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Research Institute

Abstracts: The secondary interactions of surface waves are treated in two roughly
divided cases. In Part [, the case in which the first order wave has discrete components
is discussed, and in Part II th case in which it makes the continuous spectrum is com-
puted. '

In Part I, the main characteristics of the secondary interaction are treated in the
one-dimensional problem. They include the case in which the each components of wave
have the same direction of progress and the case in which their directions are opposite
each other. In the two-dimensional problem, the general expression of the secondary
interaction is obtained, and as an example, the clapotis caused by the oblique incidence
of progressive wave on the rigid wall is discussed.

A secondary long-crested wave which progresses along the rigid wall is obtained and
discussed.

In part I, we treat the wave which does not contain the reverse progressive comp-
onents, At first, the case of the one-dimensional wave in the finite depth is treated.
Numerical results of the second order nonlinearity obtained by this method are in good
agreement with the experimental nonlinear effect. Secondly the problem of the two-
dimensional progressive wave in the finite depth is computed. A result of the simple
application of this computation shows that, if the first order spectrum of wave profile
has the sufficient angular spreading, the second order nonlinear components of frequency
spectrum will be notably different from those without angular spreading.

Part 1. The case of discrete components

1I-1. basic equations

The problem is inviscid and irrotational, and the motion is of a type of Stokes. L. J.
Tick(1959, 1963)and M.S. Longuet-Higgins & R. W. Stewart(1962)have already shown
many aspects of the problem of secondary interaction. In Part I, the author putsues
the dynamical behavior of the interaction components and explains the physical meaning
of them. Stillmore _t_he _prpblem of clapotic wave is treated with some interesting results.

A brief explanation of basic equations is as follows, We use cartesian co-ordinate,



in which x-y plane is horizontal and z axis is taken vertically upwards positive.* u, v
and w are the particle velocities in x, y and z direction respectively. The velocity
potential ¢ satisfies the next relation.

a=2¢ ,—09¢ _ _ 0

T 8x., Oy, U 8z (X-D
The equation of continuity is
V=0 (V=g gt g (1-2)
da? T gyt 9zt
The equation of motion can be integrated to
%—i—gz—i—%qg-i-g—f:o (I-3

p is the pressure at an arbitrary point in water, and g% equals #®+2%*+w
Here we remark that the velocity potential ¢ contains the second order constant
number so as to make the plane z=0 consisetnt with mean water level.
Kinematic boundary condition of surface is

Gld a - dL __ dp _ _
az+”‘ax+” R at z=¢ (I-d

¢ is the surface elevation from mean water level.

Dynamic boundary condition of surface is

e +(22) = _ )
gt~ +(57), =0 at z=¢ (1-5)
Bottom condition is
99 g at z=—h (1-6)
dz

Here h is the depth to the bottom of water. and is uniform in the considered do-
main.

The perturbation method is used in concern with wave siope. Using the perturb-
ation of ¢, { amd p, we put

p=ap+apytatpyte e (I-7-1)
{=ali+a®+a%lyteee-- (I-7-2)
p=potapita’ pytad pytee (I-7-3)
Do—=—pgz (I-7-4
The perturbed equations by « are shown as follows.
From(I—2)
Vip=0, V=0, Vip;=0 (1-8-1,2,3)
" From(I—3)
’i’; +=0 (1-9-1)
—%4‘%@01424‘9’1&4‘%52) +2,=0 (1-9-2)

¥ In Part I, 2 axis is taken downwards positive.
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1?;' + @120 ProPon T Pr2Pox P2 =0 ‘ (1-9-3) _

From (I-4)
Cie=w,(0) at z=0 (I-10-1)
Los 20, () Crzt 01 (0) Ep =22 (0) + 01 (0) &; at z=0 (I-10-2)
Caet 202000 Erzt 2012 (0) iy (0D Lot 02(0) Ly 01 (0D CiCm
+ 01 (0) Loy =2y (0D + 2032 (0) Lo+ 2022 (0) :1_]_%(0)(;% at z=0 (I-10-3)
From (I1-5) o :
8Cit+pe (=0 A at z=0 (I-11-1)

e UL RHORS SR OREMORS RO

at z=0 (I-11-2)
gl 10, (0) 245 (0) 4261 (0) 2412 (0) &y 401 (0) w2 (0) +0 () w12 (0D &
+uwn O w2 (0) +101 O w12 (0) &1 03: (00 + 0162 (0D Lo+ (O Er

+%§Dlﬁzz:¥:0 at z=0 (1—11—3)
From (I-6) |
P12=0,  P2=0, @5:=0 at z=—h (1-12-1,2,3)
. From (I-10) and (I-11)
' 011 (0) F g1z () =20 at z2=0 (I-13-D1
£2:0(0) +203 (O = — 2 G () +03(O) +30)) e 01006 O L pixe DLt
+ 21, (0) 12+ 801 (O Lry—g12: (V4 at z=0 (I-13-2

0300 0) + 2032 (0) = 2242 (0) £ 10+ 8241 (0) §1 12+ g4, (0) Loa+ 802 (0) Cyy

+200 O la+80 O Lou— 80106 O o Pare O Li— g Prees O L3

— 215 (0) 245 (0) — 24, (O 2020 (O) — 241 (0D 241 (0) €y — 21 (03 20120 (0) Cy — 28, (0D 241, (O Lo

—01: (0) 02 (0) —v1 (M 22 (0) — 1. () 01 (O L — 01 (M 0122 (00 G — 01 ()01 (O Ee

— w2 (0w (0) —w, (0) wie (0) — 2010 (0) w12 0) &y — 201, (0 201126 (0D C1l_w1 (O w12 (0 Cye

F ‘ -' — 01265 (0) Lo— 0122 (0) Coo— 02200 {0) £y — 022 (0) Clb—%@mztﬁ O~ 010 LiL1e

' at z=0 (I-13-3)
Equations ¢I-13-1, 2, 3) are used for the determination of ¢,, ¢; and ¢, and

equations (I-11-1, 2, 3) are used to compute &, {; and {;. Then the pressure is
determined by (I-9-1,2,3). A
The simplest case is of the one-dimensional wave in deep water. The three com-
ponent wave in this case is treated as follows.
The first order wave is
pr=a,c,e*? sin{k, (x—cit) +e1}+ascaeke2 sin{ky (x—cat) +eo}

+agcaetsz sin{ky(x—cyt) +eg} (1-14
Ey=ay cos{k (x—cit) +e}+as cos{k,(x—cot) +eg}
+a; cos{ks (x—cst) +e} ‘ A (I-15)
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kici=koct=Rycst—=g  (Ry, kg kg >0) . (1-16)

The second order wave by the interaction is

gy = 2R OO ol bl s k) 6 (cle—cabt+ (1 }

2ascok ka(Cobs—Cyl .
+ (?22;: Zizzz)g(__‘zgsz : S)I"”zz -kslz gin{ (kz—ka)x‘— (coko—Cakg)t+ (ea—eg) }

4 2ty Coky O gtk alesin (bt Ccabr—dt+ (e}

~+const, ¢ const.=0 (1-17
This may be rewritten as

—aic ke (Ry > Ro) 1p s _ _ _ —
goZ_—I—aic;k;az(k;) f)elk‘ kzlz sin{ (ky— ko) x— (Crly—cColn) t+ (e—ex) }

o+ datelats e RS bkl sing (ho—b) 5 — (orla—cobdt+ (er—e)

2o 7 ) olks =tz sing (oy— ) 5— Coba—cikD i+ (5—e) } (1-17)
e is computed as

s :% cos{2k, (x— 1) +2¢,} —I—azzzkzcos{ 2kg (x—Cof) + 265}

—I—a—"% cos{2k; (x—cgt) +2¢5} +%21+k“’)cos{ by ko) x— (coloyHCako)t
+ (ey+e0) } —I—gggﬁ%j—@ cos{ (ka+kg) x— (czlkz—l—caka)t—l— (eateg)}

+ B EARD o5 oyt k) 15— ooy +erkedt+ (eate) }

— i@zl oot () a— (et —cotdt+ (s —e)

— 0ty B kel ot (k) s~ Ccotr—ca t+ (er—e)}
— st |y — ks fahy Lo (ry—D) 21— (caks—cukdt+ (es—e) } (1-18)

It is clear by this computation that the principal character of the secondary inter-

action can be obtained by the computation of the interaction of two components wave.

The character of the case of .the interaction of three or more components wave is

easily deduced from the case of the two components wave.
I-2 the one-dimensional case

Here we compute the case of two components wave of the depth of finite in the
one-dimensional case. ‘
The first order wave is

0= blmzflnil—w sink; (G—cif) +b2% sins (5 —caf) (1-19)
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£y=a cosky (x—c,t) +ascosky, (x—cgt) (I-200
bh=ac,, be=asC»

| cﬁ=%tanhk1h, cst= £ tanhksh, kuki> 0 (1-2D)
Do=—pgz (1-22)
Di=p blklcl%gz?coskl(x—clt)
4 pbgkzczmssi—hn}]?(’::_l_Tz)coskz(x—cgt) .. (1-23)

The second order wave is computed as
_ p cosh2k (h+2) . _ cosh 2k, (h-+2)
O B ok S PR B e R

+ By SRR ) b2 i (ot ) 2 — Corbobcahd?)

+ By °°:?If}’fl(;1@k;h;z> sin{ (ks — ko) £— (cby—cokp)E}+const. £ (1-24)

sin2ks (x—cqf)

In (I-20),
_3 ;23 2p b
B 9 bi%k 3¢, (coth?k h—1) (1-25-D
BT 4k %, *coth2k, ht 2k g
— 3 25 3 2 —
B . Tbg kg Co (Coth kgh 1) (I _25_2)
28—

—4k 226' 22C0th2k2k+2kgg
blbzklkz (Clkj_"l" Czkz) (l _COthklk COthkzk) ——%—-blklaazclz (cothzklh —_ 1)

By = — (cikyFeok) Zeoth g+ k) 4+ By R g
1l s, .2 2p h—
5 bokaics? (coth®keh—1) (1-25-3
blbzklkz (Czkz_clkl) (1+c0thk1h Cothkzh) — —é—blklsagclz (Coth2k1k'—'1)
24 =

— {1y —cokn) fcoth (By—ko) h+ (By—ko) g

1,454, .2 2L 7

const.=~—%bﬁk12(coth2k,h—-1) —%bzzkzﬂ (coth?kgh—1) (I -25-5)
Putting .= 521+C22+C28+c2&s
Eoy= %{Zklcl Bglcoth2k1h+—é—bﬁkﬁ—%bﬁklz (coth2,i—1) }cosZk1 (H—eit)

(1-26-1)

C%._.—.-—g:!'_——-{ZkQCszzCOthzkzh"l“ %bgzkzz_' %bzzkzg (CO thzkzh'— 1) }COSZkg (x —‘Czt)

. (1-26-2).



Cas=—{ (i) Buscoth Cou-Hp) ok~ (iZeubrcsthiosbaay)

— L bibskuy (cotheihcothlh—1) fcos! (b a— (eyhitegh) 8] (1-26-3)
o= Ccuti—caho) Buucoth o —ho) k- iPeubucrt Peabsa)
—%blbzklkz (cothk hcothzh+1) } cos{ (By—ko) x— (Cifoy —Coley) t} (I-26-4)
Putting pe=peot+Do1+PeaF Doz D2
__ 1 oo wsinh® (kt2) 1 a7, osinh?k, (A+2) o7
b=y P bR e T PR T R, (1-27-1)
_ cosh 2%, (h+2) _ 1 1 _ o7
pm—{2pklclB uCOh 2 Ok Lokt - k}cosZkl —et)  (1-27-2)
— cosh 2k, (BF2) 2 1 _ o
pu={2pkcsBu OB B 1 ppps o doosthaa—cd)  (1-27-9)
_ cosh(®+k) (B+2) 1 cosh (ky—4y) (+2)
? 23“{“’ (ko) B G L 4k 2 b L b hsinhlh }
X cos{ (fy+ky) x— (c1fey +eokeg)t} (I-27-4)
Table-1
a, >0
F2 Cy az agy aza
0. 035 14.79 0. 03676 0.04374 0. 08028
(0.035) (0. 025) (0.0175) (0. 0425)
0. 040 14, 29 0. 03676 0. 03935 0. 07653
(0. 040) (0. 025) (0. 020) (0. 0450)
0. 045 13. 80 0. 03676 0. 03729 0.07444
(0. 045) (0. 025) (0. 0225) (0.0475) -
0.050 13.32 0. 03676 0.03676 0. 07352
(0. 050) (0. 025) (0. 025) (0. 0500)
0. 055 12. 86 0. 03676 0. 03665 0.07343
(0. 055) (0. 025) (0. 0275) (0. 0525)
0. 060 12. 44 0. 03676 0. 03719 0. 07404
(0. 060) (0. 025) (0. 030) (0. 0550)
0. 065 12.03 0. 03676 0.03811 0.07509
(0. 065) (0. 025) (0. 0325) (0. 0575)




D= {,0 (c1fey—Caks) Bag

cosh(b,—ks) (ht2)_ 1

xcos{ (ky—kp) x— (c1fey—C3ka) t} ‘
By this way the computation of the secondary interaction of wave of two compo-

£ blbgklkz c

Sinh(a—FDh 2

osh (& +ky) (h¥2) }
sinhk, hsinhk.h

(1-27-5)

nents shows that (i) elementary wave has its own second order component as if the

single elementary wave exists, and that (ii) stillmore in general the secondary waves

which have the wave number equal to the sum and the difference of the original wave

numbers exist.

These second order waves are all bound waves,* and not free waves. The bound
wave has some different characters from usual free waves.

For instance, the wave

celerity, the particle velocity and the relation between surface profile and pressure
difference are counted up as these different points which do not satisfy the condition

of free wave.

Further it should be added to remark that, when the wave components progress to

* In the case of capillary-gravity waves, the second order waves may be possible to contain
induced free waves. (L. F. Mc Goldrick (1965))

- coefficient of coefficient of cikitezks ciki— ok
Dauce—m Poacz=—1> btk ki —ky

—0. 04846 —0. 8782 —0. 4406 13.92 9.89
{—0.0075)
—0.04272 -0, 8038 —0. 4048 13.75 9. 44
{—0. 0050)
—0. 03832 —0. 7902 —0.3724 13.54 9.00
(—0.0025)

13.32 8.65
¢ 0 )
—0.03322 —0. 7975 —0. 3228 13.07 8.26
{—0. 0025)
—0. 03288 —0. 8226 —0.3114 12.84 8.04
(—0. 005)
—0.03188 —0. 8400 —0. 2894 12.59 ' 7 73
{—0.0075)




reverse direction each other, the propertfr of the -secondary interaction becomes quite
different from those of same direction of wave progress. We investigate numerically
these properties using the next model.

In (I-20) we put a;=1m, k,=0.05m", 2=30m and a;=1m, k:=0.035, 0.040, 0.045,
----- , 0.060, 0.065#71, and both cases of ¢;, ¢.>0 (wave components progress in the
same direction), and of ¢,>>0, ¢, <0 (wave components progress in the reverse direction
each other) are considered. Coefficients gy, @ze, oz @24 [in the expression {;=a, cos
2k (x—ecd) +azy cos 2k (x—cot) +asy cos { (B ko) x— (Cihi+coko)t} 4asy cos {(By—h)x—
(ciki—cok)t}], and the wave celerities concerned to the @i term and the @y term,
and the coefficient of cosine term of py(given by (I-27-5)) are shown in Table-1 (in
the case of ¢;, ¢.>>0) and in Table-2 (in the case ¢;>>0, ¢;<0). Numerical values in
round brackets show the case in which the depth of water becomes infinite and other
factors are not changed. In these tables the unit of length is taken to metre, so the
values of pressure terms take the water head in the metre unit, when they are divided
by 9. 8.

In Table-1, @2, az have values usually given by the one component secondary

Table-2

>0, co<<0
ko [ ('cg a0 ap g3
0.035 —14.79 0. 03676 0. 04374 0.04418
(0. 035) (0. 025) (0. 0175) (0. 0425)
0. 040 —14.29 0. 03676 -0. 03935 0. 04583
(0. 040) £0. 025) (0.020) {0. 045) )
0. 045 —13. 80 0. 03676 0.03729 0. 04690
(0. 045) (0. 025) (0. 0225) (0. 0475)
0. 050 —13. 32 0. 03676 0. 03676 0. 05024
(0. 050) (0. 025) (0. 025) (0. 0500)
0. 055 —12. 86 0.03676 0. 03665 0.05273
(0. 055) (0. 025) (0. 0275) (0. 0525)
0. 060 —12. 44 0. 03676 0. 03719 .0. 05539
(0. 060) (0. 025) (0. 030) (0. 0550)
0. 065 ~12.03 0. 03676 0. 03811 0. 05805
(0. 065) {0. 025) (0. 0325) (0. 0575)
|
|




interaction. agy is positive, and has the value near as+as,. (In deep water, if a;=ag,

C1k1+Cﬁ
- k1+k2 (CIJ c2> O):

which is the intermediate value of the celerity of original two component wave. In the

Q2+ ase=agy is shown by (I-18)). This bound wave has the celerity-

expression of frequency spectrum this component situates in the region of high frequ-
ency as same as 4y and &, components. 4y is negative. The wave number is |4
—#,|, and becomes very small when %; approaches £;. In usual case the celerity becomes
near the group velocity of the first order wave (in the limit of ks=4,, it becomes the
group velocity). This wave shows low frequency wave which has its trouph in the
vicinity of the maximum amplitude of the compound wave of first order, and its crest
situates near the minimum amplitude of the compound wave. In this model, at the
case of 4, —=a;=1m, this second order long wave has the amplitude of about 4cm and
it is not so large.

M. S. Longuet-Higgins & R. W. Stewart (1962) pointed out this wave as one of
the interpretation of surf beats.* As this wave is a bound wave, it will disappear when
a; and @, vanish. L. J, Tick (1963), in his treatment of the second order frequency
spectrum, shows that the second order component rather concentrates in the region of

* There may be another surf beats caused by free long waves,

s coefficient of coefficient of cikiterks crki—erks
- Pue-m 24(2=—Tt F1+ kg Ei— ks
—0. 003154 —0. 3866 —0. 6631 1.745 78.91
(—0. 0075)
—0.001392 -0, 3987 —0. 7456 1.048 123.76
(—0. 0050)
—0. 000342 —0. 4178 —0. 5221 0.473 257. 40
(—0.0025)
0. 00 —0. 4435 —0. 8871 0. 000 0
(0. 00
—0. 000330 —0. 4750 —0. 9356 —0.393 —274.66
(—0. 0025)
—0. 001348 —0. 5070 —0. 9668 —0.730 —141. 24
(—0. 005)
—0. 002645 —0.5563 | —0.9765 —1.008 — 96.53
(~—0.0075)




low frequency. In this model, as shown in Table-1, |as| takes a figure up one place
from the case of deep water. But @i, is relatively small if it is compared with a§,+a},
+aZ;. The similar treatment in the case of continuous spectrum will be refered in Part II.
P (z=0)shows greater amplitude (about 8cm at water head) than the surface amplitude
as. This is a character of this bound wave. At the limit in which %, almost equals 4,
it is noticed that @, does not become zero, though in deep water case @., becomes zero.
The long wave that propagates with the group velocity of the first order wave exists.

In Table-2, @y and as are same as those in Table-1. The values of s, become a
little smaller than those in Table-1. It is noticeable that its celerity becomes very small,
and that at k,=0,05 the celerity becomes zero. So in this case waves become stationary
and do not depend on time and the combination of 2=k, and ¢;>>0, c;<0 means
physically the existence of the complete clapotic wave. The value of |ay,] is far smaller
than |@s| shown in Table-1, and is generally smaller than those in deep water. Both
of poy(z=0) and p,,(z=—h) are negative, and in concern with their absolute values the
values at the water bottom are greater than the values at the water surface. In short
|pos| of the secondary wave in the present case is far greater than the correspond am-
plitude of surface elevation. Stillmore the celerity of this wave is very large. and
becomes infinity (in the mathematical meaning) at 2,=0.05. In this case variations
concerned with @y, and ps, become the function of time only, periodic at the twofold
frequency of the primary wave. This term actually means the component of the two-
fold frequency in pressure variation, which is only related to time and has not the
corresponding surface disturbance. This phenomenon is explained as an important
feature of clapotic wave. When the wave number of the two components has some
difference each other, this effect varies gradually as shown in Table-2. This interaction
wave may be caught as one of typical bound waves, because of the large variation of
wave pressure against the negligible variation of surface profile.

By these computations, if %2, and %, are both positive and are not so different, the
interaction wave of wave number difference (b, —%,), when the first order waves have
the same direction ef progress, becomes a long wave which progresses to the same
direction as two first order waves.

In the case of which the to wcomponents of first order wave have reverse direction
of the progress each other, it becomes a twofold frequency term of the pressure vari-
ation in clapotic wave without any noticeable effect to water surface.

The result of these computations, if it is simplified, gives the strict expression of
complete clapotic wave of the second order. It is as follows,

£,=2a, cos kx cos kil (1-28)

=20 blklclco—siligh%cosklxcosklclt ' (1-29
1

C21+ng={—g’—aﬁklcoth“klh—%alzklcothklh}cosZk;xponglclt (1-30-1)




=
O

C23=—é—412k1 (cothkyh+tanhki)cos2lys 0 (I1-30D

Loy=0 (1-30-3

Doo=—pb %k 25“‘;&% Zz) (I1-31-D)

e pane L [ 3 cosh2k (ht2)
Dot 0bi'hy sinh® k2t 2 sinh%,h 2

}cosZklxcoszklclt (1-31-2)
Doy 0 bkt cos2bix (1-31-3
BT PN SnhT Rk !

p24:{——%pbﬁkﬁ@—l-coth?klk) +1p bﬁkf%ﬁg z)}cos kit (1-31-4)

Here relations between b, @; and ¢; are given by (]-21).

I-3 the two-dimensional case

The two components wave in the case of finite depth is treated two-dimensionally.

The first order wave is

_b COSh k1 (h+2) sin (Kl X— glt) +b COSI1k2ﬂsin (K2 X— O’zt) ( I —32)

LCCaT Y2y 2 nhg

Li=aicos(K . X—a:f) +ascos (Kp. X—aqt) (1-33)
Po=—pgz (I1-3D
plzpblﬂ'l%C% (K]_ X'_'O'_lt) +pb20' cosh kf_fk}:;_z) Cos (Kz X— O'gt)

(1-35
g i=ghitanhkh, o2=gkstanhk.h
biki=a,0,, boky=asss, oy, 032>0 (I-36)
| K| =k, | Ke| =k,
The second order wave is computed as

oy= 321—00522‘;‘112%;@ sin2 (Ky. X —o,) +322—C°S:i§ﬁsz’:;z) sin2 (Ky. X—a3t)

cosh| K, +K,| (h+2) . .
sinh| K+ K, 5 Sl B+ KD X—(orhedt}

cosh | K;—K; | (h+2)

+ By

+ Bay sin{ (K,—Kp) . X— (g,—0oo)t}

sinh|K,— K, |2
+Fconst.t (1-3D)
. 1 3 . , -
B = ok g—dofcoth2k 2 bi*ki®a1 (1—coth®eih) | (1-38-1)
1 3 5 . e
B = o oothtih 2 2 Pty (1—coth?eh) (1-38-2)

1 M1
|K1+K2 ig_ (0'1+0'2) 2C0th|K1+K2 | hL 2

—K,.K, cothklhcothkzh}_—l-Tazblklzg(tanhklh—_cothklh)

B b1b2(0'1+ 0'2) {klkg
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+%albgk22g(tanhkgh—cothk2h) +%a‘102 (@bofistabike)

—%gKl.Kz (albzco'fhkzh-i-azbwothklh):\ (1 -38-3)

— 1 -
B | K — K| g— (01—02) 2c:oth| K,—K,|al blb2 (o,—a) {kke

+K,. K, cothklhcothkzh}—!-Tazblkl ig(tanhk,hA—cothk k)

—L-a,byk g (tanhlyh—cothiey) +%ala2 (@iboky—asbiky)

— K. K, (albgcothkzh—azblcothklh)] (1-38-0)
const.=—-by%;*(1 —coth,f) -+—g-bs%ha? (1—coth®sh) (1-38-5)

Putting the second order wave profile &, in the form (;=Cp+8a+LestCos

£ :%[——-i—bﬁklﬂ (coth?kyh—1) 426, Byycoth2k, -+ %blz kﬁ]

Xeos? (K. X—aib) (I-39-1
sz 2%[_ %bgzkgz (coth2k2k— 1) + 20’232.2(20th 2k2h + ‘%bgz k22]
XCOSZ(Kg.X—'th) (I -39-2)

CBBZ%[_% {016 K, Kscothk heothkoh — b boks e}

+ (0,4 02) Bygeoth | K; + K | h+~%— (oybifeyas+oobokony) ] ‘
XCOS{ (K]_""Kg).X"‘ (0'1+0'2)t} (I _39_3)

Cu =%[— %{blszl.KgcbthkthOthkzk-l- blbzklkz}

+ (0'1_0'2) BMCDth | KI_K2| h+%(€1blklag+aﬂbzkzal)]

Xcos{ (K;—Ky) . X— (o1—0){} (I-39-4)
Putting pe=pag+pPautbas+PestPon
chn: 1 b 2k zslnhzk (k""Z) ]. b gk 25111].'1 kg (k+2)

sinh2k, 4 sinh®k.h (I-40-D)
_ cosh 2k, (h+2) _L ap, 2 1 — —40-
pgl_{zpa By 2D b bk eos2(KL X—ait)  (1-40-2
) .

_ COSthg(h""Z) 3L 2 lﬁ
pgﬁ_{z”"zB sinh2koh TPtk hﬁ_kzh

— cosh| K+ K| (h+2) _ 1
pn=[p(ort oD By soh| K.+ Klh 2 5 PbbeeEE T sk

% { KK coshk, (h+2) coshitg (h+2) —Eyftgsinkk, (h+2) sinhky (-+2) }]
Xcos{ (K;+Kp.X— (o101} ' (I-40-4)
— 19 —

}cosz (KpX—oif)  (1-40-3)




cosh |[Ki—Ky|(ht2) . 1 50 1
“sinh | K.—Kq| % 2 PUY%inhk. sinhkoh

® { K;.Kscoshk (h+2) coshky (h+2) +kikesinhky (h+-2) sinhk, (h+2) }]
XCOS{ (Kl—Kz) .X_' (Gl—ag)t} ( I "40"5)

A good example of two-dimensional two components wave is a case of the two-

PmZ[P (a1—02) B,

dimensional clapotic wave which has an oblique incident angle to a reflective wall,
Assuming that the vertical wall situates at x=0, we can put

a,=as

K. X=Fkcosfx+ksindy

K. X=—F;cosfx+ksintty

K, K;——Fk %cos2d

(K, +Ky) . X=2k;sinfy

(K;—K,).X—=2kcoslx

Fig- I -1 shows the relation of incident and reflective waves. Using (I -41), we have

v (1-41)

Ly =2a.cos{kcosfx) cos(ksinfy —ad) (1-42)
Do=—p82 _ (1-43)
b1 =2p5101%1i}:11h§;2—1:@cos (k;cos0x) cos (kysindy—aif) (1-49)

§21+ C%: {%—aﬁkl cothaklk—-%alzkl COthkl h}COS (2k10050x)

% cos2 (Bsinfy—a ) (1-45-1)
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§23:i[%bﬁklz{cos%coth?klh+ 3} 420, Bycoth (2k;sindh) ]

g
| X cos2 (kysinfy —oyf) . ' (I-45-2)
Ca=—g-:%:{cos20cothi -+ tanhyh Yeos2 kycost) % (1-45-3)
. 1.2 '
pro=—pbyt 08 Bl (1-46-1)
— Pbl?‘klz { 3 COSthl (h—I‘Z)
Pa1tPee sinh? &7 sinhk. 5 }cos 2k cosfx)
X cos2 (kisinfy—at) (I-46-2)
- cosh (2k, sinf) (h+2) _ bR 2
Pu [ZP 51 Bes b (k,sindh) + P Ginh? iy (00S20c0sh™e, (h+2)
+sinh®, (h4-2) }]cosz (kysindy— o) (1-46-3)
p“:% g%{coswcosh%l (h+2) —sinh2k, (h+2) }cos(2k cosfx) (] -46-4)
Here
blzﬂ'lkl — 2
Byy= "2k sinfg—4a,%coth (2k,sinfh) {3+ (2e0s26—=1) coth?; 4} (1-47)
ng-—-o

It is easily verified that this solution satisfies the boundary condition at x=0.

Lo1+Cos and po+pae show the second order wave peculiar to the incident and re-
flective first order waves, and they make a group of short-crested waves in accordance
with the short-crestedness of £;(=&y;+&3). This is usual one and has no special me-
aning. But we may see the special character of this system of second order wave at
a glance of {y and po,. Css and poy indicate the long-crested wave advancing to (+)
y direction along the vertical wall, At the case of #=0(incident ray becomes vertical
to the wall), Loy becomes zero, but ps, exists and it is a pressure variation of twofold
frequency of first order wave. It exactly agrees with p,, of (I-31-4). The pressure
variation of twofold frequency, which is the function of time only in the case of nor-
mal clapotis, thus becomes the long-crested progressive wave along the wall in the case
of two-dimensional reflection. An example of behavior of {3 and pyy is shown in
Table-3, and the change of &y should be marked with the increase of incident angle
#. This second order wave may have some relation to the Mach-reflection problem
pointed out by R.L. Wiegel (1964).

Loy and py, are the steady variation of the local water level (of the second order).
They are not dependent on the time, but the relation of {3 and pas shows that they
are the expressions of a exact bound wave, The wave mmbers of £ and o, are both
smaller than 2k, except the limiting case.

Table-3 is a numerical example of the present case. In this table g;==1m, k;=0.05

T_ . (Terms

m~! and 2=30m are taken, and the incident angle # is changed from 0 to 5
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Table-3

coeff. of | coeff. of | coeff. of | coeff. of || coeff. of' coeff. of
Cua Cog Daacz=m Drcz-m Dascz——ny | Doscz——i>

0° 0.05 0 0 0. 05025 —q.4435 0.04851 —0.8871) 0.04891

i} f1cosfl |k sind

5 0.04980] 0.00435| —0.00072| 0.04983]| —0.4506 0. 04480I —0.8599  0.04817

10 | 0.04924 0. 00868]| —0.00276 0.04858” _0.4706  0.03259)| —0.7857] 0.04596

15 0.04829 0.01294f —0.00536) O. 04655J —0. 4961 0.01265| —0.6751 0.04236

20 0.04698| 0.01710” —0.00768 004378 -—0.5187 ~-0.01441] —0.5628 0.03747

30 0. 04330  0.02500f —0. 00881 0.03644 —0.5299 —0.08643| —0.3526( 0.02445

40 0.03830| 0.03213| —0.00290| 0.02742| —0.4720] —0.1747 —0.2021] 0.00845

45 0.03535] Q. 03535| 0. 00299  0.02263|] —0.4141 —0.2217 || —0.1505 O

50 0.03213 0.03838 0.01120( 0.01783) —0.3329 —0. 2687 —0.1092| —0.00845

60 0.02500 0. 04330| 0.03007 0.00881) —0.1488 —0.3571 —0.0592 —0. 02445

70 0.01710| O. 04698,  0.05096  0.00147 0. 0558 —0. 4291 —0.0325| —0.03747

80 0.00868  0.04924| 0.06658 —0.00332 0.2159| —0.4761 | —-0.0200] —0. 04596

85 0.00435  0.04980 0. 07192 —0. 00457 0. 2613] —0. 4883 —0.0174) —0.04817
90 0 0.05 0.07351] —0.00499 0.2768[ —0. 4924 —0 0165 —0. 04891
coeff. of Cz]_"' ng p20(2=0) =—0. 4435 coeff. of pg‘l(,-::_k,) +
coeff. of Dorcz=m
0. 07353 S Pagget o | Bascemny —0.01652

of pressure may be expressed by the water head in metre unit, when the correspond
values in the table are divided by 9.8). When # is small, the values in Table-3 are

not so different from those of the normal clapotis. But, when & becomes large, many
complicated characters are shown, For instance the signs of &, and of ps(z=0) are

inverse each other at some values of 8. These properties reveal the intricate characters
of the second order bound waves, and they cannot be explained from wusual first order

free waves.

Part 1. The case of continuous spectra

II-1. forwards

The case of -continuous spectrum had already been treated oné-dimensionally by
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L. J. Tick (1959) in the case of deep water.

Concerning the case of the finite depth, he showed the brief explanation in the
second paper (1963), but the detailed computation is not published. In this part we make
computations of the cases of finite depth in one-dimension and also in two-dimension.

Waves do not contain reverse progressive components as same as in Tick’s com-
putation. We use the cartesian co-ordinate x, y, z, in which +x axis is the direction
of progress of waves in the one-dimensional treatment, and is the principal direction
of progress of waves in the two-dimensional treatment. z=o0 means the mean water
level in the first approximation, and z axis is positive downward. (this is inverse to z
axis in Part I, and is taken as same as in Tick’s computation.) z=d means the water
bottom. ' _

The author found, in the model experiment of development of wind waves, that
the nonlinear component of the frequency spectrum appears at the region of about two-
fold frequency of the spectrum peak in the case of finite depth of water. This is same
in the case of deep water. As our method of spectrum analysis in the model experiment
is analogue t.ype, there is some doubt that this nonlinear component is strengthened by
the nonlinearity of the analyser itself., To know the accurate phenomena of the nonli-
near effect caused by the dynamical and kinematical surface boundary conditions, we
need this computation of second order nonlinearity of continuous spectrum. Throughout
this computation we also assume the independence of the first order component waves
each other. This is one of the important assumptions in this problem and seems to be

consistent with the actual states of the sea.

II-2. one-dimensional case

The first order progressive wave is presented by Fourier-Stieltjes type expression

as one of real stationary process.

pW = j ¢il—sgn (@) |[F(@) |5+ 0834C, (&) cosh F(w) (z—d) (-1
P = Z-J"%ezt—sgn @) F@) l+at) 4L, (o) sinhF () d- F (o) (-2
Here w?=gF(w)tanhF(e)d (II-3)

For convenience of computation, we consider the case in which F(w)has the same

sign with o.
Putting %dcl (0)sinh F(0) d- F (@) =dC, () (-0

, (II-1) and (II-2) are presented by -
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(=)iwcoshF{w) (z—d) :

$ = .[gz‘t—sgn (@} | F(ad | v+oB) 4L,

— oo

P = .[gif—sgn(w)lF(w) |5+oB gy () (I-6)

¢® should be determined’ by
Brr® — ghy® =Py D gy (1 25, 0 G, (D — 5 (g, O __;_ (Pix D ® - ors Dy )
at z=0 (I-7)
Using(II-5), the right hand side of this perturbed equation is computed. We obtain

[Box o] 4 g= J" .[eif—{sgn (@) | F(@) | +5gn (@) | F(@) 2+ (o+0) :JdCz(‘”)zM

— 00— o0

% [ {(—Divwe'*F{w)coshF{w)d-coshF(w'jd
sinhF (o) d+sinhF{e") d« F(«’)

4 (=Dio’ w0t F(a') coshF(w") d+coshF () d]
sinhF(eNd+sinhF(w)d« F (o)

But this expression is rather tedious, and so we use the expression

(I-&

[= < B -]
(G2 DBy D] == I Ieif—{sgn @ |F @) +5gn (@) |F @) a0+ g, () dly (o)

—00—00

(—Diwe?F(w)coshF(w)d-coshF{aw’)d
sinhF(w)d+sinhF{oNdF{w')

, and other terms are treated in the same way. We use thé symmetrical form of the -

(I~

expression at the final form.
Computing the right hand side of (II-7), we obtain

(0 ®—g by {2))220;—_.‘" .[iwwmdcz (@) dEy (") el —F @) +Fe) ket o))

—_—0—0o0

—F( thF (@) d+cothF{ed . . ) f
X[ @)co FE‘;?,) cothF (") —2cothF(cu)d-cothF(a)’)d+1+g)((':t)7@]

(I-10)
Here sgn{w)|F(e)|+sgn(e’)|Flo")|=F(w)+F{o)

' (I -11)

are used under the arrangement of the same sign between F(w) and w. Using the
bottom boundary condition, we put

O = J" .[eif—{F(w)+F(w')}x+ @+NBGL, (@) dls (@) Glw, o)

— 00— 00 B

*cosh (F(w) +F (")) (z—d) +const. t (II-12)
Inserting ¢@® into (II-10), G(w, @) is determined. From here we put Flo)=Fk
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=

for simplicity. 7
iw wrz[_kCOthk(i::Othk’d_2cOthdeOthk,d+ 14 W (mr’._zl_ w)] 1
Glw, 0N = ; ; i @ {II-13)
—(0+o")%osh B+&)d+gk+EDsinh B+E)d
Then we determine 7® by

7@ =%¢ttz> + 21 P40 O +2Lg¢3(1) Gz +jgl—z¢“m¢=m (11-14)

g
It is clear that.const. t of ¢® relates to the constant term of ¥, and so it situates

to the zero frequency of frequency spectrum with no intluence on the concrete confi-
guration of the spectrum. By this reason we abbreviate the existence of comst. t of
¢@ in the following computations.

Computing the right hand side of (II-14),

C , [ kb ot
,)(m:jjem-(k+k)x+(w+w)z3[gww,—%—%
(@t 4 HEE 070y 40) 2] |
/ -1
t AP tanh G d— (@t o)? ]“2(‘")“2(“’) (1L-15)

We rewrite ([I-15) as

cr. , , kB | we' (o+w’)?
7@= [ [et-trmereran L2 4 000k )

—to—o0

nef 1 go'BPtgok'?, gkt | we' (o+te’)?
y T L2 ety it i 5 }]dt_f (@ dty(@)
glk+F [tanh |[k+F [d— (w+w')? 2 2

(I1-16)

(II-16) corresponds to relations (%) and (10)in Tick’s computation (1963). Using the
assumption that the first order wave is independent each other, the frequency spectrum

of the second order wave is expressed by

s<z)'(1)=jK(w, DHSDO A—a) SY (0) dow ) (IL-17)
m-—l—w’:;l_ J
Here
1 rgkkl—0) , 0Q—w)_ 2
K (o, D—T[ w(A—w) + g £
Zz{g(g_a,)kzq_gm_&—_@ 2gkk(2—w)+ w(z—w)_ﬁ}
+ o (A—w)l w(l—w) g L:\z (I-18)*
glk+k(Q—w) |tanh |+ Q—w) |d—2?

* Tn Tick’s computation (1959, 1963) coefficient —41ﬁ is taken to -;— in(m-18),

but _tll_ may be correct. k(i—w) means & as a function of i—e
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Fig -1 Frequency spectrum by analogue type analyzer

If we wish to use f (=;)—ﬂ) instead of 2,

<p®2>= (SO @di= [E® (fydfs.
<gwr>= [0 W do= [ E® (£rar

S0
E® ( £)=225® (D) =4n2jK(w, DS (i—e) SO (W) df
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or W ¢ F,— ) :
B B

= [ K@, DEO (e BO (£yar @

We can use (I[-19) instead of (II-17).

Fig-1I-1 is an example of the frequency spectrum of wind waves in an experimental
tank, and in this case the depth of water to the bottom is 15cm. So the waves must be
treated as one of the case of the finite water depth. The spectrum intensity corresponds
the (+)side distribution when the spectrum distributes from—oc to+o. The xZ-~freedom
of this frequency spectrum is very large and it is sufficiently reliable. As this spectrum
is obtained electrically by the frequency analysis of analogue type (W. ]. Pierson ]Jr.
(1954)), the nonlinear components obtained may include some mechanical influence,

0.100
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2} ‘
x— Elfx) fhom comfiutalion o
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[=]
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0,025 S -“x - uoD —
og %
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x
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» w [s]
x [
"
% »
XX oxoxoy %y % x 'Y % ]
0 ] x XX K g X g g X R o
D 1.0 2.0 ’ 3.0 4.0

Fig -2 The second order spectrum E®( f ;)
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Te

and we intend to check the degree of this influence using the computation of this
paragraph. l

As shown in Fig-II-1 we make the model of EW{f) of this spectrum excluding
the part which appears to be the nonlinear part clearly. By the numerical computation
of (II-18) and (I1-19), we find E® (f;) in this case, The result is shown in Fig-TT-2.
The low frequency second order part which is not found at the analogue determination
is clearly recognized. The other nonlinear part appears at the about twofold frequency
of the peak frequency, and is very similar to that obtained by analogue analysis, In
some places of this part the intensity determined by analogue type is greater, and
some mechanical influence may be effective. But its degree is not large. (The second

order spectrum of wind waves in experimental waterway may include the effect of

angular spreading of waves, and this effect may be infered later.)

When Fig-T-2 is compared with Fig-4~1-2 of L. J. Tick (1963), our result may
have some different property from those obtained by Tick.

11-3 the spectrum of wave pressure

The secondary interaction component may be also found in the spectrum of the
pressure record of pressure type wave height metre, and it is obvious that the relation
of the surface secondary component of wave profile spectrum with the second order
component of the pressure spectrum in water is not same with the simple formula (W.
J. Pierson Jr. (1954) of the first order component. The new relation for the second
order component is examined here.

From the integration of dynamic equation

)

PP —gz (I-20)
} ‘

pTL):_¢E{1) (H—Zl)
@

%2—95}2) _%95;1) 2_%9;5;1)2 (II-22)

From these relations, the spectrum of p® is determined. Because we neglect const.
t of ¢®, the spectrum of @ has an uncertainty at the component of zero frequency.
As the result of computations,

p(l):—PJei[nsm(m) [Rlz+wt) gL, (@% (IL-23)

—00

:Jeff—sgn () [kle+at)dl, (o) (TL-28)

[o ol -]
A= pU" Ieii —(s8n @) | [+580 @) £} e+ +0) 30, () dCa (@)

—r OO = 0O



(o) ~EE o BB | st op (' +a) Jeosh (r+ED —dD)
X — @+ @) %osh G+AN d+g e B)sinh B+ E)d

cosh(B—k") (z—d)
o’ s1nl1ka'smhk’d }] (II-25)

1

2

rr dtu(@) dl. (@ coshrdcoshtd
(= {k--2} wtw’

;[ .,‘; ¢ TEIEE R pg2coshk (z—d) cosh k' (z—d)

2 20 f 1 2 ’ - t ’ 7

x[ - (w +o") tcosh (k+£") d+-g (k4R sinh (k2 d
_ 1 cosh(z—&") (z—d) . _ i
2 ““ " sinhkdsinh%’d ] (1 -26)

Accordingly, the second order pressure spectrum is given by
Y

Sp® () g_iKp (@, DS (i—w) S» (@) do o . (I-2h
wtw' =21 J
Here
. ) 9 BQR—w)+R2A—0) o
Kp(w, ) = _coshkd cosh k(A—w)d . 32[—5’3 o O—a)a
»(@, D) '“T[pg‘“’coshk (z-f—d) coshk(A—w) (z— { —Xcosh(k+EA—w))d
@ \.osh (k+hQ—w)) @—d)

+g(k+k(2—w)) sinh (b-+kG—w))d

_ (R_m)cosh(k—k(ﬁ—-w)) (z—d) }]

@ sinhZdsinhz G—w)d S
When we know the first order spectrum of wave pressure at arbitrary point in
water®, we can compute its second order spectrum by making use of (II-27)and(II-

28). . If we use the unit of water head, {J[-27) is transformed to

(I-28)

S : SO G—0) SO () o -
- ,jngcz) s g de (129

On the other hand, the spectrum of wave profile at the surface is

5® (= [ K@) S® G—w)S® (@) dw "

S,® (A—w)  cosh?xQ—w)d S,®(w) cosh?kd

'—J‘K( 3) P cosh?2(i—w) @—d) o2t  cosh?k(z—d) dw
- s (I-30)

Here we applied the first order relation of conversion as

*  Actual spectrum always.contains the higher: order ‘interaction, so:the determination in this

case is a trial,




S®(w) _ cosh?kd o ‘
5:P(w) ~cosh®kz—d) = o (-3
pigt : , :
Combining (I1-29) and (II-30), we can obtain the second order relation of con-

version between wave profile and wave pressure as follows,
S cosh? E(A—w)d cosh%d

. K(w DS, A—w) Coshz_—k G—a) —d) »® (@ )Costh = d)dw
SOm . = .
g (082K (@S, ® G—0) S, (@ddo

(I-32)
K(w, 1), Ky(w, 2) are already given by (II1-18) and (II-28). (II-32) is a very
complicated relation in comparison with the first order relation (II-31). This may be
one reason of the fact that we cannot treat successfully the high frequency part of the
wave profile spectrum obtained in conversion from the bottom pressure spectrum by the
relation of (I[-31) only. The existence of noise in the pressure spectrum may add the
difficulty to this problem.

II-4 two-dimensional case'

The two-dimensional case is treated as follows.

U=, v=y, W= | (m-3%
$u — g, D=0 Cat z=0 - (I-30
7D =g, (U at z=0 (II-35)
$1a D — 6, D == gh, (05, D 2, Wy, I — 26, Mgy O — g, 0,0 —_L g 05
. N -g:
+ PP D) at z=0 (I1-36)
1 1 1 1 1
@=lgoyrlymgmilgogorlswmgm LD,
8= +2g¢ $ +2g¢ ] +2g¢*v Py +g2¢t gt
at z=0 - (-3
$ D=0 at z=d - (I1-38)
$:2=0 at z=d (II-39)
Using (11-38), we put '
§9 (3,5 D= [ i @, Hooshre—d) (4D

By the relation V% ® =0, —a*—a,®+7?=0 is introduced, and, if we put 7>0 in
this relation, |K|=#k, o=k cose, ay=F sina and y=k are formed. So (II-40) may
be rewritten as

[==]

P (x, y,2,8) = Igi(K.X+ﬁt)dC (K,B)cosh | K| (z—d) (I ;41)

—00



From the condition of real stationary process,
e?#qt (K,pcosh| K| (z—d) = (i~ 0td( (—K,B(—K)) cosh| K| (z—d))* (I -42)
Asterisk means the complex conjugate. From (II-34)

2—g|K|tanh|K|d (I1-43)
From (I1-42) and (I1-43)
B(K)=—B(—K) (I1-44)

Then we indicate the velocity vector of progressive wave as C+) and that of reverse
progressive wave as C©), and, using the condition of (I-44), we obtain

G (x, 9,2, D)= jes{x.x—sgn(x.cc+>) 1818de ™ (K cosh} K| (z—d)

4 Iei{K.X—sgn(K.C(—)) 18104L¢> (K)cosh| K| (z—d) (I -45)

(11-45) is the general expression of ¢, and, because we limit the problem to progre-

ssive waves, we use the first integral of (II-45). Omitting the (4) notation, we find

7@ by (II-35).

rs f(K.X—sgn(K.C) |8l8) |
po= [ |K1‘*’__Sgnzi(_c) (g[ sinh| Kld-d(K) (T-46)
Putting %Sir}h | K| d-dt(K)=de, (K
7}‘”:je"(K-X—Sgn(K-C)|ﬁ[‘)dC1‘(K) . (I-47)
Fisen(K.C i(K.X—sgn (K.C) 1319
50 (5, 9, 2, "‘)=rsgn(lKl)|ﬁ| e sinhle]d cosh| K| (z—d) d¢, (K)
(m-48)

Inserting ¢ of (I-48) into (I[-36), we can compute ¢®,
Const. t in ¢@ is also neglected in the present case.

6@ = j J"(;es{ (K+K) . X— (sgn (K.C) | fl-+s8n(K".€) |F )}

— 00— o0

cosh| K+K'| (z—d) _
X snh| K+ K'|d dt, (Kydg, (K" | (I-49

Here
c=1£ 1
2 —(sgn(K.C)| 8| +sgn(K'.C"Y|F [)%oth| K+ K'|d+g| K+ K'|
[|K|sgn(K.C) |B|coth| K|d+ | K |sgn(K'.C" | § |coth| K’ |d

K

1 IK.K! % |Blcoth | K| d+2K.KS88E-CD ) o) coih | K7 | d

| K|
—2sgn(K.C) |B| | K’ | tanh| K’ |d—2sgn(K’.C") | 8’| | K|tanh| K|d




—sgn(K.C) | 8| | K|tanh| K|d—sgn(K',C") | f'| | K’ |tanh| K"|d] (I -5Q0)
Using ¢® of (II-49), we obtain 7® by"'che relation of (I1-37).

7= f f 5 (sgn(K.C)|B|+sgn(K".C) | P12 G

1 ’ 1 K.K'sgn(K.C) | B{sgn(K'.C") | §'|
nggn(KC)lﬁlsgn(K’ ChH|p [+ _ KK

xcoth| K| deoth | K7 | d——L |K|tanh|K|d———|K’|tanh|K’|d:|

il (R4 K) X~ {sgn (K.0) | B} +sgn (K. |0 Nt (K de, (KY) (T -51)
We can put t=0 in (II1-51), and consider the two-dimensional random process
concerned with wave number K and K’. Using H(K, K’) expressed later,

yor= [ [ HQE K et 100, (B dty (K7 (I-52)

— 00— 00

We use K+K'=@Q ‘ (I1-53); corresponding to
@+’ =24 in one-dimensional case.

7® :j J' H(K,Q—K)ei®Xdl, (K)d,(Q—K) @5y

Then the two-dimensional wave profile spectrum of the second order may be shown
by -

e® () =JW(K,Q*D W (K)o (Q—K)dK _ (II-55)

In (I-55)P® (K) is the wave profile spectrum of the first order, and satisfies
the relation

<> =I@(1>(K)dK (I1-56)

Detailed expression of H(K,Q—K) is

HK,Q— {sgn(K.C) |B| +sgn ((Q—K).C") |B(Q—K) |}
K)= 2 —{sgn(K.C) | B +sgn((Q—K).C) [F(Q—K) | '+ 2| Q[tanh| Q[d

X [| K|sgn(K.C) | 8|coth| K| d+ | @—K|sgn (@—K).C) | 8(@—K) | coth| @—K|d

K (O— sgn{K.C) |B|coth| K|d K(Q— . sgn ({(@—I0).CM
+2K.(Q—K) K| +2K.(Q@—K) [0—EK]

x |(Q@—K) |coth| Q— K |d—2sgn (K.C) | 8| | @Q—K|tanb| Q—K|d
—2sgn{(@—K).C") |f(@—K) | K|tanh| K|d—sgn (K.C) | 8] | K|tanh |K]d
—sgn((@—K).C") |B(@—K) | | @—K|tanh| @— K| d)

—isgn (K.C) | flsgn((Q—K).C | B(@—K) |

+_+K(Q-—K)sgn(K C) |8|sgn((Q—K).C") | 3(@—K) IcothIKldCOtth —K|d
2g |K|[Q@—K]

— 25 —




—%IKltanthld—%l Q—K|tanh|Q—K|d | (I-57)

II-5 examples of two-dimensional case

In I[-4 we obtained the two-dimensional wave profile spectrum of the second
order. In this paragraph, by making use of the result of II-4, we make some numerical
computation to estimate how the influence is refered to the second order when the
first order wave has the angular spreading.

The first treatment is the case of the first order wave which has the following

properties; at the first order spectrum (i) [K]| is constant, and (i) from ——% to

—g— the intensity is not varied, and it has not the reverse progressive component.

This model indicates the case of an extreme angular spreading. In the Fourier-Stieltjes
type expression, the spectrum intensity of the first order wave spreads uniformly on
the circle of radius |K|. That is .
PO (K)=A Dirac(|K|—£#) (I1-58)
<pW2> concerned to this @V (K) is :

Lp0T> = I I A Dirac(| K| —Ey)kdkde’
0 —x
=Ak 2r (I-59
We compute then the second order wave number spectrum @@ (@), and express @
by Q={|'Q|, #}. After some computations, next three expressions are obtained by

the relation with angle 8, which is given by the definition cos B—ZI f‘}l,l, ; =4 =0,

(i) 0g|5|g%ﬂ

A%y’
c—1QP el

0 (1Q1,0)=1Hqo (K@~ K) = (TT-60)

|K|=|Q—K|=k |

2, | 8| cothkd+ (21 Q|1 — 4k, %cothkld—ﬁ |81k, tanhkyd
—4/8|*+g/Q[tanh[Q[d

| I2 kb 2 |ﬁ| 2 2
=k coth?k,d
——21§|B|2+21—g & 212 —kytanhk.d (I-61)

Hy (K,Q—K)=|8|

(G %—agwg% +d

20(|Q|.0) =1Ho* (K.Q— K)x/tlszikéial g (I-62)
| | (%—kﬁﬁ 8l coth®hyd .
He (K,Q— K)———Iﬁl2 % —kitanhk d  (T1-63)




(iii) %+ag|a|gﬁ '

252
0@ (| Q|.0)=4Hw*K,Q—K) \./4,31;?_?@2[@ L (I-64
Hy is given by (I-61). |

From these expressions, we obtain easily

2k : ’
<@ zj‘qj'(z) (@ dQ= gjﬁ:;‘z—__‘flﬁl%%[ffm?(K,Q—K) (1: — 2cos! |2‘3‘2ki1 )
() = A

+Ho?* (K, @—K)2o05 21 ] | (I-65)

The two-dimensional wave number spectrum of the secod order is expressed -by
(II-60),(IT1-62) and (II-64) in this case, and in the reference of (JI-51) we can see
that the first term of the right hand side integral of (J[-65) just means the power of
frequency spectrum at the twofold frequency of the first order power, and that the
second term just appears at the zero frequency. ]

The second treatment is the case when the power of the two-dimensional wave

number spectrum of the first order concentrates to a point. In Fourier-Stieltjes expre-

ssion
oW (K)=B Dirac(| K| —%) Dirac(@#)+B Dirac(| K| —k)Dirac(¢'—=)
(II -66)
, and <pM> jg
<pWi>=7Bk {I1-67)
If this <»W2> equals to <pM2> of (II-59),
=B (T-68)
T

P () in this case can be obtained by the computation of H (K,Q—K)- and by
“the integration concerned in K. <»®2> is expressed by

<p®> =jaﬁ<ﬂ> (QdQ.

The result of the computation is

9 3 1 2 1
(B2~ —02 A2k 4 2h Ao -
<y®*>=ga Atk {cothhd- (1+-5 1 i o) Ty - (I1-69)

The first term of the right hand side of (II-69) shows the power of frequency
spectrum at the twofold frequency, and the second term means the power at zero fre-

quency. This term at zero frequency relates to the disregard of const. t of ¢@ in(I1-49).

We use here the numerical example of Fig-1I-1 for the estimation of the distribu-
tion of <»®2> in (II-65) and (I[-69), and assume that the first order power all
concentrates to the peak of the spectrum in the frequency spectrum, So in the present

notations,



<pWt>=2, 4586cm?, fi=1.65¢c/s, %=0.1165cm™*, A=3.358%cm®

Using these numerical values, <:9<2)2> of (I-65) and of (I[-69) ‘are shown

numerically. . ~
L9DT> a5 ="0. 0284-+0. 00657 cm’* L NG V)
<P®2> (1169 ==0. 0659--0. 000151 cm? : . (-7

In both expressions, the first term in the right hand side appears at the twofold
frequency, and the second term situates at the zero frequency. From these expressions
we se€ that, in the frequency spectrum, the angilar spreadrng of the first order wave
decreases the second order component at the twofold frequency and increases the value
at the zero frequency. Though these examples are very simple defining [K| to a single
value, they show that the second order nonlinear component at the high frequency part
of the frequency spectrum is moderately controiled by the angular spreading of waves.

In Fig-1I-2 the estimated value of <2>, which obtained. in experiment near
the twofold frequency of the spectrum peak; is about 0.079%m?2, = and is greater than
the value of (I-71). This may be probably caused by the mechanical effect of the
analogue analyser.

-The author is grateful to mr. H. Takeda for his numerical .computation by the
computer, and alse to mr. H. Kato and mr. K. Takemura for their numerical computa-
tions.
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