港湾空港技術研究所 資料

TECHNICAL NOTE

OF

THE PORT AND AIRPORT RESEARCH INSTITUTE

No.1295 Dece

December 2014

UHP-SHCCの巻立てによる桟橋の鋼管杭頭部の構造性能評価

川忽加岩羽網田国端那藤波渕野中枝。於代金子

独立行政法人 港湾空港技術研究所

Independent Administrative Institution, Port and Airport Research Institute, Japan 目

次

要 旨	3
1. まえがき	4
1.1 背景	4
1.2 UHP-SHCCの特徴	4
1.2.1 材料特性	4
1.2.2 耐久性	4
1.2.3 類似材料との比較	5
1.3 UHP-SHCCによる鋼管杭頭部の巻立て工法の検討	5
1.3.1 UHP-SHCCを用いた鋼管の補強効果に関する検討	5
1.3.2 UHP-SHCCによる鋼管杭頭部の巻立て工法	6
1.4 本論の目的	7
2. 大型鋼管試験体によるUHP-SHCC巻立て鋼管の曲げ耐力の検証	· 7
2.1 実験概要	7
2.2 荷重-変位関係	9
2.3 UHP-SHCC表面の初期ひび割れ	10
2.4 基部におけるひずみ分布	10
2.5 試験体高さ方向のひずみ分布	10
2.6 UHP-SHCCによる鋼管ひずみの抑制効果	13
3. ファイバーモデルによるUHP-SHCC巻立て鋼管の補強効果の評価	13
3.1 本工法を適用する条件の設定	13
3.2 材料モデルの設定	14
3.3 実験値と計算値の比較	15
4. まとめ	15
参考文献	16
付録. A	17
付録. B	19

Structural performance of steel pipe pile jacketed with UHP-SHCC for open-type piers

Yuichiro KAWABATA * Jun KUTSUNA** Ema KATO *** Mitsuyasu IWANAMI **** Takashi HABUCHI**** Takahiko AMINO***** Ryoichi TANAKA***** Minoru KUNIEDA******

Synopsis

In port pier-type structures, steel pipe piles often tend to suffer performance degradation because they are generally constructed in sever marine environment. The protective coating system is often applied to the tidal and splashed parts of the piles for preventing the performance degradation due to corrosion. The performance of the protective coating system, however, is generally degraded by material deterioration caused by ultraviolet rays and by deformation due to collision of driftage. The joint part between steel pipe pile including the protective coating system and beam of concrete superstructure is one of the most important structural parts in that structure. The joint part is subjected to the large bending moment due to berthing forces and seismic motions.

The authors have developed a new protective jacketing system which can ensure the anti-corrosion of steel pipe piles and strengthening of the joint parts by applying the Ultra High Performance-Strain Hardening Cementitious Composites, UHP-SHCC. In this paper, the large scale flexural loading test of steel tube jacketed with UHP-SHCC was performed to evaluate the structural performance of the proposed system. From the results, the UHP-SHCC protective jacketing system can contribute to improving the structural performance of steel tube.

Key Words : Ultra High Performance-Strain Hardening Cementitious Composite, open-type wharf, steel pipe pile, protective coating system, structural performance

*	Senior Researcher, Structural Mechanics Group				
**	Research Trainee, Structural Mechanics Group				
***	Head, Structural Mechanics Group				
****	Visiting Senior Researcher, LCM Research Center for Coastal Infrastructures				
	(Professor, Department of Civil Engineering, Tokyo Institute of Technology)				
****	Toa Corporation				
*****	Professor, Department of Civil Engineering, Gifu University				
3-1-1 Nagas	e, Yokosuka, 239-0826 Japan				
Phone : $+81$	-46-844-5059 Fax : +81-46-844-0255 e-mail: kawabata-y@pari.go.jp				

UHP-SHCC の巻立てによる桟橋の鋼管杭頭部の構造性能評価

川端 雄一郎*・忽那 惇**・加藤 絵万***・岩波 光保**** ・羽渕 貴士****・網野 貴彦****・田中 亮一****・国枝 稔*****

要 旨

桟橋の下部工である鋼管杭は、干満帯から飛沫帯にかけて一般的に被覆防食が行われる.しかし、 防食材料の紫外線劣化あるいは漂流物の衝突により、想定した期間よりも早期に防食性能が低下す ることがある.一方で、地震時や船舶の接岸時には、鋼管杭頭部と上部工の接合部付近は曲げモー メントが大きくなる.そのため、鋼管杭頭部および接合部が構造的な弱点とならないよう、適切な 耐力を保有していることが求められる.著者らは、高強度繊維補強セメント系複合材料の一つであ る超高強度ひずみ硬化型モルタル (Ultra High Performance - Strain Hardening Cementitious Composite; UHP-SHCC) に着目し、UHP-SHCC の鋼管杭頭部への巻立てによる防食および補強の技術開発につ いて研究を行っている.本研究では、桟橋上部工と鋼管杭頭部を模擬した大型鋼管試験体を作製し、 鋼管の構造性能の向上効果を検証する載荷試験を行った.鋼管に UHP-SHCC を巻き立てることで、 降伏曲げ耐力の向上が確認された.さらに、UHP-SHCC による鋼管の補強効果を評価することを目 的として、ファイバーモデルを用いた降伏曲げ耐力の算定を行い、実験結果との比較を行った.

キーワード: 超高強度ひずみ硬化型モルタル, 桟橋, 鋼管杭, 被覆防食, 構造性能

*	構造研究チーム主任研究官
**	構造研究チーム依頼研修生(東亜建設工業株式会社)
***	構造研究チームリーダー
****	ライフサイクルマネジメント支援センター 客員研究官(東京工業大学大学院理工学研究科教授)
****	東亜建設工業株式会社
*****	岐阜大学工学部教授
〒239-0826	横須賀市長瀨3-1-1 港湾空港技術研究所

電話:046-844-5059 Fax:046-844-0255 e-mail:kawabata-y@pari.go.jp

1. まえがき

1.1 背景

港湾構造物の一つである桟橋は,耐震性に優れる構造 である.しかし,海水の作用により構成部材の劣化が早 期に生じた事例が数多く報告されており,現在では,維 持管理上で課題の多い構造形式の一つであると認識され ている.例えば,桟橋の下部工である鋼管杭の干満帯か ら飛沫帯にかけての部位は,鋼管杭の腐食による耐力低 下を防止することを目的として,被覆防食が適用される のが一般的である.しかし,従来の被覆防食材は紫外線 劣化や漂流物の衝突などによる損傷を受けやすく,想定 した期間よりも早期に防食効果が低下する事例が見られ ていることから^{1),2)},より長期的な耐久性を有する被覆防 食技術の開発が望まれている.

一方で、地震時や船舶の接岸時には、鋼管杭頭部と上 部工の接合部付近は曲げモーメントが大きくなる.その ため、鋼管杭頭部および接合部が構造的な弱点とならな いよう、予定した供用期間内で、必要な耐力を保有して いることが求められる.近年、耐震化あるいは船舶や荷 役機械の大型化による桟橋の機能向上を目的として、当 初の設計耐力を上回る性能が必要とされる事例もあるた め、鋼管杭頭部および接合部の確実な補強を可能とする 工法・技術の開発が求められている.

以上のことから,著者らはこれまでに長期的に防食効 果を発揮するとともに,鋼管杭頭部の補強を兼ね備えた 工法の開発を目標として,高強度繊維補強セメント系複 合材料の一つである超高強度ひずみ硬化型モルタル³⁾

(Ultra High Performance - Strain Hardening Cementitious Composite;以下,UHP-SHCCと称す)を用いた防食・補 強技術に関する種々の検討を行ってきた^{4)~11)}.本論は, UHP-SHCCによる防食・補強工法を実構造物に適用した 場合を想定して実施した大型鋼管試験体による曲げ載荷 試験の結果から,提案する工法の桟橋鋼管杭頭部の補強 効果に関して報告するものである.

1.2 UHP-SHCCの特徴

1.2.1 材料特性

UHP-SHCC は、シリカフュームの混和によりマトリックスが緻密化し、超高強度化や高物質移動抵抗性を実現したセメント系材料である¹²⁾. 文献 12 によれば、 UHP-SHCC は圧縮強度 100N/mm²以上、引張強度 8MPa 以上の強度が得られるとされている. 特筆すべき点として、優れたひび割れ分散性を有しており、引張応力作用 下では高強度ポリエチレン繊維(長さ 6mm,直径 12µm, 公称引張強度 2700MPa, 公称弾性係数 88GPa)の架橋効 果により, 複数の 20µm 程度以下の微細なひび割れが生 じ, コンクリート系材料の構造上および耐久性上の弱点 となるひび割れの局所化が生じにくいことを示している. 他方で, 高強度ポリエチレン繊維の混入率が大きくなる とさらにひび割れ分散性が高くなり,降伏引張強度およ び引張強度が増加し,引張応力が低下し始める引張軟化 開始点(終局ひずみ)も大きくなることが報告されてい る.

1.2.2 耐久性

志水ら¹³は、UHP-SHCC が優れた遮塩性を有し、物質 透過抵抗性に優れる材料であることを明らかにした.例 えば、水結合材比 0.22、繊維混入率 1.5%、低熱ポルトラ ンドセメントを使用した UHP-SHCC の塩化物イオンの 見かけの拡散係数は、普通コンクリート(W/C=0.55)の 約 1/50 程度であったことを報告している.また、水結合 材比 0.15~0.30、繊維混入率 1.5%、普通ポルトランドセ メントを使用した UHP-SHCC の透気係数および透水係 数は、いずれも普通コンクリート(W/C=0.56)の約 1/100 ~1/1000 程度と小さいことを示した.

松本らⁿは、サンドブラストを用いた耐摩耗性試験によ り、UHP-SHCCは水中不分離性モルタルに比べて耐摩耗 性に優れる材料であることを明らかにした.また、 UHP-SHCCおよび水中不分離性モルタルにより作製した 試験体を飛沫帯環境下に1年間曝露し、海水作用による劣 化の抵抗性を検証した.その結果、水中不分離性モルタ ルに比べてUHP-SHCCは耐海水性にも優れる材料である ことを明らかにした.

以上のように,非常に耐久性に富む材料である UHP-SHCC について、網野ら⁸は、鋼材に対する UHP-SHCC の海洋環境下における防食効果を検証して いる. 鋼材試験片に UHP-SHCC をライニングし, 引張応 力により UHP-SHCC にひび割れを発生させた試験体を 作製し、飛沫帯環境下に曝露した.暴露から3年が経過 したライニング厚さ 30mm の試験体では、鋼材の表面に 腐食は見られず, UHP-SHCC により防食効果が発揮され たことが窺える. なお、志水ら ¹³⁾によると、0.1~0.2% の引張ひずみを与え微細ひび割れを発生させた UHP-SHCC 試験体を水中で養生した結果,水中養生 90 日後にはひび割れ発生前より透気係数および透水係数が 小さくなることが確認された.これより, UHP-SHCC は ひび割れ発生後も,水分が供給されることで自己治癒す るため,軽微な損傷を受けた場合でも,鋼材に対して長 期的な防食効果を発揮する可能性が高い材料であること

項目	超高強度高靭性 モルタル (UHP-SHCC)	本 工法 への 適用性	超高強度繊維補強 コンクリート	本 工法 への 適用性	複数微細ひび割れ型 繊維補強セメント 複合材料	本 工法 への 適用性
繊維の種類	高強度ポリエチレン繊維	_	鋼繊維,有機繊維	_	ポリビニルアルコール繊維	-
圧縮強度	100N/mm ² 以上	0	$150 \sim 200 \text{N/mm}^2$	0	40N/mm ²	\triangle
引張強度	約8~10N/mm ² (繊維混入率1.5%)	0	約11~15N/mm ² (繊維混入率2.0%)	0	約4~6N/mm ² (繊維混入率2.0%)	
引張強度時ひずみ	約2~3.5% (繊維混入率1.5%)	0	約0.5% (繊維混入率2.0%)	0	約5% (繊維混入率2.0%)	0
塩化物イオンの 見かけの拡散係数	0.035cm ² /年	0	0.0019cm ² /年	0	約0.15cm ² /年	
水中ライニングへの適用性	現場製造可能	0	現場製造不可 (蒸気熱養生が必要)	×	現場製造可能	0
参考文献等	実験データに基づく	``````````````````````````````````````	文献14		文献15	

表-1.1 各種繊維補強セメント系材料との比較

が示された.

1.2.3 類似材料との比較

UHP-SHCC のような繊維補強セメントの類似材料と して, 表-1.1 に示すように超高強度繊維補強コンクリー トや複数微細ひび割れ型繊維補強セメントがある.これ ら繊維補強セメントの高強度、ひび割れ幅の抑制効果を 利用し、プレキャスト部材14)や道路橋の床版の増厚ある いは鉄道高架橋の表面被覆材 ¹⁵⁾として適用した事例が ある. 表-1.1 より, 強度特性の観点からは UHP-SHCC は超高強度繊維補強コンクリートと複数微細ひび割れ型 繊維補強セメントの中間に位置する材料であることがわ かる.著者らは、UHP-SHCC が有する高い防食性能や耐 久性能を活用し、桟橋を主な施工の対象と捉え検討を進 めているが、接岸・係留ドルフィンの他、海上・河川・ 陸上橋脚の柱基部についても適用が可能であると考えて いる. UHP-SHCC は現場製造が可能かつ特殊な養生を必 要としないことから、施工の対象とする構造形式・条件 によっては、他の材料よりも優位となり得るものと考え られる.

1.3 UHP-SHCC による鋼管杭頭部の巻立て工法の検討

1.3.1 UHP-SHCC を用いた鋼管の補強効果に関する検 討

鋼管杭頭部の防食および鋼管杭頭部と上部工の接合部 の補強を目的として UHP-SHCC を適用する場合, UHP-SHCC が防食材として期待される効果は前述の通 りである.網野ら^{9,10}は, UHP-SHCC を巻き立てた鋼管 および桟橋の上部工を模擬した小型試験体を作製し,曲 げ載荷試験により杭頭部に曲げモーメントが作用する場 合の UHP-SHCC による補強効果について検証している. 以下にその概要を述べる.

図-1.1 小型鋼管試験体による補強断面の検討例

網野ら⁹が作製した小型鋼管試験体の側面図および断 面図を図-1.1に示す.実験では,従来のモルタル被覆工 法のように,UHP-SHCC端部が上部工の下端部と一致す る構造(Type-C)とする試験体の他に,巻立て部を上部 工と一体化させた構造(TypeA-1, TypeA-2)または上部 工内部まで連続させて巻き立てた構造(TypeB-1, TypeB-2) についても検討している.これは,接合部付近で UHP-SHCCに生じる曲げひび割れを分散させるととも にひずみ硬化性が発揮されることを期待したためである. また,従来のライニングでは被覆防食材と上部工の境目 に海水等の浸入を防ぐため樹脂モルタルあるいは水中硬 化形樹脂によりコーキングが施されるが、コーキング材 の劣化により鋼管杭の集中腐食が生じた事例もある.こ のため、接合部において UHP-SHCC のひび割れ分散性が 発揮され、局所的なひび割れが生じなければ、鋼管杭頭 部の防食の観点からも UHP-SHCC の巻き立てが優位で あることが述べられている.

UHP-SHCC のひび割れ分散性が確実に発揮されるた めには、UHP-SHCC と鋼管が一体となって挙動すること が重要である.UHP-SHCC と鋼管の円滑な応力伝達を図 るため、山下ら¹⁰は鋼管軸方向の鉄筋と周方向にスパイ ラル鉄筋を配置しているが、網野ら⁹は施工の容易性、 溶接量の軽減を考慮して、図-1.1に示すように、鋼管軸 方向のみに異形鉄筋(以降,定着鉄筋と称す)を配置し ている.定着鉄筋により、鋼管軸方向と直角に生じるひ び割れの分散性がより向上するものと想定される.なお、 定着鉄筋の効果を比較検討するため、図-1.1で定着鉄筋 を配置しない試験体についても実験を行っている.

その結果,定着鉄筋を配した試験体の方が定着鉄筋無 しの試験体よりも部材の曲げ耐力が向上し,さらに図 -1.1の Type-C よりも Type-A や Type-B の巻立て構造の 方が曲げ耐力が大幅に向上した.また,巻立て厚さ21mm と45mmで試験を行った結果,巻立て厚さが大きい45mm の方が,曲げ耐力が向上した.

網野ら¹⁰は、定着鉄筋の径や鋼管周方向の配置間隔、 端部拘束に着目した検討も行っている.図-1.2に示すよ うに鋼板に定着鉄筋を溶接して UHP-SHCC をライニン グした試験体を作製し、曲げ載荷試験によりそれらのパ ラメータの影響を検討した.ここで、端部拘束とは、 UHP-SHCC 巻立て端部の剥がれを防止するための補助 的な治具であり、写真-1.3に示すように鋼材を溶接した ものである.

実験結果より、端部拘束の影響は鉄筋比(UHP-SHCC 巻立て断面積に対する鉄筋断面の比)に依存することが 示されている.鉄筋比が小さい場合は端部拘束の影響が 窺えるが、鉄筋比が大きい場合は、定着鉄筋が UHP-SHCCと付着を保持するため、端部拘束の効果は見 られないことが述べられている.

定着鉄筋の径や配置間隔については,良好なひび割れ 分散性を発揮する配筋の条件として,異形鉄筋 D16 以上 を用いて配置間隔 200mm または D13 の配置間隔を 200mm 以下とすることを提案している¹⁰⁾.

1.3.2 UHP-SHCC による鋼管杭頭部の巻立て工法
 図-1.3 に、桟橋の鋼管杭頭部の防食および鋼管杭頭部

図-1.2 鋼材とUHP-SHCCの一体化に関する検討例

写真-1.3 端部鋼材

図-1.3 UHP-SHCC を巻き立てた鋼管杭頭部の概念図

と上部工の接合部の補強を目的とした UHP-SHCC によ る巻立ての概念図を示す. 1.3.1 で示した小型鋼管試験 体による検討を踏まえて,既設上部コンクリートの一部 (図中の斜線部)をはつり取り,巻立て部および上部工 のはつり取った部分に連続的に打設する方法を採用した. また,UHP-SHCCは,被覆防食材としても機能させるた め,L.W.L 付近から鋼管杭頭部に向けて巻き立てる. 鋼 管杭の表面には軸方向に定着鉄筋を配する.

なお,著者らは,実桟橋の鋼管杭を利用して,定着鉄 筋の溶接や UHP-SHCC の打設等についての施工性を確 認し,本工法が問題なく実現できることを確認した.施 工試験を行った桟橋の鋼管杭および実施状況を付録.A に示す.

図-2.1 試験体の仕様

1.4 本論の目的

本論では、UHP-SHCC による防食・補強工法を実際の 桟橋の鋼管杭に適用した場合を想定し、大型鋼管試験体 による曲げ載荷試験を行い、UHP-SHCC を巻き立てた鋼 管の構造性能の向上効果を検証することを目的とした. さらに、ファイバーモデルで算定される降伏曲げ耐力と 実験値との比較から、UHP-SHCC による鋼管の補強効果 を評価した.

2. 大型鋼管試験体による UHP-SHCC 巻立て鋼管の 曲げ耐力の検証¹¹⁾

UHP-SHCC の桟橋の鋼管杭頭部への適用を目的とし て, 上部工と鋼管杭頭部を模擬した大型鋼管試験体を作 製し, UHP-SHCC による鋼管の曲げ耐力の向上効果を検 証する水平載荷試験を行った.本章では、その実験概要 および実験結果について述べる.

2.1 実験概要

本実験は、図-2.1に示すように既設桟橋の上部工と鋼 管杭の接合部を模擬するため、上下反転させた状態で3 本の試験体を作製した.実験ケースを表-2.1に、使用材 料の力学的性質を表-2.2に示す.鋼管は, 6457.2×t6.4mm, *l*=2.300mm の電縫鋼管を用いた. 底板との接触部は、開

	UHP-SHCC	鉄	筋	그비 수요	載荷方法	
試験体	巻立て	相故	本数	^编 部	(繰返し	備考
	厚さ(mm)	观俗	(本)	刊朱	回数3回)	
CASE1	—	—	—	_	両振り	
CASE2		D13	8			
CASE3	56.5	D16	8	あり	片振り	最大荷重到達後

表-2.1 実験ケース

表-2.2 使用材料の力学的性質

林大米山		備老		
123 111	項目	CASE1	CASE2, 3	1H
চার্য দেশ	降伏点	365N/mm ²	353N/mm ²	試験成績表より
- 婀官 (STK 400)	引張強さ	470N/mm ²	465N/mm ²	
(~~~~~)	破断伸び	39%	35%	
	圧縮強度	-	91.1N/mm ²	
LIUD SUCC	静弹性係数	—	23.1kN/mm ²	
on -snee	引張強度	— 7.16N/mm ²		
	引張ひずみ	—	1.85%	
無収縮	口嫔辞度	王縮強度 58.3N/mm ² 57N/mm ² 52.5N/mm ²		載荷部
モルタル	江相加及			柱基部
中詰め	圧縮強度	37.2N/mm ² x 30.8kN/mm ²		
コンクリート	静弹性係数			
		刀字旳性質		111. La
材料	項日	D13	D16	備考
	<u> </u>	(CASE2)	(CASE3)	
合举研办	降伏点	356N/mm ²	362N/mm ²	試験成績表より
止有鉄肋 (SD295A)	引張強さ	501N/mm^2	509N/mm ²	
(====)011)	破断伸び	30.4%	25.0%	

先溶接とした. 試験体の下部は、繰返し載荷に対して強 固な構造とするため二重鋼管方式とした.以降では、上 下反転させた試験体の上部を試験体頭部、下部(底板か ら 300mm の二重鋼管部)を基部と称する. CASE1 は,

一般的な鋼管杭頭部と上部工を模擬した試験体とした. CASE2 および3は、UHP-SHCC巻立てによる鋼管杭頭部 の補強を模擬した. UHP-SHCC巻立て厚さは56.5mmで 一定とし、鋼管の周囲に型枠を設置し底板から1,600mm

(基部天端から 1,300mm)まで打設した.ここで,一般 的な桟橋の鋼管杭頭部は,図-2.1 に示すように上部工に 呑み込まれた状態で施工されている.1.3.2 で述べたよ うに,実桟橋への本工法の適用にあたっては,上部工の 一部と UHP-SHCC 巻立て部を連続させた構造とするこ とを想定している.本実験では,UHP-SHCC を巻き立て た後に基部に無収縮モルタルを充填する手順で作製した. さらに,CASE2 および 3 は,底板から試験体上方に向け て長さ 1,550mmの定着鉄筋を鋼管軸方向に配した.定着 鉄筋は,両側全長にすみ肉溶接とした.定着鉄筋は, CASE2 は D13,CASE3 は D16 とし,円周方向に 8 本等 間隔に配した.UHP-SHCC の打設天端には鋼材を溶接し, 端部拘束を設けた.図-2.1 に端部拘束の詳細図を示す. 写真-2.1 に試験状況を示す.

実際の桟橋では鋼管杭の局部座屈を抑制するため,一 般的に上部工から鋼管杭の外径分だけ下方にコンクリー トが充填される.よって,本実験でも鋼管内部の同等の 位置まで中詰めコンクリートを充填した.なお,本実験 では載荷部も強固にするため,試験体頭部にも中詰めコ ンクリートを充填した.

図-2.2に、試験体に設置した変位計およびひずみゲージの位置に関して、側面図ならびに試験体上方から見た 断面図を示す.変位計の設置高さは図に示す通りである. 変位は、各々の高さについて試験体の両側で測定し、そ れらの平均値で整理した.CASE2および3は、UHP-SHCC の表面にひずみゲージを貼り付け、鋼管についても CASE1と同様の位置に貼り付けた.また、基部付近には UHP-SHCCおよび鋼管の周方向にひずみゲージをそれ ぞれ6枚設置した.ひずみゲージの貼り付け位置は、試 験体上方から見て、反時計周りに0°(載荷側)、45°, 135°, 180°, 225°, 315°である.

載荷試験は、試験体下部に取り付けた底板を PC 鋼棒 で反力床に固定し、壁に設置したアクチュエータ(容量 1,000kN、ストローク 400mm)により、試験体頭部に水 平荷重を作用させる方法とした.載荷点高さは基部から 1,900mm とした.載荷は、CASE1 の鋼管のひずみが 2,000µに達した時の載荷部の降伏水平変位 16.3mm を基 準変位&とし、図-2.3 の左側に示す±1&、±2&、±3&、 …のように漸増させ、各変位での繰返し回数を3回とし た.以降では、各変位での載荷ステップを±n&-(繰返し 回数)と表記する.なお、CASE1 は両振り載荷(±)で

写真-2.1 試験状況

図-2.3 載荷ステップ(左: CASE1,右: CASE2,3)

あるが, CASE2 および 3 は図-2.3 の右に示すように片 振り載荷(+)とした.ただし, CASE3 は最大水平荷重 に達した後,一度除荷した後に水平変位が 150mm とな るまで単調に載荷した.

変位およびひずみの計測間隔は,鋼管の降伏荷重に達 するまでは荷重制御により5kNごと,それ以降は変位制

御により 0.1mm ごととした.

鉛直方向の載荷(軸力)は、上部工の質量を鋼管断面 に一定に負荷させることを想定して、試験体天端に油圧 ジャッキにて 300kN を導入し、±5%以内で管理した.

ここで,実際の桟橋において UHP-SHCC 巻立てによる 補強を行う場合,鋼管杭には既に上部工の質量分の初期 ひずみが導入されている.本実験においても同様の条件

下で行うべきであると考えられるが、一般に軸力比は全 断面降伏軸力の約10%程度であり、軸力ひずみに換算す ると200μ程度である.本実験では、初期ひずみの有無に よる鋼管の力学的挙動への影響は小さいと判断し、 UHP-SHCCを巻き立てた後に試験体に軸力を導入した.

2.2 荷重一変位関係

図-2.4に、CASE1~3の載荷点高さにおける載荷履歴曲 線を示す. CASE1は、16.3mm (=+1&-1) 変位時に圧縮側 の基部から200mmのひずみゲージが2,000µに達した.この 時,水平荷重は184kNを示した.+3&-1で最大荷重272kN に達した後、圧縮側の基部から約100mm上部で座屈が生 じた. その後, 座屈の進行により+4&-1で251kNまで低下 し、-4&-3で載荷を終了した. CASE2は、+1&-1で265kN を示し、+4&-1で最大荷重474kNに達した. その後、+4& -3から+5δ, -1へ進行中にUHP-SHCC表面の引張側でひび 割れが拡大し、荷重が顕著に低下した.+5み-1変位時の水 平荷重は389kNまで低下し, 載荷を終えた. CASE3は, +1& -1で298kNを示した. +3& -3から+4& -1へ進行中に505kN で最大荷重を示したものの,引張側の基部から100mm付 近でUHP-SHCCのひび割れが進展し、+4&-1変位時に 496kNまで低下した. その後, +5 & -1 変位前の70mm変位 時に引張側で亀裂音がして荷重が396kNまで低下した.水 平変位150mmまで単調に載荷した時の荷重は413kNであ った.

図-2.5に、CASE1~3の荷重-変位関係の+n&-1におけ る包絡線を示す. CASE1は正側の結果のみを示す. 図中 の白抜きのプロットは、最大荷重あるいは荷重が顕著に 変化した点である.+1&-1変位時で比較すると、CASE2,3 の水平荷重はそれぞれ265kN,298kNであり、CASE1に比 べてそれぞれ44%,62%増加した.また、実際にCASE2,3 の鋼管が降伏ひずみに達した時点の水平荷重は,それぞ れ333kN,268kNであり,その時の変位はそれぞれ24mm, 14mmであった(図中の矢印が該当する点を示す).CASE2 および3は,CASE1と比較して曲げ耐力および曲げ剛性の 向上したこと,ポストピーク領域でUHP-SHCCが脆性的 な破壊の様相を呈し,荷重が顕著に低下する挙動を示す ことがわかった.

2.3 UHP-SHCC 表面の初期ひび割れ

図-2.6に、CASE2 および3における UHP-SHCC の表面に生じた初期ひび割れの展開図をそれぞれ示す.初期 ひび割れは、UHP-SHCC を打設後、型枠を脱型し載荷試 験までに生じていたひび割れをスケッチした.図中の 0°は引張側(載荷側),180°は圧縮側である.図-2.6a) より、CASE2のUHP-SHCCの表面に生じた初期ひび割 れはわずかであった.一方で、図-2.6b)より、CASE3 はUHP-SHCCの全周にわたって微細な初期ひび割れが 多数生じていた.これは、鉄筋量が CASE2 より多く、 UHP-SHCC の収縮を拘束する力がより大きく作用した ためと考えられる.

参考として、初期ひび割れ以降、載荷終了時まで各載 荷ステップごとに記録したUHP-SHCCのひび割れ展開図 を付録.Bに示す.

2.4 基部におけるひずみ分布

以降は省略する.

鋼管と UHP-SHCC の平面保持の成立の有無を確認す るため、図-2.7 に+n δ -1 変位時における基部のひずみ分 布を示す. CASE1 は正側のみを示す. 図中の一点鎖線お よび破線は、それぞれ UHP-SHCC および鋼管の最外縁を 示す. 鋼管の断面中心から約+160mm の位置のプロット は、引張側 (45° および 315° 方向)の鋼管の平均ひず みである. 同様に、約-160mm のプロットは、圧縮側 (135° および 225° 方向)の鋼管の平均ひずみを示す. 圧縮側のひずみについては、いずれも-10,000µまでを示 すが、引張側については a)+1 δ -1 変位時は 5,000µまで, b) +2 δ -1 変位時は 10,000µまで, c) +3 δ -1 変位時は 15,000µまで, d) +4 δ -1 変位時は 20,000µまで, e) +5 δ -1 変位時は 25,000µまで示す. なお、CASE1 は最大荷重に 到達した+3 δ -1 変位時までに鋼管の座屈が見られ、その 影響によりひずみの測定ができなくなったため、+4 δ -1

a), b) より, CASE1 の鋼管ひずみは, 平面保持が成 立すると判断される. CASE2 および 3 は, a) ~e) の 全てで UHP-SHCC の引張ひずみが生じていなかった. 基 部は断面急変部のためひび割れが局所化しやすい部位で

b) CASE3 図-2.6 UHP-SHCC表面の初期ひび割れ

あり、ひずみゲージでは計測できなかった可能性も考え られるが、計測結果から判断すると、鋼管とUHP-SHCC の引張側の応力伝達がなされていなかった可能性が考え られる. UHP-SHCCの引張側を除くと、CASE2のひず みは、+5&-1変位時までは鋼管の引張縁からUHP-SHCC の圧縮縁まで直線分布を形成したことから、応力伝達が 成されたものと推察される.ただし、CASE3においては 載荷部の変位が+2&-1 以上になるとUHP-SHCCの圧縮 ひずみと鋼管断面内のひずみ分布の間で徐々に直線性が 失われる傾向が見られたことから、変位の増加に伴い UHP-SHCC と鋼管の一体性が次第に低下したことが考 えられる.

2.5 試験体高さ方向のひずみ分布

図-2.8 に、試験体高さ方向の鋼管および UHP-SHCC のひずみ分布を示す.各々のプロットは、+nδ,-1 変位時 における圧縮ひずみおよび引張ひずみを表す.縦軸の0 は基部からの高さである.a)より、載荷部の水平変位の 増加に伴い、鋼管の圧縮側および引張側ともにひずみが

distance from the center

図-2.7 基部断面におけるひずみ分布

増加していることがわかる. 圧縮側は, $+3\delta$ -1 で鋼管の 基部から約 100mm の位置で座屈が進行し, ひずみが急 激に増加した. 一方で, CASE2 は, $+4\delta$ -1 変位時におけ る圧縮ひずみは最大でも約 5,000 μ , CASE3 で約 7,500 μ であり, CASE1 に比べて鋼管ひずみの増加を抑制できて いることがわかる. UHP-SHCC 巻立てにより, UHP-SHCC が圧縮応力を負担した可能性が考えられる. これは, c), e) の UHP-SHCC の圧縮ひずみの発現から 窺える.

ここで、CASE2 は変位の増加に伴って、0~300mm 付 近で UHP-SHCC の圧縮ひずみが次第に増加した. 一方で、 CASE3 はそのような傾向が見られず、0~300mm にかけ て変位の増加に伴う圧縮ひずみの増加は見られなかった. CASE3 の基部付近では、UHP-SHCC と鋼管の定着が十分 に確保されていなかったことが考えられる. これは、図 -2.7 a)、b) において、 $+1\delta$ -1 変位時に CASE3 の UHP-SHCC の圧縮ひずみが大きく増加していた事実か らも推察される. この原因としては、2.3 で述べたよう に、CASE3 は初期ひび割れによって起因して UHP-SHCC と鋼管の一体性が早期に低下しやすい状態となっていた 可能性が考えられる.

2.6 UHP-SHCC による鋼管ひずみの抑制効果

UHP-SHCC 巻立てによる鋼管ひずみの抑制効果を検 証するため、基部における+1&-1 変位時までの水平荷重 とひずみの関係を図-2.9 に示す.比較のため、CASE1 の結果も示す.CASE2、3 の引張側および圧縮側ともに、 UHP-SHCC 巻立てにより鋼管ひずみが抑制されたこと がわかる.鋼管ひずみの抑制効果は圧縮側の方が大きく、 例えば水平荷重が 150kN の時、鋼管ひずみは CASE1 に 対して CASE2 で約 42%に減少した.CASE3 の鋼管ひず みは、CASE1 に対して約 34%に減少した.CASE3 が CASE2 に比べてより鋼管ひずみが抑制されたのは、 CASE2 よりも鉄筋量が多いため、定着鉄筋が圧縮応力を 負担したためと考えられる.一方で、引張側の鋼管ひず みの抑制効果は圧縮側に比べると小さく、例えば水平荷 重が 150kN の時、CASE2 の鋼管ひずみは CASE1 の約60%、 CASE3 は約 72%に減少した.

ファイバーモデルによる UHP-SHCC 巻立て鋼管の 補強効果の評価

3.1 本工法を適用する条件の設定

港湾の施設の技術上の基準・同解説」のによると、桟橋

鋼管杭のレベル2地震動に関する耐震性能照査項目とし て,耐震強化施設(特定)では、当該桟橋を構成する杭 に生じる曲げモーメントのうち、2 箇所以上で全塑性モ ーメントに達する杭が存在しないことが, 耐震強化施設 (標準)では、1 箇所のみで全塑性に達しているまたは 全塑性に達していない杭が存在することが照査される. 本実験より、鋼管のみに比べて、UHP-SHCCを巻き立て ることで最大曲げ耐力の大幅な増加が見られたものの, 図-2.5 からポストピーク領域で荷重の顕著な低下があ ったこと,図-2.6~図-2.8より初期ひび割れの発生に起 因して UHP-SHCC と鋼管の定着に対する課題が明らか となったことから、耐震強化施設への適用については今 後検討の必要がある.一方で,通常施設の桟橋において は、レベル1地震動に対して鋼管杭が降伏に至らないこ とが規定される.本実験より、降伏時までにおいても曲 げ耐力の増加が見られたこと、特に、2.4 で述べたよう に、CASE2 においては+1&-1 変位時に鋼管と UHP-SHCC の応力伝達が確認されたことから、通常施設においては 本工法が適用できる可能性がある.したがって、以降で は降伏曲げ耐力に着目し,本実験結果を用いて

UHP-SHCC 巻立てによる鋼管の補強効果を評価することを試みた.

3.2 材料モデルの設定

鋼管杭の補強設計法を構築するためには、補強した部 材の構造応答を適切に算定できることが望ましい. それ らの応答値を簡易的かつ合理的に算定できる手法として ファイバーモデルが挙げられる.本論の実験結果より, UHP-SHCC 巻立てによる鋼管の補強効果を評価するた め、図-3.1に示すように鋼管の基部をファイバー要素に 分割し、軸力と曲げモーメントが作用した時の鋼管の曲 げ降伏モーメント *M*y の算定を行った. そして、得られ た計算値と実験値の比較からその適用性を検討した.以 下に、設定条件および仮定を述べる.

- ひずみ分布は、図-3.1a) に示すように中立軸からの距離に比例し、図-2.7a)の結果を踏まえて、有効断面は引張側の鋼管外縁から圧縮側のUHP-SHCC 外縁までを仮定した.また、参考として、UHP-SHCC の引張負担分を考慮し引張側のUHP-SHCC 外縁までを有効とした場合についても図-3.1b) に示す.
- 各材料の強度は、表-2.2 に示す実強度を用いた.
 なお、鋼材および定着鉄筋の静弾性係数は 210GPa とした.
- 3) 鋼管および定着鉄筋の降伏ひずみは表-2.2 から得られる実強度より算出した. CASE1 の降伏点は, 基部における鋼管の圧縮縁が降伏ひずみに達した時点と仮定した. CASE2, 2'および3は, UHP-SHCCが圧縮応力を負担することで鋼管の基部の引張縁が先に降伏するとして降伏ひずみを仮定した.
- 4) 鋼管および定着鉄筋の応力-ひずみ関係は、図-3.2 に示すように圧縮側、引張側ともに降伏後のひずみ 硬化を無視したバイリニア型とした.ただし、鋼管 の圧縮側は、表-3.1に示すように細長比 *l/r*に応じ て低減する軸方向圧縮降伏応力度¹⁷⁾(図-3.2 では σ_{cy}と表記する)を用いた.表-3.1は、鋼管杭また は鋼管矢板に適用されるものであるが、表中に示さ れる公称値 235N/mm²は、本実験で用いた鋼管 SS400の公称値 245N/mm²と降伏強度が近い.した がって、本論では同表より鋼管の細長比に応じて降 伏応力度を決定した.ただし、実験結果を評価する ため、表-2.2 の降伏強度を用いて比例配分により σ_{cy}を算出した.
- 5) UHP-SHCC の応力-ひずみ関係について, CASE2 および CASE3 は, 図-3.1 a) に示すように圧縮負

担分のみを考慮するバイリニア型を仮定した.また, CASE2'は、図-3.1 b) に示すように、UHP-SHCC が引張負担分まで考慮するバイリニア型とした.

なお, CASE3 は平面保持の成立が確認されなかったため, ここでの計算値は参考値として示す.

3.3 実験値と計算値の比較

実験値および計算値の比較を表-3.2 に示す.表中の① 【実験値】降伏時 M_y は、2.2 で述べた、鋼管が降伏ひず みに達した時の M_y の実験値である.②【計算値】降伏 時 M_y は、CASE1 は鋼管のみ、CASE2、2 および3 は定着 鉄筋および UHP-SHCC を含む M_y の計算値である.③鋼 管(+鉄筋)の負担分は、鋼管および定着鉄筋(CASE1 は鋼管のみ)が負担するモーメントである.②および③ の計算値の差から④UHP-SHCC の負担するモーメント が推定できる.

CASE1 より,実験値と計算値の差が 5%と精度良く計 算された.

CASE2 は,計算値が実験値に対して 19%小さくなった. 一方で, CASE2'の計算値は実験値に対して 2%の誤差で あった. ここで, CASE2 および 2'の計算値の違いは, UHP-SHCC 巻立て断面の引張負担分を考慮したか否か である. CASE2 の実験値は CASE2'の計算値に近かった. 図-2.7 に示したように,ひずみゲージによる計測の妥当 性については検討の余地があるが,UHP-SHCC の引張負 担分が実際には発揮されていた可能性も考えられる.現 段階では,UHP-SHCC の引張負担分は考慮しない *M*yで 評価しておく方が良いと判断される.しかし,合理的な 補強設計を実現するために,UHP-SHCC 巻立て断面の引 張負担分を考慮するための検討が今後必要と思われる.

一方で、CASE3 は参考値として算出したものであるが、 計算値が実験値を上回った.これは、前述したように、 CASE3 は載荷前から初期ひび割れが多数発生していた 影響により UHP-SHCC と鋼管の一体性が低下していた ことが原因と推測される.すなわち、CASE2 に比べ CASE3 のように過剰な量の定着鉄筋を配置した場合、鉄 筋の拘束力により初期ひび割れの発生が助長されるため、 期待する曲げ耐力の向上効果を得られない可能性がある ことが示唆された.このことから、UHP-SHCC と鋼管の 効果的な定着方法および UHP-SHCC の初期ひび割れに 対する抑制策について、今後さらなる検討が必要と考え られる.

表-3.1 軸方向圧縮降伏応力度¹⁷⁾

SKK400, SHK400, SHK400M, SKY400				
a) $l/r \le 18$	235			
b) 18< <i>l/r</i> <92	235-1.38 (<i>l/r</i> -18)			
c) 92> <i>l/r</i>	$2.01 \times 10^{6} / (6.7 \times 103 + (l/r)^{2})$			
	l·部材の有効座屈長(cm)			

r:部材総断面の断面二次半径(cm)

表-3.2 実験値および計算値の比較

	【実験値】	【計算値】	実験値に		計算値】
試験体	①降伏時 <i>M</i> y	②降伏時 <i>M</i> y	対する 計算値の 比 ②/①	③鋼管 (+鉄筋) の負担分	④UHP-SHCC の負担分 ②-③
CASE1	350	333	0.95	333	
CASE2	633	513	0.81	366	147
CASE2'	633	619	0.98	373	246
CASE3	(509)	575	(1.13)	395	180
CIELS	(00))		(=.===)		

※単位はkN·m

4. まとめ

本論は、UHP-SHCC巻立てによる桟橋鋼管杭頭部の補 強を目的として、桟橋上部工と鋼管杭頭部を模擬した大 型鋼管試験体を作製し、鋼管の曲げ耐力の向上効果を検 証する載荷試験を行った.さらに、UHP-SHCCによる鋼 管の補強効果を評価することを目的として、ファイバー モデルを用いた降伏曲げ耐力の算定を行った.得られた 知見を示す.

- (1) 鋼管に UHP-SHCC を巻き立てることで,圧縮およ び引張側ともに鋼管のひずみが抑制され,曲げ剛性 および曲げ耐力が向上することがわかった.
- (2) 鋼管の降伏時までに曲げ耐力の増加が見られたこと, +1&-1変位時に鋼管とUHP-SHCCの応力伝達が確認 されたことから,通常施設における桟橋の鋼管杭頭 部の補強工法として,本工法が適用できる可能性が ある.
- (3) 降伏曲げ耐力について、UHP-SHCCの引張負担分を 考慮しない条件でファイバーモデルより算出した結 果,計算値は実験値に対して安全側で算出された.

本論より、UHP-SHCC巻立て鋼管の降伏曲げ耐力をフ ァイバーモデルにより算出できることを確認した.しか し、巻き立てたUHP-SHCCの初期ひび割れが補強効果に 影響することも確認されたことから、UHP-SHCC巻立て 断面内に生じる収縮に伴う初期応力や初期ひび割れの発 現に関するデータを蓄積し、初期ひび割れの抑制策と最 適なUHP-SHCCと鋼管の定着方法について引き続き検討 が必要であると考えている.今後,上記の課題を解決し、 UHP-SHCC巻立てによる引張負担分(ひずみ硬化性)を 考慮したより合理的な補強設計手法の構築を目指したい. (2014年8月8日受付)

謝辞

本研究は平成23~25年度国土交通省建設技術研究開発 助成により実施した.ここに記して謝意を表す.

参考文献

- 財団法人沿岸技術研究センター:港湾鋼構造物補 修・防食マニュアル,2009
- 阿部正美,福手勤,山本邦夫:鋼管杭の防食工法に関 する現地試験(中間報告),港湾技研資料,No.675, 1990
- 国枝稔, Kamal, A., 中村光, Bruhwiler, E.: 超高強度ひ ずみ硬化型セメント系材料の開発, コンクリート工 学年次論文集, Vol.29, No.1, pp.315-320, 2007
- 4) 加藤絵万,川端雄一郎,岩波光保,網野貴彦,田中亮一,国枝稔:UHP-SHCCの巻立てによる鋼管杭の補強効果に関する実験的検討,年次学術講演会講演概要 集,V-207, pp.413-414, 2012
- 5) 網野貴彦,国枝稔,岩波光保,田中亮一:超高強度ひ ずみ硬化型モルタルを用いた桟橋鋼管杭の被覆防食 および補強技術,繊維補強セメント系複合材料の新 しい利用法に関するシンポジウム論文集,pp.393-398, 2012
- 6) Ryoichi Tanaka, Minoru Kunieda, Mitsuyasu Iwanami, Ema Kato, Yuichiro Kawabata, Takahiko Amino : A study on strengthening method for pier piles using ultra high performance - strain hardening cementitious composite, Proceedings of the 3rd International Conference on Sustainable Construction Materials and Technologies (SCMT3), 2013
- 7) 松本拓也,岩崎英治,加藤絵万,川端雄一郎:海洋環境における超高性能ひずみ硬化型セメント系材料の長期耐久性の検討,年次学術講演会講演概要集, V-008, pp.15-16, 2013
- 8) 網野貴彦,国枝稔,岩波光保,田中亮一:ひび割れを 有する超高強度ひずみ硬化型モルタルの鋼材防食性 能に関する検討,年次学術講演会講演概要集,V-206,

pp.411-412, 2012

- 9) 網野貴彦,国枝稔,岩波光保,田中亮一:超高強度ひずみ硬化型モルタル巻立てによる桟橋鋼管杭の曲げ耐力向上効果に関する基礎的研究,コンクリート工学年次論文集,Vol.34, No.1, pp.292-297, 2012
- 10) 網野貴彦,国枝稔,加藤絵万,岩波光保,田中亮一: ひび割れ分散性からみた超高強度ひずみ硬化型モル タルと鋼材の一体化方法に関する基礎的検討,コン クリート構造物の補修,補強,アップグレード論文 報告集,Vol.13,2013
- 11) 忽那惇,国枝稔,岩波光保,加藤絵万,川端雄一郎, 田中亮一,網野貴彦,羽渕貴士:超高強度ひずみ硬化 型モルタルを巻き立てた桟橋の鋼管杭頭部の補強に 関する実験的検討,海洋開発論文集,2014(投稿中)
- 12) 国枝稔, 志水康祐, 江口輝行, 上田尚史, 中村光: 超 高強度ひずみ硬化型モルタルの基礎物性と補修材料 としての利用法, 土木学会論文集E2(材料・コンクリ ート構造), Vol.67, No.4, pp.508-521, 2011
- 13) 志水康祐,国枝稔、中村光、玉越隆史:超高強度ひずみ硬化型モルタルの物質移動抵抗性の評価、コンクリート構造物の補修、補強、アップグレード論文報告集,Vol.9,2009
- 14) 土木学会:超高強度繊維補強コンクリートの設計・
 施工指針(案),コンクリートライブラリー113,2004
- 15) 土木学会:複数微細ひび割れ型繊維補強セメント複合材料設計・施工指針(案),コンクリートライブラ リー127,2007
- 16)山下賢司,藤元安宏,林承燦,六郷恵哲:複数微細ひ び割れ型コンクリートにより被覆した鋼管の曲げ破 壊性状とひび割れ性状,コンクリート工学年次論文 集, Vol.27, No.1, pp.301-306, 2005
- 17) 社団法人日本港湾協会:港湾の施設の技術上の基準・同解説,2007

付録.A

写真 A-1 a) ~ j) に, UHP-SHCC 巻立てによる桟橋鋼 管杭頭部および接合部の補強に関する施工実験の状況を 示す.実験を行った施設は,神奈川県横須賀市内にある 東亜建設工業㈱所有の追浜ケーソンヤード桟橋を使用し

a) 既設鋼管杭(実験前)

た. 対象とした鋼管杭の諸元は, 直径 609.7, 板厚 12.7mm である. UHP-SHCC の巻立て厚さは 50mm とし, 定着鉄 筋は D16 を 10 本使用した.本実験より, 施工にあたっ ての不具合等はないことがわかった.

b) 既設上部工はつり状況

c) 既設上部工はつり完了

d)定着鉄筋溶接状況

e) 型枠設置状況

g) UHP-SHCC打設(製造)状況

h)脱型状況

i)施工完了

j)施工完了(鋼管杭頭部) 写真A-1 UHP-SHCCの施工手順(施工実験より)

付録.B

図 B-1 に CASE2, 3 における載荷ステップごとの UHP-SHCC 表面のひび割れ分布の展開図を示す. a) お よび b)の黒線は初期ひび割れを示す. c) および d) の黒 線は初期ひび割れを,赤線は+1*&*-1~+1*&*-3 変位時に生 じたひび割れを表す. e) および f)の黒線は,初期ひび 割れおよび+1 δ -1~+1 δ -3 変位時までに生じたひび割れ を,赤線は+2 δ -1~+2 δ -3 変位時に生じたひび割れを示 す.以下,同様にして載荷終了時までに観察されたひび 割れ分布の展開図を載荷ステップごとに示す.

港湾空	港技術研究所資料	No.1295
	2014.12	
編集兼発行人	、 独立行政法人港湾空港	技術研究所
発行	所 独立行政法人港湾空港 横須賀市長瀬3 TEL.046(844)5040 URL	技術研究所 丁目1番1号 http://www.pari.go.jp/
印刷	所株式 会 5	1 ユ ー

Copyright © (2014) by PARI

All rights reserved. No part of this book must be reproduced by any means without the written permission of the President of PARI

この資料は、港湾空港技術研究所理事長の承認を得て刊行したものである。したがって、本報告 書の全部または一部の転載、複写は港湾空港技術研究所理事長の文書による承認を得ずしてこれを 行ってはならない。