実際に供試体に載荷され計測されたせん断応力の時刻歴から求めたものの平均値)を示してある.

図-25から、相対密度が同じでも、波形が異なると最大 せん断応力比と発生する両振幅せん断ひずみ関係は大き く異なり、有効波数が大きくなると小さなせん断応力比 でも大きなせん断ひずみが発生することが分かる.

不規則波載荷での液状化抵抗 R_{Lmax} は、最大両振幅せん 断ひずみが、 γ_{DA} =7.5%になる場合の最大せん断応力比と して定義される. 図-25から、各波の液状化抵抗は相対密 度が D_r =50%の場合、仙台波で R_{Lmax} =0.165、小名浜波で R_{Lmax} =0.134, 千葉波で R_{Lmax} =0.126, および十勝沖地震での 八戸波で R_{Lmax} =0.195となった. 相対密度が D_r =80%の場合 には, 仙台波で R_{Lmax} =0.246, 小名浜波で R_{Lmax} =0.181, 千葉 波で R_{Lmax} =0.174, および十勝沖地震での八戸波で R_{Lmax} =0.370となった.

図-26には、液状化抵抗と有効波数の関係を示す.図-26 から、液状化抵抗は有効波数が大きくなると小さくなり、 相対密度が大きな方が大きな値となっている.

図-25(a) 最大せん断応力比と最大両振幅せん断ひ ずみの関係(D_r=50%)

図-25(b) 最大せん断応力比と最大両振幅せん断ひ ずみの関係(*D*,=80%)

図-26 不規則波での液状化抵抗 *R_{Lmax}* と有効波数 *n_{ef}*の関係

4.3 不規則波に対する補正係数

前述の正弦波試験,不規則波試験で得られた液状化抵 抗 R_{L20} と R_{Lmax} から不規則波に対する補正係数 c_2 を式(8)に より求めた.得られた不規則波に対する補正係数 c_2 を正弦 波での液状化抵抗 R_{L20} ,不規則波での液状化抵抗 R_{Lmax} ,有 効波数 n_{ef} とともに表-4に示す.図-27は,不規則波に対す る補正係数 c_2 と有効波数 n_{ef} の関係を調べ,式(9)で示した 著者らの提案式と比較したものである.図-27中には,著 者らの実施した過去の実験データ²⁾,不規則波を衝撃型と 振動型に分け石原により提案された c_2 の値⁷⁾も示している.

図-27から、今回の地震動波形に対するc₂の実験結果と 提案式で求めたc₂を比較すると、提案式は相対密度 *D_r*=80%でやや過小評価しているが、実験結果と整合性の ある対応で提案式は妥当性があるといえる.また、地震 動継続時間の液状化の発生におよぼす影響は、著者らの 提案した有効波数*n_{ef}をパラメータと*して定量的に評価で きるといえる.

表-4 不規則波に対する補正係数

相対密度(%)	波形名	R _{L20}	R _{Lmax}	c ₂	n _{ef}
	仙台波		0.165	1.602	2.5
50	小名浜波	0.103	0.134	1.301	11.5
50	千葉波		0.126	1.223	13.5
	十勝沖地震−八戸波		0.195	1.893	1.5
	仙台波		0.246	1.922	3.0
00	小名浜波	0 1 0 0	0.181	1.414	13.0
80	千葉波	0.128	0.174	1.359	13.5
	十勝沖地震-八戸波		0.370	2.891	1.5

図-27(a) 不規則波に対する補正係数 c₂と有効波数 n_{ef}の関係 (D_r=50%)

図-27(b) 不規則波に対する補正係数 c₂と有効波数 n_{ef}の関係(D_r=80%)

5. 地震動継続時間の液状化現象に及ぼす影響に関 する考察

今回の地震では、地震動継続時間が非常に長く、この ことが液状化現象に大きな影響を及ぼした可能性がある. 継続時間が長くなると地盤の排水の影響が大きくなる可 能性があるが、地盤の排水性を考慮するには透水係数が パラメータとして必要となり、境界条件なども考慮した 複雑な地盤解析が必要となるので、ここでは排水条件に ついては非排水として考察する.したがって、排水性の 良い地盤については精度の高くない考察となる.

液状化の発生は、非排水条件であれば作用する繰返し せん断応力の大きさと、その波形(あるいは繰返し回数) に依存する.4章で示したように、波形の影響は有効波 数を介して考慮することができ、継続時間が長くなると 有効波数は大きくなると考えられる.そこで最初に、有 効波数と継続時間の関係を調べる.

図-28 は,3 章で行った液状化予測での基盤加速度の継 続時間と地盤応答解析で得られた有効波数の関係を調べ たものである.図-28 には,過去の5つの被災地震につ いてもプロットしている^{2),7),12)}.ここでの地震動継続 時間の定義は,10Gal 以上の加速度振幅が作用している 時間としている.

図-28から、過去の地震での継続時間は 20~100 秒程 度であったが、今回の地震の継続時間は 150~200 秒と非 常に長いものであったことがわかる.しかし、有効波数 は、小名浜については n_{ef}=14~18、千葉については n_{ef}=5 ~11 と大きいのであるが、仙台については n_{ef} =1~5 程 度で大きくはない.また、継続時間に対しての有効波数 のばらつきは、過去の地震も含めて非常に大きく、継続 時間と有効波数の間に良い相関があるとは言えない.こ れは、継続時間あるいは波形が同じでも、地盤の応答特 性により、有効波数は大きく変化するからである.しか し、図-28 のプロットの傾向として、継続時間が長くな るほど有効波数は大きくなることが認められる.

そこで,以降では,継続時間との相関は必ずしも高く ないが,有効波数を介して継続時間が長かった影響を考 察する.考察は,液状化の発生に関することと,液状化 が発生した場合の液状化の程度(被害の大きさ)に関す ることの2つに分けて行う.なお,本論文では,「液状化 の程度」を液状化状態での発生ひずみ量の大小で考える.

図-28 地震動継続時間と有効波数 n_{ef}の関係

5.1 液状化の発生に関しての考察

「液状化する」、「液状化しない」、という液状化発生に 及ぼす、継続時間の影響は、有効波数を介して、図-29の 波形補正係数 c_a で示すことができる.図-29(a)は式(3)~ (5)を用いて波形補正係数 c_a と相対密度、有効波数の関係 を調べたものである.図-29(b)は、図-29(a)から式(6)を 利用して、有効上載圧が σ_v '=65kN/m²として求めた波形補 正係数 c_a とN値の関係である.図-29からわかるように、 有効波数が n_{ef} =5の場合には補正係数は1.0となり、この有 効波数に相当する地震動をここでは「標準的な地震動」 と呼ぶことにする.

図-29から、相対密度が小さい領域ではc_aに及ぼす有効 波数の影響は小さいが、相対密度が大きくなると影響は 大きくなることが分かる.したがって、密な地盤ほど継 続時間の影響が液状化の発生に大きく現れることになる.

定量的に考察すると、3章での検討の範囲ではあるが、 今回の地震動では小名浜港で有効波数が最も大きく n_{ef} =18が得られている. \Box -29(b)から有効波数が n_{ef} =18の 場合には、N値が20の非常に密な地盤では、 $c_a \Rightarrow 0.65$ とな る.これは、「標準的な地震動」と比較した場合、最大加 速度が同じでも、液状化の発生については式(2)から1.7倍 程度大きな揺れ(外力)に相当したことを意味する.しか し、N値が5程度の緩い地盤では、 $c_a \Rightarrow 0.9$ となり、これは、

「標準的な地震動」の1.1倍程度の揺れにしか相当しない. したがって,緩い地盤での液状化の発生には,地震動継 続時間が長かったという影響は小さかったといえる.

図-29(a) 波形補正係数 c_aと有効波数 n_{ef}, 相対密度 D_rの関係

図-29(b) 波形補正係数 caと有効波数 nef, N 値の関係

5.2 液状化の程度に関しての考察

液状化とは、土の有効応力がゼロとなった状態である が、液状化後の地盤沈下量など、被害の大きさと直結す る変形量で見ると、液状化状態には幅広い状態があり、 これは作用した外力に依存する.液状化状態の土の変形 の大きさ、あるいは変形のしやすさを「液状化の程度」 といい、液状化の程度に及ぼす地震動継続時間の影響を、 4章での液状化試験結果を用いて考察する.

液状化抵抗は,液状化状態を図-25に示したように γ_{D4}=7.5%で定義して求められている.したがって,各波 形が,各波形の液状化抵抗と同じ最大せん断応力比で地 盤に作用した場合には、有効波数、すなわち継続時間に よらず液状化の程度は同じとなる.しかし、実際の地盤 では、液状化抵抗と全く同じ最大せん断応力比が作用し て液状化を起こすことは稀であり,最大せん断応力比は, 若干なりとも大きいことが現実であると考えられる.図 -30に相対密度がD,=50%の供試体を用いた千葉波の試験 結果を例に、最大せん断応力比が若干でも増えた場合の せん断ひずみの発生状況の違いを示す.図-30(a)の最大 せん断応力比が(τ/σ_{v0} ')max=0.112ではひずみはほとんど発 生していないが、図-30(b)の(r/ov')max=0.127では液状化が 発生し、両振幅せん断ひずみはyDA=21.5%に達している. そして, さらに最大せん断応力比を若干増加させた $(\tau/\sigma_{v0})_{max}=0.131の図-30(c) では\gamma_{DA}=41.2%と大幅なひずみ$ の増加になっており、液状化の程度が大きくなっている. そこで、図-25、26で調べた液状化抵抗よりも最大せん断 応力比が若干大きくなると両振幅せん断ひずみがどの程 度大きくなるかを調べ、有効波数、すなわち継続時間が どのように液状化の程度に影響するかを検討する.

図-30(b) せん断ひずみの違い: (τ/σ_{v0}')_{max}=0.127

図-30(c) せん断ひずみの違い: (τ/σ_{v0}')_{max}=0.131

まず、図-25の各プロットを累乗関数で近似し、各波形 が、各波形の液状化抵抗 R_{Lmax} よりも $\Delta \tau_{max}/\sigma_{v0}$ '=0.01だけ大 きな最大せん断応力比で作用した場合の両振幅せん断ひ ずみの増分を求める。各波形の液状化抵抗は R_{Lmax} =0.1~ 0.4であるので、 $\Delta \tau_{max}/\sigma_{v0}$ '=0.01は液状化抵抗よりも1オー ダー小さい値である。得られた両振幅せん断ひずみ増分 Δy_{DA} を有効波数との関係で示したものが図-31である。

図-31から,相対密度がD_r=50%の場合もD_r=80%の場合 も,有効波数が大きくなると,両振幅せん断ひずみ増分 は大きくなることがわかる.また,両振幅せん断ひずみ 増分は,有効波数が同じ場合,D_r=50%の方がD_r=80%より も大きいことがわかる.相対密度がD_r=50%で有効波数が 大きい場合にはΔy_{D4}>300%と極端に大きな値になってい る.したがって,液状化が発生するような地震動が地盤

図-31(a) 有効波数 n_{ef}と両振幅せん断ひずみ増分の 関係(D_r=50%)

図-31(b) 有効波数 n_{ef}と両振幅せん断ひずみ増分の 関係(D_r=80%)

に作用し、その有効波数が大きい場合には、地盤の液状 化の程度は大きくなり、液状化による被害が大きくなる といえる.また、液状化の程度は緩い地盤になると極端 に大きくなり、緩い地盤は液状化に対しての「ねばり」 がないことがわかる.

以上から、今回の地震において地震動の継続時間が長 かったことは、液状化の程度に大きな影響を及ぼしたと いえる.ただし、継続時間と有効波数の間には高い相関 はなく、例えば仙台港の事例のように地震動の継続時間 が長くても有効波数は大きくない場合があり、このよう な場合には継続時間が長くても液状化に大きな影響を及 ぼさないと考える.

5.3 規則波試験からの考察

図-32は、図-19で示した液状化試験でのデータを用いて、両振幅せん断ひずみが、γDA=3、7.5、15%になったときの繰返しせん断応力比と繰返し回数の関係を調べたものである.一般的に知られているように、両振幅ひずみを大きくしたものはプロットが上の方になり、相対密度の小さい方(Dr=50%)が両振幅ひずみの違いによる差は小さくなり勾配も緩やかになる.図-33は図-32の傾向を説明のために模式図に直したものである.

図-32,33の密度の大きなものと小さなものの比較から, ①緩い(密度の小さい)砂の方が繰返し回数の増加に対 する繰返しせん断応力比の変化(減少)が小さく,②繰 返し回数が大きくなると発生せん断ひずみが小と大の場 合で繰返しせん断応力比の差が小さくなり,緩い砂の方 の場合にはその差は非常に小さくなる.

規則波での上記,①,②の液状化特性は,5.1,5.2で の不規則波の液状化特性に及ぼす継続時間(有効波数) の影響のしかたにそのまま対応している.すなわち,5.1 で示した,緩詰め地盤の場合には継続時間の影響が小さ いというのは,①繰返し回数の変化に対して繰返しせん 断応力の変化が小さいということ.5.2で示した,継続時 間が長い方が液状化の程度が大きくなり,緩詰め砂の場 合には極端に大きなひずみが発生しやすく「ねばり」が ないというのは,②のせん断応力比の差が小さいという ことに対応している.

図-32 繰返しせん断応力比と繰返し回数の関係

図−33 繰返しせん断応力比と繰返し回数の関係の 説明図

6. 結論

得られた結論は以下のとおりである.

①粒度・N値法による液状化の予測判定手法は、継続時間の長い地震動に対しても設計で用いて問題ないといえる. ただし、安全側ではあるが非液状化地点でも液状化するという予測をしており、以下のことが課題として残された.

・等価N値によらず液状化を起こさないという等価加速度の下限値があると思われ、この点について今後の精度向上が必要といえる.

・液状化層が地盤の一部に薄層として存在する場合には,

液状化の影響が地表面や地盤全体に現れない場合がある と思われ、この点についての評価法が必要である.

②粒度・N値法において、地震動の波形(継続時間)の影響を考慮した(補正を行った)予測と、考慮しない予測は、液状化の有無について同じような予測結果となっており、今回の事例解析では波形を考慮したことによる予測精度の向上は確認できなかった。

③不規則波に対する補正係数を求めるための実験式は、
 継続時間の長い地震動に対しても適用可能である。
 ④地震動の継続時間は、液状化の発生に関しては、緩い

通地震動の継続時間は, 被状化の死生に関しては, 疲い 地盤よりも密な地盤で影響が大きくなる.

⑤また,継続時間は,液状化の程度について大きな影響 があり,密な地盤よりも緩い地盤で特に大きな影響があ る.

7. あとがき

2011年東北地方太平洋沖地震では、地震動継続時間が 非常に長く、これが液状化現象にどのように影響したか が問題となった.本論文では、速報的であるが、継続時 間の影響を事例解析や実験データを基に検討している. ここでの検討は、震動中の排水の影響を無視し、非排水 条件として行っている.継続時間が長い場合には、従来 無視していた間隙水の排水の影響が強くなる.排水性の 良い方が、過剰間隙水圧が消散しやすいので液状化しに くいと考えられるが、消散して伝播した過剰間隙水圧が2 次液状化を引き起こす可能性もある.したがって、今後 は排水の影響も考慮した検討が必要である.

末筆ではありますが、本検討は、国土技術政策総合研 究所の地震記録を使用したものであり、また、各整備局 の協力をいただいたものであります.関係各位に深く感 謝いたします.

(2011年8月12日受付)

参考文献

- 高橋重雄,他33名:2011年東日本大震災による港湾・ 海岸・空港の地震・津波被害に関する調査速報,港 湾空港技術研究所資料,No.1231,2011.
- 山崎浩之,江本翔一:地震動波形の影響を考慮した 液状化の予測・判定に関する提案,港湾空港技術研 究所報告,第49巻,第3号,pp.79~109,2010.
- 3) 沿岸技術研究センター:埋立地の液状化対策ハンド

ブック(改訂版), p.66, 1997.

- 日本港湾協会:港湾の施設の技術上の基準・同解説
 (上巻), pp.330~365, 2007, pp.383~389.
- 5) 山崎浩之, 金田一広, 江本翔一: 液状化抵抗に及ぼ す波形の影響に関する考察, 土木学会論文集C, Vol.66, No.3, pp.625~630, 2010.
- b 地盤工学会:地盤調査・土質試験結果の解釈と適用
 例, p.167, 1998.
- 7) 石原研而:土質動力学の基礎,鹿島出版会, pp.265 ~275, 1976.
- 8) 国土技術政策総合研究所:港湾地域強震観測, http://www.mlit.go.jp/kowan/kyosin/eq.htm.
- 9) 一井康二, 佐藤幸博, 佐藤陽子, 星野裕子, 井合進: 港湾地域強震観測地点資料 (その6), 港湾技研資料, No. 935, pp.207~216, 1999.
- 10) 前出9), pp.225~232.
- 11) 前出9), pp.249~260.
- 12) 神戸市開発局:兵庫県南部地震による埋立て地盤変 状調査報告書, 1995.

Copyright © (2011) by PARI

All rights reserved. No part of this book must be reproduced by any means without the written permission of the President of PARI

この資料は、港湾空港技術研究所理事長の承認を得て刊行したものである。したがって、本報告 書の全部または一部の転載、複写は港湾空港技術研究所理事長の文書による承認を得ずしてこれを 行ってはならない。

