港湾空港技術研究所 資料

TECHNICAL NOTE

OF

THE PORT AND AIRPORT RESEARCH INSTITUTE

No.1267 March 2013

地震動により損傷した桟橋 RC 上部工の残存性能評価

川端雄	自一郎
岩波	光保
加藤	絵万
西田	孝弘

独立行政法人 港湾空港技術研究所

Independent Administrative Institution, Port and Airport Research Institute, Japan 目

次

要 旨	3
1. 緒言 ···································	4
1.2 本研究の目的	4
 実験概要 2.1 試験体概要 	4 4
2.2 実験方法	7
 実験結果および考察 	8
3.1 地震時の桟橋の損傷過程	9
3.2 損傷を受けた桟橋上部工の残存性能	12
3.3 上部工が破壊した桟橋の残存水平耐力	17
4. 地震後における桟橋の供用可否判断に関する考察	17
5. 結言	18
6. おわりに	18
謝辞	18
参考文献	18
付録	20

Residual Structural Performance Evaluation of RC Superstructure of Open-Type Pier Damaged by Earthquake Ground Motion

Yuichiro KAWABATA* Mitsuyasu IWANAMI** Ema KATO* Takahiro NISHIDA***

Synopsis

The port facilities have been recognized as emergent supply transporting base in order to provide assistance for rehabilitation of disaster-affected areas. A system to evaluate the residual structural performance of the damaged facilities is required to judge whether the facility can be used or not. However, the method to evaluate the residual performance of earthquake-damaged piers has not been developed.

This paper deals with damage process during earthquake and residual structural performance after earthquake of reinforced concrete (RC) superstructure of pier. Cyclic horizontal loading tests on the 1/4 scaled models of pier were carried out in order to clarify failure process of pier during earthquake. After cyclic loading tests, static loading tests on the RC beams of pier were conducted to clarify residual structural performance of the RC beams. The relationship between damaged level by earthquake and residual load carrying capacity was experimentally investigated.

From the cyclic loading tests simulating earthquake, it was clarified that significant cracking and steel bar yielding occurred near the RC beam-steel pile junction. The residual load carrying capacity of the RC beam damaged by earthquake was above 60% of calculated non-damaged one even when the maximum horizontal displacement of pier reached 4 times of the displacement where the steel pile was yielded.

Key Words: open-type pier, superstructure, earthquake ground motion, residual structural performance

^{*} Senior Researcher, Structural Mechanics Division

^{**} Head, Structural Mechanics Division

^{***} Assistant Professor, Department of International Development Engineering, Tokyo Institute of Technology

³⁻¹⁻¹ Nagase, Yokosuka, 239-0826 Japan

Phone : +81-46-844-5059 Fax : +81-46-844-0255 e-mail: kawabata-y@pari.go.jp

地震動により損傷した桟橋 RC 上部工の残存性能評価

川端 雄一郎*・岩波 光保**・加藤 絵万*・西田 孝弘***

要 旨

地震後における被災地の迅速な復旧復興のため,港湾施設の重要性が東日本大震災によって再認 識されてきた.一方,現行の桟橋の耐震設計では,より合理的な断面決定が可能となるよう鋼管杭 および上部工に一定の損傷を許容している.しかしながら,地震動によって桟橋の構造部材が損傷 した場合,供用の不可もしくは限定的な利用などの判断を行う方法は確立されていない.したがっ て,桟橋の供用可否判断のためには,地震動によって損傷を受けた桟橋の残存耐力評価方法の構築 が不可欠である.

本論は、地震動による桟橋、特に上部工の損傷状態と残存性能を関連付けることを目的とし、実 験的に桟橋の損傷度と桟橋の残存性能の関係について検討した.まず地震動を模擬した載荷試験に より桟橋の損傷過程について検討した.その後上部工の載荷試験を行い、桟橋上部工の残存性能を 評価した.さらに、上部工を破壊させた上で桟橋の水平載荷試験を行い、上部工が破壊した桟橋の 水平耐力について検討した.

載荷試験の結果,桟橋の水平変位が大きくなると杭頭部近傍の回転変形が大きくなり,杭頭部に 損傷が集中することが分かった.これにより,地震動によって RC はりそのものに損傷が少ない状 態であっても,杭頭部周辺の損傷状態によって上部工の鉛直荷重に対する支持条件が変化すること で,桟橋上部工の残存性能は大きく影響されることがわかった.また上部工の載荷試験の結果から, 単純支持はりを仮定した健全な RC はりのせん断耐力の計算値に対して,4δ_yの最大水平変位を受け た桟橋上部工の残存耐力は 65%となることを明らかにした.さらに隣接するスパンの上部工が破壊 に至った場合,単純支持はりを仮定した RC はりのせん断耐力の 60%程度となること,上部工が破壊 壊した桟橋の残存水平耐力は無損傷の水平耐力とほぼ同等であることを示した.

キーワード: 桟橋, 上部工, 地震動, 残存性能

^{*} 構造研究チーム主任研究官

^{**} 構造研究チームリーダー

^{***} 前構造研究チーム特別研究員(現東京工業大学大学院理工学研究科 国際開発工学専攻) 〒239-0826 横須賀市長瀬3-1-1 港湾空港技術研究所

電話:046-844-5059 Fax:046-844-0255 e-mail:kawabata-y@pari.go.jp

1. 緒言

1.1 背景

港湾の係留施設のうち,桟橋構造は重力式等の他構造 形式と比較して一般に耐震性に優れた構造である.軟弱 地盤を多く有する地域では重力式構造は成立しない場合 もあり,桟橋構造が多く採用されている.また,桟橋構 造の被災事例として 1995 年の兵庫県南部地震の事例が 挙げられるが¹⁾,地震動そのものによる損傷ではなく, 海底地盤の液状化等に伴う地盤流動力によって鋼管杭が 損傷したことが原因と考えられている²⁾. 2011 年の東日 本大震災においても桟橋に顕著な被災はなく³⁾,これま での実績から考えても,桟橋構造が他構造形式の係留施 設と比較して耐震性に優れているといえる.

ところで、地震後における被災地の迅速な復旧復興の ため、港湾施設の重要性が東日本大震災によって再認識 されてきた.港湾施設は被災後における緊急物資の輸送 や被災地への人員派遣の拠点としても重要な役割を担う こととなる.現行の「港湾の施設の技術上の基準・同解 説」(以下、港湾基準)⁴⁾によると、緊急物資輸送対応の 耐震強化施設がこれに該当するが、迅速な被災地域の復 旧復興の観点からは、通常施設の活用も望まれる.

現行の桟橋の耐震設計では、より合理的な断面決定が 可能となるよう鋼管杭および RC 上部工(もしくは PC 上部工)に一定の損傷を許容している.港湾基準による と、L1 地震動に対しては杭の降伏や上部工の断面破壊が、 L2 地震動に対しては杭の全塑性箇所の個数や上部工の 断面破壊が照査される.設計では、上記の項目を基に施 設の使用性や復旧性が照査される.一方、実際に地震動 によって桟橋の構造部材が損傷した場合、供用の可否も しくは限定的な利用などの判断を行う方法は確立されて いない.したがって、被災後に迅速な桟橋の供用可否判 断を行うためには、地震動によって損傷を受けた桟橋の 残存耐力評価方法の構築が不可欠である.

これまでの桟橋の耐震設計に関する研究は主に地震時 水平耐力に関して検討されてきた^{例えば、5)}.一方,著者 らの知る限り,地震動によって損傷を受けた桟橋,特に 上部工の残存性能に関する研究はこれまでなされていな い.また,地震時において何かしらの影響により上部工 が破壊した場合,桟橋の限定的な供用が想定されるが, 船舶による接岸力や牽引力に対する桟橋の水平耐力につ いても明確ではない.

1.2 本研究の目的

地震動により損傷した桟橋の残存性能を評価するため

には、現場における臨時点検診断の方法や点検診断結果 を基にした性能評価技術などを構築する必要がある.そ こで本論は、研究の第一段階として、地震動による桟橋 上部工の損傷過程を明らかにし、また上部工の損傷状態 と残存性能を関連付けることを目的とした.具体的には、 まず地震動を模擬した載荷試験により桟橋、特に上部工 の損傷過程について検討した.その後上部工の載荷試験 を行い、桟橋上部工の残存性能を評価した.また、地震 動による桟橋の損傷レベルを変化させることで、桟橋の 損傷度と上部工の残存性能の関係について検討した.一 部の試験体については、上部工を破壊させた後に船舶に よる牽引力および接岸力を模擬した載荷試験を実施し、 上部工が破壊した桟橋の残存水平耐力について検討し た.

2. 実験概要

地震動を受けた桟橋上部工の残存鉛直耐力を明らかに するため,正負交番載荷による地震動を模擬した水平力 を作用させ,その後桟橋上部工の鉛直方向に3点曲げ載荷 試験を行った.また上部工が破壊した桟橋の残存水平耐 力を評価するため,上部工の曲げ載荷試験終了後に水平 方向への単調載荷試験を行った.以下に実験の概要を記 載する.

2.1 試験体概要

図-2.1 に試験体の形状および寸法を示す. 試験体は, ある実際の桟橋を対象施設として,その法線直角方向の 杭1列分を約1/4の縮尺でモデル化したものである.図 -2.1におけるA杭側が海側,C杭側が陸側となっている. 上部工のスパンは杭中心間で1250mmである. 試験体の 鋼管杭には,鋼種STK400,外径216.3mm,厚さ4.5mm のものを使用した.上部工はRCとし,幅300mm,高さ 300mmとした.また,鋼管杭と上部工の接合部にはハン チを設けた.上部工への鋼管杭の埋込長は,対象施設を 参考に250mmに設定した.

各試験体の基部を反力壁に強固に固定するため,鋼板 に鋼管杭を溶接した.また,鋼管杭に軸力を導入するこ とを目的として,鋼板内部を切削し,内部に PC 鋼棒や ボルトおよび球座を設置できるように加工した(図-2.1). PC 鋼棒を容易に挿入できるよう鋼管杭下縁から上部工 上縁まで塩ビパイプを配置した.桟橋の構造設計では, 仮想地表面から 1/β (β:杭の諸元と横方向地盤反力係数 で決定される特性値)の位置を仮想固定点とすることを

図-2.1 試験体の形状・寸法および変位計測箇所(単位:mm)

図-2.2 上部工の配筋図およびひずみ計測箇所(単位:mm)

考慮して、仮想固定点以深には鋼管杭よりも外径の大き な鋼管を配置し、鋼管杭との隙間にグラウトを充填する ことで補強することで仮想固定点を模擬した.また、一 般に上部工下縁から鋼管杭外径分(1D)の位置までコン クリートの中詰めが行われるため、上部工の下縁から 250mmの位置に鋼板を配置し、4箇所点溶接を行ったう えでコンクリートを充填した.

図-2.2 に上部工の配筋および杭頭部の接合状況を示 す.配筋の設定方法について,まず対象施設の対象断面 について構造計算を行い,鋼管杭の全塑性モーメント, 正曲げ,負曲げ方向の上部工の曲げ耐力およびせん断耐 力を求めた.次に,対象施設の部材の各耐力の比率にほ ぼ合致するよう試験体の配筋を決定した.主鉄筋は鋼管 杭に溶接されたつばプレートに溶接した.ハンチ筋につ いては,つばプレートの一部を削孔した後に鉄筋を挿入 し,つばプレートと鉄筋の接触部を溶接した.杭頭近傍 の折曲げ鉄筋については,鋼管との接触部を溶接し,下 端筋側に曲げ下げて配置した.

図-2.1 および図-2.2 には変位および鉄筋ひずみの計

表-2.1	コンクリー	トおよびグラウ	トの物理的性質
-------	-------	---------	---------

	圧縮強度	ヤング係数	
	(N/mm ²)	(kN/mm ²)	
上部エコンクリート	55.9	33.1	
中詰コンクリート	58.6	33.1	
グラウト	69.5	-	

表-2.2 鉄筋および鋼管の物理的性質

	降伏点	引張強さ	ヤング係数
	(N/mm^2)	(N/mm^2)	(kN/mm ²)
D6	339	526	179
D10	375	521	179
D13	350	488	179
D16	383	559	180
STK400	407	493	-

測箇所を示している.また,鋼管ひずみについては,そ れぞれの鋼管に対して上部工下縁から 50,150,250,300, 800,1800,2800,350,3400,3700,3750mmの距離の 海側および陸側に貼付した.

表-2.1にコンクリートおよびグラウトの物理的性質を, 表-2.2に鉄筋および鋼管の物理的性質を示す.本実験で 用いたコンクリートは一般的な桟橋上部工のコンクリー トと比較して強度が高くなっている.

2.2 実験方法

(1) 載荷方法

図-2.3 に正負交番載荷試験の方法を示す. 試験体は寝 かせた状態とし、基部を反力壁に PC 鋼棒で強固に固定 した.上部工はローラー支承に載せ、上部工と支承間に はブリキ板を挟んで支承と上部工の間の摩擦を低減した.

上部工の自重や上載荷重により鋼管杭に導入される軸 力を模擬するため、塩ビ管内に PC 鋼棒を挿入し, PC 鋼 棒を緊張することで軸力を導入した. PC 鋼棒にはセンタ ーホールジャッキとロードセルを挿入し、軸力を管理し た.この時,正負交番載荷試験による水平変位が生じた 際に軸力が均等に作用するよう上部工側および基部側に 球座を設置した(図-2.1).表-2.3 に各鋼管杭に導入し た軸力を示す.対象施設の自重や上載荷重を参考に,A 杭および C 杭に 100kN,B 杭に 50kN それぞれ軸力を導 入した.これは,降伏軸力に対して A 杭および C 杭で約 10%,B 杭で約 5%の荷重である.

上部工は,油圧両動ジャッキに連結するため,治具とPC 鋼棒で挟んだ.この時,PC鋼棒により上部工の軸方向の 変形が抑制されないようPC鋼棒のひずみが50µ以下とな るよう管理した.また,両動油圧ジャッキは反力壁,上 部工と治具を介して連結した.

(2) 正負交番載荷試験

地震時の桟橋の挙動では、主たる地震動が上部工の重 心位置に作用すると考えられるため、本実験ではこれを 模擬するために上部工の位置に繰返し水平荷重を作用さ せた.地震荷重に相当する水平荷重は、両動油圧ジャッ キを用いて作用させた.

本実験では、図-2.3に示すように、試験体について押 し引きを繰り返す正負交番載荷試験を行った.まず、鋼 管杭のひずみが降伏ひずみに達した時点の水平変位を基 準として繰返し載荷を行った.本実験では、押しは図-2.3 において右から左(陸から海)に油圧ジャッキが押す方 向とし、荷重を(+)とした.また、引きは左から右(海 から陸)に油圧ジャッキが引く方向であり、荷重を(-)

とした.また,各載荷ステップにおいて,載荷は押し側 から開始した.

実験は以下に示す方法にて行った。まず,正負交番載 荷試験にて試験体を変形させ,鋼管杭のひずみが降伏ひ ずみに達した時点の押し側の水平変位と引き側の水平変 位を平均した値を基準の降伏変位18_yとした.18_yにおい て3回繰返し押し引き載荷を実施した後,降伏変位を整数 倍に増加させながら3回繰返し押し引き載荷を行った.以 降,本論では,降伏変位の整数倍を載荷レベルとして記 載する.また,載荷レベルと繰返し回数について,(載荷 レベル)-(繰返し回数)として表す.例えば,+38_yの繰 返し回数3回目であれば,+38_y-3と表記する.

実験では,試験体の最大耐力以後のポストピーク領域 (No.1, 4δ_y),最大耐力のピーク時(No.2, 3δ_y),鋼管杭 の降伏時(No.3, 1δ_y),の3水準の正負交番載荷試験(2.2 (2))を行った後に上部工の静的載荷試験(2.2 (3))を 行った.

No.1試験体では、 $1\delta_y$ 、 $2\delta_y$ 、 $3\delta_y$ まで押し引き載荷をそれ ぞれ3回繰り返した後、 $4\delta_y$ において1回のみ押し引き載荷 を実施した.

No.2試験体では、No.1の荷重変位曲線において+3 δ_y -1で 最大荷重を示したため、3 δ_y における繰返し回数は1回とし た. すなわち、1 δ_y および2 δ_y までは繰返し回数を3回とし、 その後3 δ_y では1回のみ押し引き載荷を実施した.

No.3試験体では、18_vにおいて3回繰返し載荷を行い、正 負交番載荷試験を終了した.

(3) 上部工の静的載荷試験

所定の正負交番載荷を終了した後に水平変位と水平荷 重をゼロ(初期状態)とし,上部工の静的載荷試験を行 った.静的載荷試験では,図-2.4に示すように反力床に 固定した柱に油圧ジャッキを連結し,ロードセルおよび 球座,鋼板を介して上部工に対して鋼管杭軸方向に荷重 を与えた.載荷幅は100mmである.また,静的載荷試験 時には水平方向を拘束しないよう,正負交番載荷用の両 動油圧ジャッキ等は連結しなかった.正負交番載荷用の両 動油圧ジャッキ等は連結しなかった.正負交番載荷試験 と同様,**表**-2.3に示す軸力を各杭に導入した.上部工の 静的載荷試験はBC杭間,AB杭間の順に行った.本論では, 静的載荷試験により最大荷重から荷重低下を生じた時点 を破壊と定義した.したがって,AB杭間の載荷試験結果 は,隣接スパンが破壊した場合の上部工の残存耐力を評 価しているものと位置付けている.

(4) 桟橋の水平載荷試験

上部工の静的載荷試験が終了したNo.2, No.3について, 鉛直荷重をゼロとし,再度桟橋の水平載荷試験を行った. 水平載荷試験では押し引きによる正負交番載荷は実施せ ず,No.2では引き側への単調載荷(接岸力)とし,No.3 では押し側への単調載荷(牽引力)とした.本実験は上 部工が破壊した状態の桟橋の残存水平耐力を明らかにす ることを目的としている.本実験で得られた水平荷重-水 平変位関係については,上部工が破壊していない状態で 正負交番載荷試験を実施したNo.1と比較した.正負交番 載荷試験および上部工の静的載荷試験により損傷を受け た試験体の水平載荷試験(No.2,No.3)と無損傷の試験 体の正負交番載荷試験(No.1)を単純には比較できない が,一般的な傾向を把握するため,実験を実施した.

実験結果および考察

本章では,まず正負交番載荷試験および静的水平載荷 試験の結果から,地震時における桟橋,特に上部工の損

傷過程について検討した.次に上部工の静的載荷試験, 桟橋の水平載荷試験の結果から,地震動により損傷を受 けた上部工の構造性能,上部工が破壊した桟橋の残存水 平耐力について検討した.

3.1 地震時の桟橋の損傷過程

本節では,正負交番載荷試験により地震時における試 験体の損傷過程について検討した.以下に全体系の挙動 (荷重-変位関係)と各部材の損傷過程について示す.

(1) 荷重-変位関係

図-3.1~図-3.3にNo.1~No.3の水平荷重-水平変位関 係を示す.降伏変位はそれぞれNo.1で29mm, No.2で28mm, No.3で30mmであった.

No.1 試験体では、+3 δ_y において水平荷重が最大となり、 最大値は 104kN であった.引き側も同様に-3 δ_y において 水平荷重が最大となり、最大値は-97kN であった.+3 δ_y を超過すると水平荷重は最大荷重よりも小さくなり、 +4 δ_y -1の載荷途中である水平変位 96mm においてA 杭基 部において溶接部の一部が破断した.その後-4 δ_y -1の載 荷途中にてA 杭基部の溶接部破断の進行が確認されたた め、水平変位-81mm で載荷を終了した.

No.2 試験体は+3 δ_{y} -1 において No.1 試験体と類似した 値を示したが, -3 δ_{y} -1 では No.1 試験体よりも最大荷重が 大きくなった. また, No.3 試験体は押し引きともに 1 δ_{y} となった時点の水平変位および水平荷重が No.1 試験体, No.2 試験体とほぼ同値であった.

それぞれの試験体においてピーク付近の挙動など,わ ずかに傾向が異なる箇所は認められた.これは試験体間 の寸法精度に起因するものと考えられたが,それぞれの 載荷ステップにおける上部工の損傷状況は類似していた ため,基本的にはそれぞれの試験体を比較して問題ない ものと考えた.

(2) 鋼管杭の損傷過程(No.1試験体)

図-3.4 に No.1 試験体の代表的な載荷ステップにおける鋼管のひずみ分布を示す. なお, 鋼管杭のひずみは同 一杭において海側と陸側を計測したため, 凡例は【杭-計測箇所】として示している.また, 初期の軸力の導入 によって A 杭, B 杭, C 杭には圧縮ひずみがそれぞれ約 150µ, 100µ, 150µ 導入されている.

+1 δ_y -1 では、A 杭海側の上部工からの距離 250mmの箇 所(中詰コンクリートとの境界部)の引張ひずみが降伏 ひずみに達した. -1 δ_y -1 では、C 杭陸側の上部工からの 距離 250mmの中詰コンクリートとの境界部において圧 縮ひずみが降伏ひずみに達した. この時点では、その他 の箇所に塑性化の傾向は認められなかった. +2 δ_y -1 では、 A 杭および B 杭で上部工との接合部付近と基部が降伏ひ ずみに達した. C 杭では基部から 50mm の箇所が降伏ひ ずみに達した. その後、各箇所が降伏に達し、+3 δ_y -1 で は、A 杭 B 杭ともに接合部および基部において塑性化が 進行したが、C 杭陸側の接合部付近ではひずみが降伏ひ

図-3.6 下端筋のひずみ分布 (No.1)

ずみに達していなかった. $-3\delta_{y}$ -1 においても C 杭陸側の 接合部付近は塑性化しなかったが, C 杭海側のひずみは 非常に大きくなった. さらに+ $4\delta_{y}$ -1 となると, C 杭基部 において鋼管の膨らみが生じており,局部座屈の兆候が 認められた. しかしながら最終的には,上述した通り A 杭海側の基部の溶接部が破断した. このため, A 杭陸側 の引張ひずみが開放され,残留ひずみのみが計測され, A 杭陸側の+ $4\delta_{y}$ -1 における引張ひずみが+ $3\delta_{y}$ -1 の時点よ りも小さくなったものと考えられた.

(3) 上部工の損傷過程(No.1試験体)

図-3.5 および図-3.6 に No.1 試験体の代表的な載荷ス テップにおける上端筋および下端筋のひずみ分布を示 す.図-3.5 より,載荷ステップの進行に伴って A 杭と C 杭の直上の上端筋ひずみが増加した.-3δy-1 まで,押 し載荷時には A 杭直上のひずみが増加し,引き載荷時 には C 杭直上のひずみが大きくなった.B 杭直上の上端 筋は+3δy-1 までは A 杭, C 杭よりも小さかったが,-3δy-1 において降伏し, A 杭直上のひずみとほぼ同値となった.

図-3.8 ハンチ筋のひずみ分布 (No.1)

+4 δ_y -1 では、B 杭直上のひずみが急激に増加し、A 杭お よび C 杭のひずみも増加の傾向を示した.なお、BC 杭 間スパン中央の上端筋は- $3\delta_y$ -3 にて降伏に至った.一方、 図-3.6 より、下端筋のひずみは全て弾性範囲内であっ た.ひずみの発生傾向として、押し載荷時には AB 杭間 のB 杭近傍のひずみと BC 杭間の C 杭近傍のひずみが大 きくなり、引き載荷時には AB 杭間の A 杭近傍のひずみ と BC 杭間の B 杭近傍のひずみが大きくなった.

図-3.7および図-3.8にNo.1試験体の代表的な載荷ステ ップにおけるせん断補強筋およびハンチ筋のひずみ分布 を示す.せん断補強筋についても下端筋同様,ひずみは 弾性範囲内であった.特徴的な点として,押し載荷時に おいてA杭近傍のせん断補強筋の引張ひずみが大きくな る点が挙げられる.また,-2δ_y-1においてAB杭間のA杭の ハンチ筋が降伏した.また,-3δ_y-1においてBC杭間のB杭 側,+4δ_y-1においてBC杭間のB杭側のハンチ筋も降伏した. (4)上部工の損傷状況

図-3.9に正負交番載荷試験終了後のNo.1およびNo.2試

(b) No.2 試験体 (3δ_y)図-3.9 鉄筋降伏箇所(正負交番載荷終了後)

験体のひずみ計測箇所のうちの降伏箇所を×印で示す. なお,図中の三角印(△)は、ひずみを計測していない ものの、コンクリート表面に発生したひび割れ幅から降 伏に至っていることが推測された箇所である.また, No.3 試験体では,計測箇所における鉄筋の降伏は認められな かったため,図示していない.図より, No.1では折曲げ 鉄筋が降伏していないのに対して、No.2では降伏した. また, No.1ではC杭近傍のハンチ筋が降伏していない(最 大値1682µ)のに対して、No.2では降伏した(最大値2251µ). このような損傷状況の差は、試験体間の寸法誤差等に起 因するものと考えられるが、地震動を受けた桟橋上部工 の損傷箇所として, 杭頭部近傍に鉄筋の降伏が集中する ことは共通している.これは、杭頭部の回転変形による ものと考えられる. 代表例として, 図-3.10にNo.1試験体 B杭の荷重-回転角関係を示す.図より、荷重-変位関係と 同様、荷重の増加に伴って杭頭部の回転変形が非線形的 に大きくなっていることがわかる.これらの結果から,1δ_v 程度の最大水平変位では上部工の鉄筋は降伏しないが, 3δ_ν(最大荷重)以上の水平変位が作用すると杭頭部近傍 の回転変形が大きくなり、ハンチ筋や上端筋、折曲げ鉄 筋等が降伏するといえる.

図-3.11 に、正負交番載荷試験終了後の各試験体の側 面および下面のひび割れ状況を示す.はり部におけるひ び割れは少なく、またひび割れ幅も小さかった.ひび割 れは杭頭部周辺に集中しており、No.1、No.2 試験体で はかぶりの剥落も認められた.No.1とNo.2を比較する と、No.1の方が B 杭にひび割れが多数発生している. これは、3δyの1サイクル目において B 杭周辺の上端筋 やハンチ筋が降伏し、その後の2サイクルによって損傷

が進展したためと考えられ,鉄筋の損傷過程と整合して いる.また,No.3 試験体に着目すると,18,ではC杭に 最も多くひび割れが発生している.これは,他の試験体 においても同様の傾向を示した.ひび割れの発生・進展 という観点から上部工の損傷過程を整理すると,陸側杭 頭部,海側杭頭部,中間杭頭部という順に,より多数の ひび割れが発生するといえる.横田らが実施した類似の 実験⁵⁾のうち軸力管理した実験の結果では,海側と陸側 の杭頭部からひび割れが発生しており,本実験成果と概 ね整合している(**付録 3**).

これらの結果から,地震の臨時点検診断において,杭 頭部のひび割れ発生状況を確認することで,上部工の損 傷状態を定性的に評価することができると考えられる. すなわち,陸側など,一部の杭頭部にのみひび割れが集 中しているのであれば,地震動による上部工の損傷はさ ほど大きくないと判断され,全ての杭頭部にひび割れが 発生している場合には,上部工は大きな損傷を受けてい る可能性を疑う必要がある.実際の桟橋上部工は鉄筋腐 食等が生じている場合が多々あり,これらによって上部 工の損傷過程が変化する可能性を指摘できる.また,実 際には水平力のみでなく,地盤流動力による杭の引込み に伴う鉛直力の作用も生じる.これらの点については今 後の検討課題としたい.

3.2 損傷を受けた桟橋上部工の残存性能

本節では,正負交番載荷試験が終了した試験体の上部 工の静的載荷試験を行い,損傷した桟橋上部工の構造性 能について検討した.表-3.1に各試験体の主要な荷重お よび変位の実験値を示す.なお,上部工の静的載荷試験 では,上部工の支持条件が明確ではなく,鋼管杭による 鉛直荷重への抵抗分が含まれることが容易に想定できる が,この点については検討しなかった.以下に,杭間ス パンごとの上部工の静的載荷試験結果を示す.

(1) BC 杭間

図-3.12~図-3.14に BC 杭間の静的載荷試験における 各試験体の鉛直荷重-鉛直変位関係を示す.なお,本図に おける鉛直変位は,スパン中央の変位を不動点から求め た絶対変位であり,支点部の変形を含めた相対変位では ない.

No.1 試験体では, 鉛直荷重 175kN で部材が降伏し, 鉛 直荷重 255kN でC杭から載荷点に向かって斜めひび割れ が発生した.その後,荷重の増加に伴って斜めひび割れ が開口し, 鉛直荷重 277kN をピークとして荷重が低下し た.図-3.15 に各鉄筋ひずみと荷重の関係を示す.鉛直 荷重 175kN においてスパン中央の下端筋が降伏した.最 大荷重に近い荷重レベルでは,C杭近傍のハンチ筋や折 曲げ鉄筋,せん断補強筋のひずみが急激に増加しており, 斜めひび割れが発生・進展したことと整合した.

No.2 試験体では、鉛直荷重 175kN で B 杭から載荷点 に向かって斜めひび割れが発生し、部材剛性の低下が緩 やかに生じた.最大荷重は 263kN であった.最大荷重時 の変位は 9mm であり、No.1の 14mm と比較して小さく なった.図-3.16 に各鉄筋ひずみと荷重の関係を示す.B 杭側に着目すると、鉛直荷重 175kN においてせん断補強 筋のひずみが急激に増加した.また、この時、ハンチ筋 も 800µ 程度増加した.一方、C 杭側ではハンチ筋のひず みにはほとんど変化が無く、せん断補強筋のひずみ増加 も B 杭側と比較して小さかった.折曲げ鉄筋については 鉛直荷重 96kN にてひずみの増加傾向に変化が認められ たが、その後、最大荷重までほぼ同じ勾配でひずみが増

(f) No.3 試験体(1δ_y)下面 図-3.11 上部工のひび割れ図(正負交番載荷終了後)

表-3.1 試験体の主要な荷重および変位の実験値

		降伏 荷重 (kN)	降伏荷重 時変位 (mm)	最大 荷重 (kN)	最大荷重 時変位 (mm)
BC	No.1	175	4	277	14
杭	No.2	177	4	263	9
間	No.3	196	2	431	26
AB	No.1	150	3	234	12
杭	No.2	150	3	307	16
間	No.3	150	2	320	14

加した.

No.3 試験体について, 鉛直荷重 196kN 付近から徐々に 部材剛性の低下が認められた.最大荷重は431kN であり, 他の試験体よりも 60%程度高かった.最大荷重時には, B 杭側せん断スパンにおいて,つばプレート先端付近か らせん断スパン中央上縁に向かって斜めひび割れが発 生・進展していた.最大荷重時の変位は 26mm であり, 他の試験体よりも大きな変形性能を示した.図-3.17 に 各鉄筋ひずみと荷重の関係を示す.鉛直荷重 70kN 程度 からスパン中央の下端筋の引張ひずみが増加し,196kN 程度で降伏ひずみに達した.その後約 300kN でひずみが 急激に増加した.No.3 試験体は他試験体と同様,せん断

図-3.12 荷重-変位関係(No.1, BC 杭間)

図-3.13 荷重-変位関係 (No.2, BC 杭間)

図-3.14 荷重-変位関係 (No.3, BC 杭間)

図-3.15 荷重-ひずみ関係(No.1, BC 杭間)

図-3.16 荷重-ひずみ関係 (No.2, BC 杭間)

図-3.17 荷重-ひずみ関係 (No.3, BC 杭間)

図-3.18 荷重-変位関係 (No.1, AB 杭間)

図-3.19 荷重-変位関係(No.2, AB 杭間)

図-3.20 荷重-変位関係 (No.3, AB 杭間)

図-3.21 荷重-ひずみ関係 (No.1, AB 杭間)

図-3.22 荷重-ひずみ関係 (No.2, AB 杭間)

図-3.23 荷重-ひずみ関係 (No.3, AB 杭間)

破壊により終局となったものの, B 杭側せん断スパン においてつばプレートからせん断スパン中央の上縁に斜 めひび割れが発生したため, ひずみ計測位置のせん断補 強筋やハンチ筋, 折曲げ鉄筋は降伏していなかった.

(2) AB 杭間

図-3.18~図-3.20 に AB 杭間の静的載荷試験におけ る各試験体の鉛直荷重-鉛直変位関係を示す.上述した 通り, BC 杭間スパン破壊後に AB 杭間スパンの載荷試 験を行ったため,本試験は隣接スパンが破壊した場合の 残存耐力を想定している.

図より,いずれの試験体も鉛直荷重 150kN 程度まで は同様の荷重-変位関係を示したが,降伏後の剛性と最 大荷重に差が認められた. No.2 試験体および No.3 試験 体の最大荷重は,それぞれ No.1 試験体よりも約 31%, 37%大きかった. BC 杭間とは鉄筋比等が異なるため純 粋な比較はできないが, BC 杭間と比較して先行載荷に よる損傷度の差が小さくなった.これは BC 杭間スパン が破壊したことによって B 杭近傍の鉄筋およびコンク リートの損傷が進行したことが要因の一つと考えられ る.以下に各試験体の損傷過程を示す.

No.1 試験体では最大荷重 234kN で斜めひび割れが B 杭から載荷点に向かって発生し,荷重低下を生じた.最 大荷重時の変位は 12mm であった.図-3.21 に各鉄筋ひ ずみと荷重の関係を示す.スパン中央の下端筋の引張ひ ずみが鉛直荷重 150kN で降伏し,その後も荷重の増大 に伴ってひずみも増加した.荷重が最大荷重に近くなる と,B杭側のせん断補強筋が降伏した.なお,A杭およ び B 杭のハンチ筋は正負交番載荷試験において既に降 伏している.

No.2 試験体では降伏剛性が No.1 試験体よりも高く, 最大荷重は 307kN であった.最大荷重時において B 杭 のつばプレート先端からせん断スパン中央に向かって 斜めひび割れが大きく開口したため荷重が低下した.図 -3.22 に各鉄筋ひずみと荷重の関係を示す.鉛直荷重 240kN でスパン中央の下端筋が降伏した.A 杭側のハン チ筋および折曲げ鉄筋は既に正負交番載荷試験で降伏 しているが,A 杭側のせん断補強筋も鉛直荷重 240kN で新たに降伏した.B 杭側のハンチ筋およびせん断補強 筋は弾性範囲のひずみを示した.これは,No.3 試験体 の BC 杭間の載荷試験結果と同様,ひび割れの発生箇所 が計測位置と異なったためである.

No.3 試験体は降伏剛性が最も高く,最大荷重は 320kN, 最大荷重時の変位は 14mm であり, B 杭側のせん断スパ ンに生じた斜めひび割れの開口により荷重低下に至っ た.図-3.23 に各鉄筋ひずみと荷重の関係を示す.鉛直

(f) No.3 試験体(1δ_y)下面図-3.24 上部工のひび割れ図(静的載荷終了後)

荷重約 150kN で下端筋が降伏し,最大荷重時には B 杭 側せん断スパンの斜めひび割れによりせん断補強筋が 降伏した.一方,A 杭側のハンチ筋やせん断補強筋,折 曲げ鉄筋はいずれも数百 μ と弾性範囲内で挙動した.

図-3.24に上部工の静的載荷試験を終了した各試験体の側面および下面のひび割れ状況を示す.なお,図中には,各スパンの破壊に寄与したと考えられる斜めひび割れを太線で示している.図より,曲げひび割れはいずれの試験体も数本であった.また,正負交番載荷試験で大きな損傷を受けた試験体ほど,静的載荷試験による杭頭部のひび割れ発生本数は少なかった.また,正負交番載荷試験で大きな損傷を受けた試験体ほど,静的載荷による最大ひび割れ幅は大きく,いずれの試験体においても杭頭部にかぶりの剥落が認められた.

(3)破壊機構に関する考察

上述した通り,残存耐力の観点では,正負交番載荷に よる損傷をほとんど受けていない No.3 の上部工の最大 荷重が最も大きく,水平荷重によって受けた桟橋の最大 変位が大きいほど上部工の最大荷重が小さくなる傾向 が認められた.また,変形性能の観点では,明確な傾向 は認められなかった.

図-3.24 からわかるように、BC 杭間において、No.1

試験体では C 杭側せん断スパンで破壊に至ったのに対 して,他の試験体はいずれもB杭側であった.BC杭間 スパンでは、主鉄筋比や折曲げ鉄筋等の存在によって C 側のせん断スパンのせん断耐力が B 側のせん断スパン 側よりもわずかながら大きい.しかしながら, No.1 試 験体では正負交番載荷試験終了時点で C 杭側の杭頭部 近傍の鉄筋が降伏していなかったため、C 杭側の接合条 件が鉛直荷重に対して B 杭よりも比較的剛になってお り、より大きなせん断力を受け持ったものと推定される. 一方, No.2 試験体では B 杭 C 杭ともに杭頭部近傍にハ ンチ筋の降伏が生じており,B杭C杭ともに類似した接 合条件になったと考えられる.したがって, B 側のせん 断スパンにおいて破壊に至ったものと考えることがで きる. No.3 試験体は、正負交番載荷試験においてほと んど損傷を受けていないため, B 杭側せん断スパンに斜 めひび割れが発生・進展したと考えられる.

一方, AB 杭間では,全ての試験体が B 杭側せん断ス パンで破壊に至った. AB 杭間では, B 側せん断スパン のせん断耐力の方が A 側よりも小さい. No.1 試験体は A 杭 B 杭ともに杭頭部近傍の鉄筋が降伏しているため, せん断耐力の小さなスパンである B 側で破壊に至った. また, No.2 試験体では,正負交番載荷試験終了時点で A 杭側のハンチ筋等が降伏していた.したがって,せん断 耐力が小さく,かつ接合条件が剛な B 杭側せん断スパン で破壊したものと考えることができる. No.3 試験体も ほとんど損傷がないため, B 杭側せん断スパンで破壊し たと考えられる.

このように、地震動によって RC はりそのものに損傷 が少ない状態であっても、生じた杭頭部周辺の損傷状態 によって上部工の鉛直荷重に対する接合条件が変化し、 複雑な破壊挙動を示すといえる.すなわち、損傷状況に よっては、配筋上せん断耐力が小さなせん断スパン側が 必ずしも破壊に至るわけではない.したがって、上述し た通り杭頭部のひび割れ発生状況から上部工の損傷状 態を定性的に評価する上では、ひび割れ幅などを指標と してコンクリート内部の鉄筋降伏の可能性も疑う必要 があるといえる.

(4) 地震動を受けた桟橋上部工の残存耐力

上述した通り,桟橋上部工の残存耐力は杭頭部の損傷 に伴う接合条件の変化等に影響される.しかしながら, 損傷の有無によらず,桟橋上部工の接合条件は明確でな い.本研究において示された実験値と無損傷を仮定した 計算値を比較するため,本論では各スパンにおけるはり を健全な単純支持はりと仮定してせん断耐力を計算した. ここで,せん断耐力の算出はコンクリート負担分および

図-3.27 最大水平変位と初期剛性の関係(BC 杭間)

鉄筋負担分の累加方式とし、コンクリート負担分のせん 断耐力 *V*_cは式(1)で求めた⁶.

$$V_{c} = 0.244 f_{c}' \left(1 + \sqrt{100 p_{v}} \right) \bullet \left(1 + \frac{3.33r}{d} \right) b d / \left(1 + \left(\frac{a}{d} \right)^{2} \right)$$
(1)

- ここに, pv : 鉄筋比
 - r : 支圧板の長さ(100mm)
 - *d* : 有効高さ
 - *b* : 上部工の幅
 - a : せん断スパン長 (625mm)

f_c:コンクリートの圧縮強度(55.9N/mm²)
 鉄筋負担分のせん断耐力 *V_s*との和から, AB 杭間の B
 杭側せん断スパンで 376kN, BC 杭間の B 杭側せん断ス
 パンで 388kN と算出された.

図-3.25 および図-3.26 に試験体の最大水平変位と各 スパンの最大荷重の関係を示す.なお,最大水平変位と は,正負交番載荷試験によって試験体が受けた最大の水 平変位を示している.図より,BC間では38,と48,の最 大荷重はほぼ同じであり,計算値の約65%であった.一 方,AB間では48,の最大荷重は38,のそれよりも20%程 度低下しており,杭間スパンによって傾向が異なった.

BC間では1 δ_y の残存耐力は計算値とほぼ同じであった. また,桟橋が 4 δ_y 程度の水平変位を受けても,上部工の 残存耐力は計算値の 65%程度であった.ただし,本実験 では 5 δ_y 以上の水平履歴は与えていないため,5 δ_y を超え る水平変位を受けた桟橋上部工の残存耐力については今 後の検討が必要である.AB間では,1 δ_y においても計算 値よりも小さくなった.これは,AB間の載荷試験の前 に BC間の上部工の載荷試験を実施しており,これによ り B 杭の損傷が進行したことで,AB間の残存耐力が低 下したことが原因と考えられる.しかしながら,隣接す るスパンの上部工が破壊に至ったとしても,単純支持は りを仮定した RC はりのせん断耐力の 60%程度以上有し ていた.

また,損傷を受けた上部工に鉛直荷重を与えると,供 用時において変形が問題となる可能性がある.そこで, 荷重-変位関係のうち鉛直荷重 5~50kN を直線近似して 傾きを求め,これを初期剛性とした.図-3.27 に桟橋の 最大水平変位と BC 杭間の上部工の初期剛性の関係を示 す.図より,最大水平変位が大きいほど上部工の初期剛 性が顕著に低下する傾向が認められる.地震で損傷した RC はりに上載荷重が作用した場合,変形が大きくなる ため,変位・変形の観点から限界値が決定される場合に は,初期剛性を適切に評価する必要がある.

3.3 上部工が破壊した桟橋の残存水平耐力

図-3.28 に上部工の静的載荷試験終了後(上部工が破壊した状態)の No.2, No.3 試験体の水平載荷試験から求めた水平変位-水平荷重関係の包絡線を示す.図には,正 負交番載荷試験より求めた No.1 試験体の包絡線もあわ

図-3.28 水平荷重-水平変位関係(水平載荷試験)

せて示す. No.1 試験体は図-3.1 の包絡線であり,上部工 が無損傷の状態の水平耐力を表している.

図より、上部工が破壊した状態の No.2, No.3 試験体の 最大荷重はそれぞれ-91lkN, 109kN であり, 無損傷の No.1 試験体の最大荷重-97kN, 104kN と概ね同程度の値を示 した.一方,初期剛性に着目すると,No.2 試験体および No.3 試験体はそれぞれ No.1 試験体の 80%, 65%に低下 していた. したがって、上部工が破壊した桟橋を供用す る場合、水平荷重に対する抵抗力は損傷前とほぼ同等で あるが、初期剛性の低下により水平変位が大きくなると いえる.現状の港湾基準では牽引力および接岸力に対し ては耐力ベースで照査がなされており、変形については 照査されていない. しかしながら、桟橋の剛性低下によ って,船舶の荷役作業等にも影響を及ぼす可能性がある 点に注意を要する.また、大きな損傷を受けた鋼管杭に 対して牽引力および接岸力が繰り返し作用した場合の鋼 管杭の低サイクル疲労特性などは明確でなく、今後の検 討課題である.

4. 地震後における桟橋の供用可否判断に関する考 察

前章の実験結果から,地震動による損傷を受けた桟橋 上部工の残存耐力は,最大水平変位が48_y以下であれば, 単純支持はりを仮定した場合のせん断耐力の60%程度の 残存耐力を有していると考えることができる.本論では, コンクリートの実強度を用いてせん断耐力を計算したが, 実際の桟橋の供用可否判断においては,コンクリート強 度に設計基準強度を用いて計算することで,安全側の評 価にすることができる.また,本論で実施した実験では 桟橋の法線直角方向の RC はりのみをモデル化したが, 実際の桟橋では床版も抵抗することを考えると, RC は り単体のせん断耐力よりも大きな耐力になることが予想 できる.

しかしながら、最大水平変位が4δ、以下であることを現 地で簡易に確認することは困難である.また、地震時の 最大変形量が大きい場合であっても、それ以降の地震動 特性によっては復元して残留変形量が見かけ上小さくな る場合も想定され、残留変形量だけでは明確に判断でき ない. したがって、桟橋本体の残存性能を評価する上で は、桟橋杭頭部の損傷状態を把握することが重要となる. 例えば,前章において記載した通り,杭頭部の損傷状態 (ひび割れ,かぶり剥落)の損傷状況によって,地震動 による桟橋の損傷度を定性的に把握することができる. 陸側の杭頭部のみが損傷している状態であれば桟橋の受 けた変位履歴は小さいことが想定され、また全ての杭頭 部において損傷を受けているのであれば、大きな変位履 歴を受けたことを想定できる.全ての杭頭部の損傷度が 大きな場合には,残留水平変位の測定のみでは変位が復 元した可能性を否定できないため、最大水平変位履歴が 大きかった可能性を疑う必要がある.このような場合に は, 上部工や鋼管杭について詳細点検診断を実施し, 杭 頭部の損傷状態(鉄筋の破断,座屈等)や杭の残留変形 量を把握した上で,数値解析等を用いて損傷状態や残存 性能を推定するなど、高度な技術が必要である.

5. 結言

本論は、地震動による桟橋上部工の損傷状態と残存性 能を関連付けることを目的とし、実際の桟橋の法線直角 方向の杭1列分を約1/4の縮尺でモデル化した試験体に対 して正負交番載荷試験により損傷を与え、その後静的載 荷試験によって上部工の残存性能について評価を行った. 以下に本論により得られた知見を示す.

- (1) ひび割れの発生・進展の観点から地震時における桟 橋上部工の損傷過程を整理すると、陸側の杭頭部, 海側の杭頭部,中間の杭頭部の順に損傷が進行する.
- (2) 1δ_y 程度の最大水平変位では上部工の鉄筋は降伏していないが、3δ_y(最大荷重)以上の水平変位が作用すると、杭頭部近傍の回転変形が大きくなり、ハンチ筋や上端筋、折曲げ鉄筋等が降伏する.
- (3) 地震動によって RC はりそのものに損傷が少ない状態であっても、生じた杭頭部周辺の損傷状態によって上部工の鉛直荷重に対する接合条件が変化することで、桟橋上部工の残存性能は大きく影響される.

- (4) 単純支持はりを仮定した健全な RC はりのせん断耐 力の計算値に対して、4δyの最大水平変位を受けた桟 橋上部工の残存耐力は65%程度となる.また、隣接 するスパンの上部工が破壊に至った場合、単純支持 はりを仮定した RC はりのせん断耐力の60%程度と なる.
- (5) 地震動によって損傷を受けた桟橋上部工の初期剛性 は桟橋の受けた最大水平変位の増大に伴って顕著に 低下する.
- (6) 上部工が破壊した桟橋の残存水平耐力は損傷前の水 平耐力と概ね同等であるが、初期剛性は低下する.

6.おわりに

本論では、地震後における桟橋上部工の残存性能、特 に耐荷性能について検討を行った.本研究成果は、地震 後において暫定的に桟橋の供用可否を判断するための有 益な判断材料になると考える.

本研究成果の適用は適切な維持管理の下,桟橋が所定 の性能を有していることが前提となっている.定期点検 診断が適切に行われず,鉄筋腐食などの劣化が顕在化し た状況では,臨時点検診断において誤った判断を行う場 合もある.被災後において桟橋の供用可否,復旧の必要 性などを適切に判断するためにも,定期的な点検診断の 実施が不可欠である.

今後,桟橋の供用可否判断に資する臨時点検診断手法 を確立するとともに,判断指標の一般化を提案するべく, 研究を進めていく所存である.

謝辞

本実験を実施するにあたり、中部地方整備局名古屋港 湾空港技術調査事務所に多大なる協力を得ました.また 本成果の一部は、日本学術振興会科学研究費補助金(基 盤研究(B):23360192)によって実施いたしました.ここ に記して謝意を表します.

(2012年11月8日受付)

参考文献

- 1) 稲富隆昌ほか:1995年兵庫県南部地震による港湾施 設等被害報告,港湾技研資料,No.857,1997
- 南兼一郎ほか:神戸港における横桟橋の被害調査と 動的相互作用解析,第24回地震工学研究発表会講演 論文集,pp.693-696,1997
- 高橋重雄ほか:2011年東日本大震災による港湾・海岸・空港の地震・津波被害に関する調査速報,港湾

空港技術研究所資料, No.1231, 2011

- 日本港湾協会:港湾の施設の技術上の基準・同解説, 2007
- 5) 横田弘ほか:鋼直杭式桟橋の地震時保有耐力に関す る実験および解析,港湾技術研究所報告, Vol.38, No.2, pp.223-255, 1999
- 6) 二羽淳一郎: FEM 解析を用いたディープビームのせん断耐力算定式,第2回RC構造のせん断問題に関するコロキウム論文集,pp.119-128,1983
- 小泉哲也、山本修司、竹地晃一郎、門脇陽治:被災した係留施設の残存耐力の評価手法の開発,港湾技研資料,No.912,1998

付録

付録-1 正負交番載荷試験における鋼管のひずみ分布

付図-1.1~付図-1.3に正負交番載荷試験における各試 験体の鋼管のひずみ分布を示す.図より,降伏箇所の順 番は若干異なるものの,いずれの試験体においても概ね 同様の傾向を示している.

付録-2 上部エおよび鋼管杭の耐力

本実験で作製した試験体について、スパン中央に1点集 中荷重を与えたときの上部工の断面耐力を付表-2.1に示 す.鋼管杭の降伏モーメントMyおよび全塑性モーメント Moo(軸力考慮無し)はそれぞれ以下の式で計算できる.

$$M_{y} = \left(\sigma_{y} - \frac{N}{A}\right) Z_{e}$$

ここに,

N: 鋼管杭に作用する軸力(kN)

 σ_y : 鋼管杭の降伏強度 (kN/m²)

A: 鋼管杭の断面積 (m²)

鋼管杭の全塑性曲げモーメント M_pは以下の式による.

$$M_{p} = M_{p0} \cos\left(\frac{\alpha\pi}{2}\right)$$
$$\alpha = \frac{N}{N_{y0}}$$
$$N_{y0} = \sigma_{y}A$$
$$M_{p0} = \sigma_{y}Z_{y}$$
$$Z_{p} = \frac{4}{3} \left\{ R^{3} - (R - t)^{3} \right\}$$

ここに,

M_{p0}:軸力が無い時の鋼管杭の全塑性曲げモー
 メント(kNm)

N_{v0}:鋼管杭の降伏軸力(kN)

Z_p: 鋼管杭の塑性断面係数(m³)

- *R*: 鋼管杭の半径(m)
- t: 鋼管杭の板厚(m)

計算から、本実験で用いた鋼管杭の降伏軸力は 94.3 kN, 降伏モーメントおよび全塑性モーメント(軸力考慮無し) はそれぞれ 43.7 kNm, 63.6 kNm となる. なお, はりに伝 達できる曲げモーメント *Mud* は鉄筋連結プレートや必要 に応じて設けられる縦リブを無視して, 以下の式により 算出する.

$$M_{ud} = \frac{DL^2 f'_c}{6}$$

鋼管杭の降伏モーメントと**付表-2.1**の上部工の耐力 を比較すると、上部工の終局曲げ耐力は降伏モーメント よりも小さく、本論で製作した桟橋試験体は杭の降伏時 において上部工が破壊することが想定できる.しかしな がら、図-3.11 にて示したように、桟橋の最大水平変位 が 1δy程度であっても上部工に損傷はほとんど生じず、 残存耐力は計算値と同等であった.これは、図-3.10 で 示したように、杭頭部の回転変形によって、伝達モーメ ントが低減されているためと考えることができる.

杭頭部における回転変形のモデル化手法については横 田らの実験および解析⁽⁺¹⁾に詳しく記載されている.現行 の設計では鋼管杭と上部工の接合条件を剛結としている 場合が多いが,設計時において杭頭部の回転変形を考慮 することで,必要鉄筋量の減少等,経済的な断面決定に 寄与することができると考えられる.

付録-3 既往の研究との比較

本論と同様の研究として,横田らの研究⁽⁺²⁾が挙げられる.横田らの研究では、5 種類の試験体の地震時水平耐力が検討されている.このうち,軸力管理がなされている No.5 試験体(付図-3.1)と本実験結果の比較を行う.

No.5 試験体の鋼管杭には, 鋼種 STK400, 外径 267.4mm, 厚径比 t/D=1.50%のものが使用されている. 軸力が無い 条件の全塑性モーメントは 87kNm である. RC 上部工 には主鉄筋として D16 が 6 本配筋されており, 終局曲げ 耐力は 229kNm である. この値は鋼管杭の全塑性モーメ ントよりもはるかに大きい. 上部工の耐力が非常に大き な試験体の正負交番載荷試験では杭頭部周辺にひび割れ が発生するものの, 鋼管杭の座屈が進行し, 荷重低下に いたっている (付図-3.2). この時, 上部工にはほとんど 損傷は認められない (付図-3.3).

一方、本実験では上部工の終局曲げ耐力が鋼管杭の降 伏モーメントよりも小さいため、鋼管杭よりも上部工の 損傷が進行した.ただし、杭の降伏モーメントよりも小 さな曲げ耐力の桟橋上部工であっても地震後の残存耐力 は60%程度であったことから、鋼管杭に対する上部工の 耐力が大きな桟橋ではより高い残存耐力を期待できる可 能性がある.しかしながら、杭頭部の接合条件などにも 依存するため、定量的な評価のためには今後の実験およ び解析が必要である.

付録-4 正負交番載荷試験における上部工のひび割れ発 生進展過程

付図-4.1~付図-4.3 に正負交番載荷試験における上 部工のひび割れの発生進展過程を示す.

付録-5 上部工の静的載荷試験における上部工のひび割 れ発生進展過程

付図-5.1~付図-5.3 に上部工の静的載荷試験における上部工のひび割れの発生進展過程を示す.

付録-6 水平載荷試験における上部工のひび割れ発生進 展過程

付図-6.1~付図-6.2 に桟橋の水平載荷試験における 上部工のひび割れの発生進展過程を示す.

参考文献

- 付1) 横田弘, 片岡保人, 菅原亮, Hazem El-Bakry, 川端 規之: 桟橋の鋼管杭と上部工接合部の力学的挙動に 関する実験および解析, 港湾技研資料, No.977, 2000
- 付2) 横田弘ほか:鋼直杭式桟橋の地震時保有耐力に関す る実験および解析,港湾技術研究所報告, Vol.38, No.2, pp.223-255, 1999

付図-1.2 正負交番試験時の鋼管杭のひずみ分布 (No.2)

付表-2.1	上部工の断面耐力	(スパン中央に	1 点集中荷重)

計算值							
			終局曲げ耐力 M _u (kNm)	荷重 P _M (kN)	終局せん断耐力 V _c (kN)	荷重 P _V (kN)	P_V/P_M
	海側	正	29	122	115	231	1.9
AB 杭間	(A-A 断面)	負	42	176	126	253	1.4
	陸側	正	29	120	115	231	1.9
	(B-B 断面)	負	24	99	110	220	2.2
BC 杭間	海側	正	34	142	120	240	1.7
	(C-C 断面)	負	24	101	103	206	2.1
	陸側	正	34	143	113	227	1.6
	(D-D 断面)	負	42	176	126	253	1.4

付図-3.3 ひび割れ図(横田らの実験)^{付2)}

付図-4.2 正負交番載荷試験におけるひび割れ発生進展過程(No.2 試験体)

- 28 -

付図-5.2 上部工の静的載荷試験におけるひび割れ発生進展過程(No.2 試験体)

付図-5.3 上部工の静的載荷試験におけるひび割れ発生進展過程(No.3 試験体)

付図-6.1 水平載荷試験におけるひび割れ発生進展過程(No.2 試験体)

付図-6.2 水平載荷試験におけるひび割れ発生進展過程(No.3 試験体)

Copyright © (2013) by PARI

All rights reserved. No part of this book must be reproduced by any means without the written permission of the President of PARI

この資料は、港湾空港技術研究所理事長の承認を得て刊行したものである。したがって、本報告 書の全部または一部の転載、複写は港湾空港技術研究所理事長の文書による承認を得ずしてこれを 行ってはならない。

